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Introduction
Initial-value problem formulation

Results
Conclusions

Motivation and general aspects

Energy spectrum in fully developed turbulence
Phenomenology of turbulence Kolmogorov 1941:
−5/3 power-law for the energy spectrum over the inertial range;

It is a common criterium for the production of a fully developed
turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreeni-
vasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

(left) Evangelinos & Karniadakis, JFM 1999. (right) Champagne, JFM 1978.
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Motivation and general aspects

Energy spectrum and linear stability analysis

We study the state that precedes the onset of instability and tran-
sition to turbulence:

To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;
To quantify the degree of generality on the value of the energy decay
exponent of the inertial range;

Different typical perturbed shear systems: plane Poiseuille flow
and bluff-body wake.
The set of small 3D perturbations:

Constitutes a system of multiple spatial and temporal scales;
Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);
Leaves aside the nonlinear interaction among the different scales;

The perturbative evolution is ruled by the initial-value problem
associated to the Navier-Stokes linearized formulation.
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Motivation and general aspects

Spectral analysis through initial-value problem

The transient linear dynamics offers a great variety of different
behaviours (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio
et al., Phys. Rev. E, 2010):

⇒ Understand how the energy spectrum behaves;
Is the linearized perturbative system able to show a power-
law scaling for the energy spectrum in an analogous way to
the Kolmogorov argument?
We determine the energy decay exponent of arbitrary longitu-
dinal and transversal perturbations in their asymptotic states
and we compare it with the -5/3 Kolmogorov decay.
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Initial-value problem formulation

Results
Conclusions

Mathematical framework
Measure of the growth
Variety of the transient linear dynamics

Perturbation scheme

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);

Laplace-Fourier transform in x and z directions, α complex, γ real.
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Mathematical framework
Measure of the growth
Variety of the transient linear dynamics

Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − α2
i + 2iαrαi )v̂ = Γ̂

∂Γ̂

∂t
= (iαr − αi )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi )Γ̂]

∂ω̂y

∂t
= −(iαr − αi )Uω̂y − iγ

dU
dy

v̂ +
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi )ω̂y ]

The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂x ω̃z − ∂z ω̃x .

Initial conditions: symmetric and asymmetric inputs;
Boundary conditions: (û, v̂ , ŵ)→ 0 as y → ±∞ and at walls.
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Perturbation energy

Kinetic energy density e:

e(t ;α, γ) =
1
2

∫ +yd

−yd

(|û|2 + |v̂ |2 + |ŵ |2)dy

Amplification factor G:

G(t ;α, γ) =
e(t ;α, γ)

e(t = 0;α, γ)

Temporal growth rate r :

r(t ;α, γ) =
|dG/dt |

G

Angular frequency (pulsation) ω (Whitham, 1974):

ω(t ;α, γ) =
dϕ(t)

dt
, ϕ time phase
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Relevant transient behaviours
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Perturbative system features
Spectral distributions

Spectral representation

The energy spectrum is evaluated as the wavenumber distribution
of the perturbation kinetic energy density, G(k);

The spectral representation is determined by comparing the
energy of the waves when they are exiting their transient
state;

Every perturbation has its characteristic transient exiting time, Te;

The asymptotic condition is reached when the perturbative wave
exceeds the transient exiting time, Te, that is when r ∼ const is
satisfied for stable and unstable waves.

Scarsoglio, De Santi & Tordella, ETC XIII, 2011.
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Energy G(k) at the asymptotic state (r ∼const)
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Pulsation ω(k) at the asymptotic state (r ∼const)
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Conclusions

Concluding remarks

Spectrum determined by evaluating the energy of the waves when
they are exiting their transient state;

Regardless the symmetry and obliquity of perturbations, there ex-
ists an intermediate range of wavenumbers in the spectrum
where the energy decays with the same exponent observed
for fully developed turbulent flows (−5/3), where the nonlinear
interaction is considered dominant;
Scale-invariance of G and Te at different (stable and unstable)
Reynolds numbers and for different shear flows;
The spectral power-law scaling of inertial waves is a general
dynamical property which encompasses the nonlinear inter-
action;
The −5/3 power-law scaling in the intermediate range seems
to be an intrinsic property of the Navier-Stokes solutions.
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