

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi, D. Tordella

Introduction Motivation

Motivation Initial-value

Transient dynamics

Jumps in frequency Intermediate term

Asymptoti

Dispersio relation

Conclusions

Travelling perturbations in sheared flows: sudden transition in frequency and phase speed asymptotics

Stefania Scarsoglio
Francesca De Santi Daniela Tordella

Philofluid Research Group (www.polito.it/philofluid)
Department of Mechanical and Aerospace Engineering
Politecnico di Torino, Torino, Italy

9th European Fluid Mechanics Conference September 9-13, 2012, Rome, Italy

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introduction Motivation Initial-value

Transien dynamics

Jumps in frequency Intermediate term

Asymptoti

Dispersion relation

Conclusions

 Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;

Sudden transition in frequency for travelling waves

S. Scarsoglic F. De Santi D. Tordella

Introduction
Motivation
Initial-value
problem

Transient dynamics

Jumps in frequency Intermediate term

Asymptot hehaviour

Dispersion relation

Conclusion

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated

Sudden transition in frequency for travelling waves

S. Scarsoglic F. De Santi D. Tordella

Introduction
Motivation
Initial-value
problem

dynamics
Jumps in
frequency
Intermediate

Asymptot behaviour Dispersio

relation Conclusion

120

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated
 - ⇒ Attention mainly devoted to the frequency of vortex shedding for the most unstable spatial scales (Williamson, 1989; Strykowski & Sreenivasan, 1990);

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Motivation
Initial-value
problem

Transient
dynamics

Jumps in
frequency
Intermediate
term

Asymptotic behaviour Dispersion relation

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated
 - ⇒ Attention mainly devoted to the frequency of vortex shedding for the most unstable spatial scales (Williamson, 1989; Strykowski & Sreenivasan, 1990);
- The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):
 - High maxima of energy followed by asymptotic damping;

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Motivation
Initial-value
problem
Transient
dynamics
Jumps in
frequency
Intermediate
term

Asymptotic behaviour Dispersion relation Conclusions

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated
 - ⇒ Attention mainly devoted to the frequency of vortex shedding for the most unstable spatial scales (Williamson, 1989; Strykowski & Sreenivasan, 1990);
- The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):
 - High maxima of energy followed by asymptotic damping;
 - Very low minima of energy (transient decay) reached before an ultimate amplification;

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Motivation
Initial-value
problem

Transient
dynamics

Jumps in
frequency
Intermediate
term

Asymptotic behaviour Dispersion relation Conclusions

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated
 - ⇒ Attention mainly devoted to the frequency of vortex shedding for the most unstable spatial scales (Williamson, 1989; Strykowski & Sreenivasan, 1990);
- The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):
 - High maxima of energy followed by asymptotic damping;
 - Very low minima of energy (transient decay) reached before an ultimate amplification;
 - ⇒ How does the frequency of these travelling waves behave?

Sudden transition in frequency for travelling waves

S. Scarsoglic F. De Santi D. Tordella

Motivation
Initial-value
problem
Transient
dynamics
Jumps in
frequency
Intermediate
term

Asymptotic pehaviour Dispersion relation Conclusions

- Temporal evolution of the wave frequency in two archetypical shear flows, the plane channel flow and the bluff-body wake;
- Frequency transient poorly investigated
 - ⇒ Attention mainly devoted to the frequency of vortex shedding for the most unstable spatial scales (Williamson, 1989; Strykowski & Sreenivasan, 1990);
- The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):
 - High maxima of energy followed by asymptotic damping;
 - Very low minima of energy (transient decay) reached before an ultimate amplification;
 - ⇒ How does the frequency of these travelling waves behave?
- Nonlinear terms limit the amplitude of the wave packet leaving unaffected its frequency (Delbende & Chomaz, 1998).

Sudden transition in frequency for travelling wave

> S. Scarsogli F. De Sant D. Tordella

Introductio Motivation

Initial-value problem

dynamics

Jumps in frequency

frequency Intermediat term

Asymptoti behaviour

Dispersio relation

Conclusions

• Steady base flow excited with small 3D perturbations;

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introduction Motivation

Initial-value problem

Jumps in frequency Intermediat

Asymptoti

Dispersion relation

Conclusions

- Steady base flow excited with small 3D perturbations;
- Linearized 3D Navier-Stokes equations (velocity-vorticity);

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introduction
Motivation
Initial-value
problem

Transient dynamics

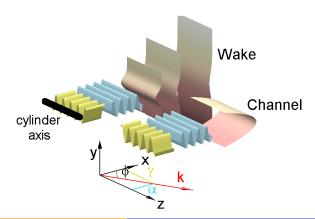
Jumps in frequency Intermediate

Asymptoti hehaviour

Dispersion relation

Conclusion

- Steady base flow excited with small 3D perturbations;
- Linearized 3D Navier-Stokes equations (velocity-vorticity);
- Laplace-Fourier (wake) and Fourier-Fourier (channel) transform in the x and z directions.


