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Introduction and Outline

- A general three-dimensional initial-value perturbation problem is presented
to study the linear stability of the parallel and weakly non-parallel wake
(Belan & Tordella, 2002 Zamm; Tordella & Belan, 2003 PoF);

« Arbitrary three-dimensional perturbations physically in terms of the vorticity
are imposed (Blossey, Criminale & Fisher, submitted 2006 JFM);

« Investigation of both the early transient as well as the asymptotics fate of any
disturbances (Criminale, Jackson & Lasseigne, 1995 JFM);

« Numerical resolution by method of lines of the governing PDEs after Fourier
transform in streamwise and spanwise directions;

« Some results and comparison with recent normal modes theory analyses
(Tordella, Scarsoglio & Belan, 2006 PoF; Belan & Tordella, 2006 JFM).



Formulation

« Linear, three-dimensional perturbative equations (non-dimensional
quantities with respect to the base flow and spatial scales);
e Viscous, incompressible, constant density fluid;
« Base flow: - parallel U(y) = 1 — sech?(y)
- 2D asymptotic Navier-Stokes expansion (Belan & Tordella,

2003 PoF) parametric in x,,
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« Moving coordinate transform § = x — U,t (Criminale & Drazin, 1990 Stud.
Appl. Maths), with U, = U(y—x)
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a = k cos(®@) wavenumber in &-direction y = k sin(®) wavenumber in z-direction

@ = tan’'(y/a) angle of obliquity k = (a2 + y2)¥2 polar wavenumber.



Numerical solutions

« Initial disturbances are periodic and bounded in the free stream:
2
v(y,t =0) = e ¥ sin(Boy)
wy(y,t =0) =0 or
2
v(y,t =0) = e ¥ cos(Boy)

« Numerical resolution by the method of lines:
- spatial derivatives computed using compact finite differences;

- time integration with an adaptative, multistep method (variable order
Adams-Bashforth-Moulton PECE solver), Matlab function ode113.

Total kinetic energy of the perturbation is defined (Blossey, Criminale &
Fisher, submitted 2006 JFM) as:
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ke(t: k, ¢) = k2E(t) = /(| U2 4 k2|52 + |5y[2)dy  energy density

The growth function G defined in terms of the normalized energy density

ke(t; k, @)
ke(t = 0; k, ¢)

G(t; k,p) =

can effectively measure the growth of the energy at time t, for a given initial
condition at t =

Considering that the amplitude of the disturbance is proportional to o ~ e’? | the
temporal growth rate can be defined (Lasseigne, et al., 1999 JFM) as

_ log|E(t)
2t

For configurations that are asymptotically unstable, the equations are integrated
forward in time beyond the transient until the growth rate r asymptotes to a
constant value (for example dr/dt < € = 1075).

— Comparison with results by non parallel normal modes analyses
(Tordella, Scarsoglio & Belan, 2006 PoF; Belan & Tordella, 2006 JFM) can be
done.



Order zero theory. Homogeneous Orr-Sommerfeld equation (parametric in x ).
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By numerical solution —— eigenfunctions %0 and a discrete set of eigenvalues 6,

First order theory. Non homogeneous Orr-Sommerfeld equation (x parameter).

-
Ap1 = aoBy1 + Mg M is related to base flow and it

considers non-parallel effects through
transverse velocity presence
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Amplification factor G(t), R=50, symmetric perturbations, 3, = 1, k = 1.5.
(left): U(y); (right): U(x,,y), X,=10.



Amplification factor G(1) Amplification factor G(t), k=1.5
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Amplification factor G(t), R=100, asymmetric perturbations, 3, = 1, ® = /2.
(left): U(y); (right): U(x,,y), k=1.5.
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Amplification factor G(t), R=100, symmetric perturbations, 5, = 1, ® = 0.
(left) U(y) (right): U(x,,y), X,=20, 15, 10, 5 and k is the most unstable
wavenumber Z(élomlnant saddle pomt for every x, according to the
dispersion relat1on in Tordella, Scarsoglio & Belan, 2006 PoF and Belan &
Tordella, 2006 JEM



Temporal growth rate r
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Temporal growth rate r, R=100, 3, = 1, ® = 0. Comparison between present results
U(y) (blaclg< and blue squares) and U(X ) (red anci) reen squares, where k is the
most unstable wavenumber for every x { and Torde a, Scarsoglio & Belan, 2006
PoF, Belan & Tordella, 2006 JFM (solid hnes)



Conclusions and incoming developments

* The linearized perturbation analysis considers both the early transient as
well as the asymptotic behavior of the disturbance

« Three-dimensional (symmetrical and asymmetrical) initial disturbances
imposed

« Numerical resolution of the resulting partial differential equations for
different configurations

« Comparison with results obtained solving the Orr-Sommerfeld
eigenvalue problem

« More accurate description of the base flow (from a family of wakes
profiles to a weakly non-parallel flow)

« Comparison with the inviscid theory

« Introduction of multiple spatial and temporal scales

« Optimization of the initial disturbances



