Stefania Scarsoglio
Francesca De Santi  Daniela Tordella

Philofluid Research Group (www.polito.it/philofluid)
Department of Mechanical and Aerospace Engineering
Politecnico di Torino, Torino, ltaly

9th European Fluid Mechanics Conference
September 9-13, 2012, Rome, ltaly



http://www.polito.it/philofluid

e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

Motivation




e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

o Frequency transient poorly investigated

Motivation




e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

o Frequency transient poorly investigated
= Attention mainly devoted to the frequency of vortex shedding
for the most unstable spatial scales (Williamson, 1989; Strykowski
& Sreenivasan, 1990);

Motivation



e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

o Frequency transient poorly investigated
= Attention mainly devoted to the frequency of vortex shedding
for the most unstable spatial scales (Williamson, 1989; Strykowski
& Sreenivasan, 1990);

e The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):

e High maxima of energy followed by asymptotic damping;

Motivation



e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

o Frequency transient poorly investigated
= Attention mainly devoted to the frequency of vortex shedding
for the most unstable spatial scales (Williamson, 1989; Strykowski
& Sreenivasan, 1990);
e The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):
e High maxima of energy followed by asymptotic damping;
e Very low minima of energy (transient decay) reached before an
ultimate amplification;

Motivation



e Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

o Frequency transient poorly investigated
= Attention mainly devoted to the frequency of vortex shedding
for the most unstable spatial scales (Williamson, 1989; Strykowski
& Sreenivasan, 1990);
e The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):
e High maxima of energy followed by asymptotic damping;
e Very low minima of energy (transient decay) reached before an
ultimate amplification;

Motivation

= How does the frequency of these travelling waves behave?



Motivation

Temporal evolution of the wave frequency in two archetypical
shear flows, the plane channel flow and the bluff-body wake;

Frequency transient poorly investigated
= Attention mainly devoted to the frequency of vortex shedding
for the most unstable spatial scales (Williamson, 1989; Strykowski
& Sreenivasan, 1990);
The linear transient dynamics offers a great variety of very differ-
ent behaviors (Scarsoglio et al., 2009, 2010, 2011):

e High maxima of energy followed by asymptotic damping;

e Very low minima of energy (transient decay) reached before an

ultimate amplification;

= How does the frequency of these travelling waves behave?

Nonlinear terms limit the amplitude of the wave packet leaving
unaffected its frequency (Delbende & Chomaz, 1998).
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o Amplification factor G:
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e Temporal growth rate 7:

logle(t; a,v)]

r(t;a,y) = o
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e Phase 0,,:

Ouw (y, t; 0, ) = arg(0(y, t; o, 7))

Initial-value

problem e Angular frequency w:

do(t; yo, o,y
W(t;yo,a,’}/) = %

e Phase velocity C:
C = (w/k)k

k = (cos(¢),sin(¢)) is the unitary vector in the k direction.



Jumps in
frequency
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Intermediate
term
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to (0): the asymptotic limit is reached. te (A): the early transient ends and
the frequency discontinuities occur. Blue symbols: wake flow, Re = 100,
antisymmetric input, ¢ = 7/4, o = 10, yo = 1. Red symbols: channel flow
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Dispersion
relation
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Discontinuities in frequency never observed before (loss of infor-
mation with the spectral analysis of signals);

e Jumps observed for different (stable and unstable) Reynolds num-
bers and for different shear flows;

o Emergence of different temporal scales in a linear system regard-
less the symmetry, the wavelength and the obliquity of perturba-
tions;

e Intermediate transient;

Orthogonal standing waves = How does a spot form?
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e Single wave: k£ = 0.6;

o Different wavelengths:
k~10"1 - 10

o Wave packet: k ~ 1.4.
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