Characterizing the cardiovascular functions during atrial fibrillation through lumped-parameter modeling

Stefania Scarsoglio¹
Andrea Guala² Carlo Camporeale² Luca Ridolfi²

¹Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
²Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy

19th International Conference on Mechanics in Medicine and Biology
3-5 September 2014, Bologna, Italy
What is atrial fibrillation (AF)

- AF is the **most common arrhythmia** due to the disorganized electrical activity of the atria, causing **irregular and rapid heartbeats**;
What is atrial fibrillation (AF)

- AF is the **most common arrhythmia** due to the disorganized electrical activity of the atria, causing **irregular and rapid heartbeats**;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
What is atrial fibrillation (AF)

- AF is the **most common arrhythmia** due to the disorganized electrical activity of the atria, causing **irregular and rapid heartbeats**;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- **Higher incidence with age**: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;
What is atrial fibrillation (AF)

- AF is the **most common arrhythmia** due to the disorganized electrical activity of the atria, causing **irregular and rapid heartbeats**;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- **Higher incidence with age**: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;
- In the USA and Europe **7 million people are currently affected by AF** ⇒ incidence is expected to double within the next 40 years;
- AF is responsible for **substantial morbidity** and **mortality** in the general population;
What is atrial fibrillation (AF)

- AF is the **most common arrythmia** due to the disorganized electrical activity of the atria, causing **irregular and rapid heartbeats**;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- **Higher incidence with age**: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;
- In the USA and Europe **7 million people are currently affected by AF** ⇒ incidence is expected to double within the next 40 years;
- AF is responsible for **substantial morbidity** and **mortality** in the general population;
- **Broad interest**: statistical analyses on the heartbeat distributions, risk factors, correlation with other cardiac pathologies.
Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
Open key aspects

Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;

- **In vivo measures**: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;
Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
- **In vivo measures**: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;
- The anatomical and structural complexity of some regions (e.g., right ventricle) makes estimates not always feasible and accurate ⇒ **substantial absence of well-established information**;
Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
- **In vivo measures**: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;
- The anatomical and structural complexity of some regions (e.g., right ventricle) makes estimates not always feasible and accurate ⇒ **substantial absence of well-established information**;
- **Presence of other pathologies** (hypertension, atrial dilatation, mitral stenosis, ...) ⇒ the specific role of AF is not easily detectable and distinguishable. *Side pathology is cause or effect?*
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ **highlight single cause-effect relations**, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);

- AF can be analyzed without other pathologies ⇒ **highlight single cause-effect relations**, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.

- The main cardiac parameters can all be obtained at the same time, while clinical studies usually focus only on a few of them at a time ⇒ **overall good agreement with the clinical state-of-the-art measures**;
Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the **impact of paroxysmal AF on the cardiovascular system** of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ **highlight single cause-effect relations**, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.
- The main cardiac parameters can all be obtained at the same time, while clinical studies usually focus only on a few of them at a time ⇒ **overall good agreement with the clinical state-of-the-art measures**;
- Accurate **statistical analysis** of the cardiovascular dynamics, which is not easily accomplished by in vivo measurements.
Cardiovascular scheme

P: pressure
V: volume
Q: flow rate
C: compliance
E: elastance
L: inductance
R: resistance
Physiologic and fibrillated beating

- **Normal Sinus Rhythm (NSR)**
 - RR extracted from a correlated pink Gaussian distribution;
 - Time varying (right and left) atrial elastance;
 - Full left ventricular contractility;
Physiologic and fibrillated beating

- **Normal Sinus Rhythm (NSR)**
 - RR extracted from a correlated pink Gaussian distribution;
 - Time varying (right and left) atrial elastance;
 - Full left ventricular contractility;

- **Atrial Fibrillation (AF)**
 - RR extracted from an exponentially modified Gaussian distribution;
 - Constant (right and left) atrial elastance;
 - Reduced left ventricular contractility;
Physiologic and fibrillated beating

- **Normal Sinus Rhythm (NSR)**
 - RR extracted from a correlated pink Gaussian distribution;
 - Time varying (right and left) atrial elastance;
 - Full left ventricular contractility;