Sudden

Initial-value problem

behaviour

- Steady base flow excited with small 3D perturbations;
- Linearized 3D Navier-Stokes equations (velocity-vorticity);
- Laplace-Fourier (wake) and Fourier-Fourier (channel) transform in the x and z directions.

Measure of the growth

Sudden transition in frequency for travelling wave

S. Scarsoglio
F. De Santi
D. Tordella

Introduction Motivation

Motivation Initial-value problem

dynamics

Jumps in

frequency

Intermedia

Asymptoti

Dispersio

Conclusions

• Kinetic energy density *e*:

$$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

Measure of the growth

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introduction

Motivation
Initial-value

problem
Transient
dynamics

Jumps in frequency Intermediate term

Asymptoti behaviour

Dispersion relation

Conclusion

• Kinetic energy density *e*:

$$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

• Amplification factor G:

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

Measure of the growth

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introduction Motivation Initial-value

problem
Transient
dynamics

Jumps in frequency Intermediate term

Asymptoti behaviour

Dispersion

Conclusion

• Kinetic energy density *e*:

$$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

• Amplification factor G:

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

• Temporal growth rate r:

$$r(t; \alpha, \gamma) = \frac{log[e(t; \alpha, \gamma)]}{2t}$$

Characteristics of the perturbation

Initial-value problem

• Phase θ_w :

$$\theta_w(y, t; \alpha, \gamma) = arg(\hat{v}(y, t; \alpha, \gamma))$$

Characteristics of the perturbation

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introduction
Motivation
Initial-value
problem

Transient dynamics

Jumps in frequency Intermediate term

Asymptoti behaviour

Dispersion relation

Conclusions

• Phase θ_w :

$$\theta_w(y, t; \alpha, \gamma) = arg(\hat{v}(y, t; \alpha, \gamma))$$

• Angular frequency ω :

$$\omega(t; y_0, \alpha, \gamma) = \frac{|d\theta(t; y_0, \alpha, \gamma)|}{dt}$$

Characteristics of the perturbation

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introduction
Motivation
Initial-value
problem

Transient
dynamics
Jumps in
frequency

Jumps in frequency Intermediate term

Asymptoti behaviour

relation

Conclusio

• Phase θ_w :

$$\theta_w(y, t; \alpha, \gamma) = arg(\hat{v}(y, t; \alpha, \gamma))$$

• Angular frequency ω :

$$\omega(t; y_0, \alpha, \gamma) = \frac{|d\theta(t; y_0, \alpha, \gamma)|}{dt}$$

• Phase velocity C:

$$\mathbf{C} = (\omega/k)\hat{\mathbf{k}}$$

 $\hat{\mathbf{k}} = (\cos(\phi), \sin(\phi))$ is the unitary vector in the k direction.

Channel flow (Re = 10000, k = 15, $y_0 = 0.5$)

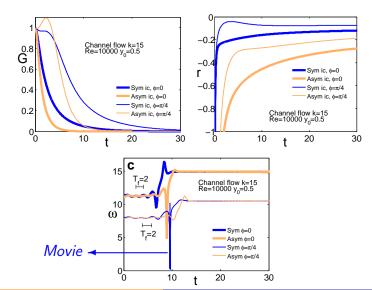
Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introduction

/lotivation nitial-value roblem

Transien dynamics


Jumps in frequency Intermediate

Asymptot

Dispersi

Conclusio

Wake flow (Re = 100, k = 0.7, $x_0 = 50$, $y_0 = 1$)

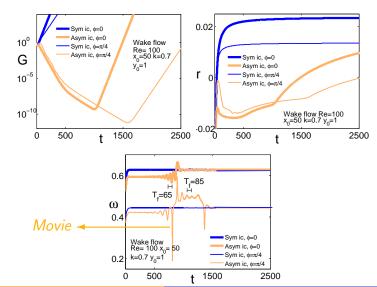
Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introductio

Initial-value problem

dynamics Jumps in frequency


Jumps in frequency Intermediat term

Asymptot behaviour

Conclusion

Conclusio

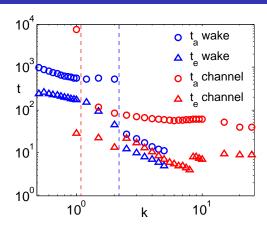
Typical transient time scales

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

Introduction Motivation Initial-valu problem

dynamics


Jumps in frequency

Intermedia

Intermediate term Asymptotic behaviour

Dispersion relation

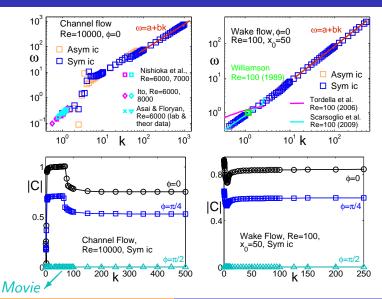
 t_a (o): the asymptotic limit is reached. t_e (Δ): the early transient ends and the frequency discontinuities occur. Blue symbols: wake flow, Re=100, antisymmetric input, $\phi=\pi/4$, $x_0=10$, $y_0=1$. Red symbols: channel flow Re=10000, symmetric input, $\phi=\pi/4$, $y_0=0.5$.