- **Atrial Fibrillation (AF)**
 - RR extracted from an exponentially modified Gaussian distribution;
 - Constant (right and left) atrial elastance;
 - Reduced left ventricular contractility;
Lumped-parameter modeling of atrial fibrillation
Left ventricle

<table>
<thead>
<tr>
<th></th>
<th>NSR</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO [l/min]</td>
<td>4.80</td>
<td>4.38</td>
</tr>
<tr>
<td>SV [ml]</td>
<td>63.84</td>
<td>47.21</td>
</tr>
<tr>
<td>EF [%]</td>
<td>53.27</td>
<td>37.12</td>
</tr>
<tr>
<td>SW [J]</td>
<td>0.87</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Arterial pressure: time series and statistics

- **Hemodynamic parameters**
- **Systemic arterial pressure**
- **Left atrium**
- **Flow rates**

Results

<table>
<thead>
<tr>
<th>P_{sas} [mmHg]</th>
<th>Mean</th>
<th>Systolic</th>
<th>Diastolic</th>
<th>Pulsatile</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR</td>
<td>99.52</td>
<td>116.22</td>
<td>83.24</td>
<td>32.99</td>
</tr>
<tr>
<td>AF</td>
<td>89.12</td>
<td>103.66</td>
<td>77.24</td>
<td>26.42</td>
</tr>
</tbody>
</table>

Pressure and volume behaviour

- **Hemodynamic parameters**
 - **Systemic arterial pressure**
 - **Left atrium**
 - Flow rates

Pressure and Volume Behaviour

(a) Pressure P_{la} [mmHg]
- **Atrial kick**
- **Rapid growth**
- **Plateau**

(b) Volume V_{la} [ml]
- **Atrial kick**
- **Rapid growth**
- **Plateau**

Table: Left Atrium Volume

<table>
<thead>
<tr>
<th>V_{la} [ml]</th>
<th>Mean</th>
<th>End-Systolic</th>
<th>End-Diastolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR</td>
<td>56.53</td>
<td>64.41</td>
<td>55.37</td>
</tr>
<tr>
<td>AF</td>
<td>65.95</td>
<td>71.41</td>
<td>68.84</td>
</tr>
</tbody>
</table>

S. Scarsoglio, ICMMB 2014

Lumped-parameter modeling of atrial fibrillation
Left heart: mitral and aortic flows

- Q_{mi} and Q_{ao}: the increased portion of regurgitant flow during short beats is not systematically accompanied by a higher contribute of direct flow \Rightarrow **possible functional mitral regurgitation** and **aortic valve insufficiency**;
Right heart: tricuspid and pulmonary flows

- Q_{ti} and Q_{po}: the greater amount of regurgitant flow due to a rapid beat is in large part compensated by a greater amount of direct flow \Rightarrow right valves insufficiency is less likely to occur.
First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;
First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;

- Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Reduced contractility of the right ventricle and the ventricular interaction should be properly accounted for;
First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;

- Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Reduced contractility of the right ventricle and the ventricular interaction should be properly accounted for;

Isolate single cause-effect relations, a thing which is not possible in real medical monitoring:

- the drops of systemic arterial pressure and cardiac output are entirely induced by the reduced ventricular contractility during AF;
- the decrease of the ejection fraction and the LA enlargement are primarily caused by the irregular heart rate;
Moderate systemic hypotension and left atrial enlargement should be interpreted as pure consequences of AF alone and not induced by other pathologies;
Discussion and Conclusive Remarks

- **Moderate systemic hypotension** and **left atrial enlargement** should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;

- Accurate **statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;
Discussion and Conclusive Remarks

- **Moderate systemic hypotension** and **left atrial enlargement** should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;

- **Accurate statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;

- **New information** on hemodynamic parameters (e.g., flow rates), difficult to measure and almost never treated in literature;
Discussion and Conclusive Remarks

- **Moderate systemic hypotension** and **left atrial enlargement** should be interpreted as **pure consequences of AF alone** and not induced by other pathologies;

- **Accurate statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;

- **New information** on hemodynamic parameters (e.g., flow rates), difficult to measure and almost never treated in literature;

- **Future work:**
 - Response to AF with the combined presence of altered cardiac conditions (e.g., left atrial appendage clamping);
 - Modeling response to real beating series for both NSR and AF.