Spectra of the frequency and phase velocity

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi, D. Tordella

Introduction Motivation Initial-valu


Transien dynamics

Jumps in frequency Intermediat term

Asymptoti behaviour

Dispersion relation

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introductio

Initial-value

Transient dynamics

Jumps in

Jumps in frequency Intermediate term

Asymptoti

Dispersion relation

Conclusion

Discontinuities in frequency never observed before (loss of information with the spectral analysis of signals);

Sudden transition in frequency for travelling wave

S. Scarsoglio
F. De Santi
D. Tordella

Introduction
Motivation
Initial-value
problem

Transient dynamics Jumps in frequency

Jumps in frequency Intermediate term

Asymptoti behaviour

Dispersion relation

Conclusio

- Discontinuities in frequency never observed before (loss of information with the spectral analysis of signals);
- Jumps observed for different (stable and unstable) Reynolds numbers and for different shear flows;

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Motivation Initial-valu problem Transient dynamics Jumps in

Jumps in frequency Intermediate term

behaviour
Dispersior
relation

- Discontinuities in frequency never observed before (loss of information with the spectral analysis of signals);
- Jumps observed for different (stable and unstable) Reynolds numbers and for different shear flows;
- Emergence of different temporal scales in a linear system regardless the symmetry, the wavelength and the obliquity of perturbations;

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Motivation
Initial-value
problem

Transient
dynamics
Jumps in
frequency
Intermediat

Asymptotion behaviour Dispersion relation

Conclusio

- Discontinuities in frequency never observed before (loss of information with the spectral analysis of signals);
- Jumps observed for different (stable and unstable) Reynolds numbers and for different shear flows;
- Emergence of different temporal scales in a linear system regardless the symmetry, the wavelength and the obliquity of perturbations;
- Intermediate transient;

Sudden transition in frequency for travelling wave

S. Scarsogli F. De Sant D. Tordella

Motivation
Initial-value
problem
Transient
dynamics
Jumps in
frequency
Intermediat
term

Asymptotic behaviour
Dispersion relation

Conclusions

- Discontinuities in frequency never observed before (loss of information with the spectral analysis of signals);
- Jumps observed for different (stable and unstable) Reynolds numbers and for different shear flows;
- Emergence of different temporal scales in a linear system regardless the symmetry, the wavelength and the obliquity of perturbations;
- Intermediate transient:
- Orthogonal standing waves ⇒ How does a spot form?

Coming next...Spot formation

Sudden transition in frequency for travelling wave

> S. Scarsoglio F. De Santi D. Tordella

Introduction

Motivation Initial-value

Transier

Jumps in frequency Intermediat

Asymptoti

Dispersion

Conclusions

• Single wave: k = 0.6;

Coming next...Spot formation

Sudden transition in frequency for travelling wave

S. Scarsoglio F. De Santi D. Tordella

Introduction

Motivation

Initial-va problem

Transien dynamics

Jumps in frequency Intermediate term

Asymptoti

Dispersio relation

Conclusions

• Single wave: k = 0.6;

• Different wavelengths: $k \sim 10^{-1} - 10^{0}$:

Coming next...Spot formation

Sudden transition in frequency for travelling waves

S. Scarsoglio F. De Santi D. Tordella

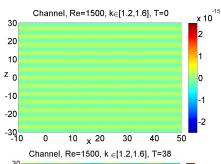
Introduc

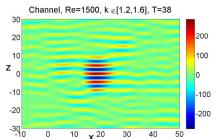
Motivation Initial-value

Transien dynamics

Jumps in frequency Intermediate term

Asymptoti behaviour


Dispersion relation


Conclusion

• Single wave: k = 0.6;

• Different wavelengths: $k \sim 10^{-1} - 10^{0}$:

• Wave packet: $k \sim 1.4$.

Influence of the Reynolds number

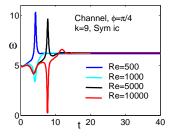
Sudden transition in frequency for travelling wave

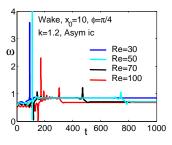
S. Scarsoglio F. De Santi D. Tordella

Introduction

Motivation nitial-value problem

Transien dynamics


Jumps in frequency Intermediate


Asymptot behaviour

Dispersion relation

Conclusio

Different transversal observation points y_0

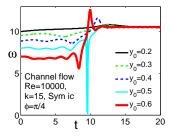
Sudden transition in frequency for travelling wave

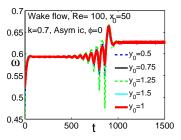
S. Scarsoglio
F. De Santi
D. Tordella

Introduc

Motivation nitial-value

Transient dynamics


Jumps in frequency Intermediate


Asymptoti behaviour

Dispersion

Conclusion

