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Chapter 1

Introduction

The hydrodynamic stability of fluid flow is an important subject in different fields,
such as aerodynamics, mechanics, astrophysics, oceanography, atmospheric sciences,
and biology. Stability can be defined as the ability of a dynamical system to be
immune to small disturbances (Betchov and Criminale, 1967). In general, a system
excited with infinitesimal perturbations is considered stable if the initial state of
equilibrium, in the short or long term, is reached again. On the contrary, a system
is unstable if, subject to small oscillations, it departs from any state of equilibrium.
The central issue of the stability analysis is to understand the underlying reasons for
the breakdown of laminar flow and its subsequent transition to turbulence. Although
many improvements have been made over a hundred years, this remains an open
question and a definitive means for prediction is still to be found.

The fundamental property of linearity has been often applied in literature to the
stability analysis of flows. Disturbances superposed on the laminar flow are assumed
to be small so that perturbation higher order terms are negligible, and this implies
a simplification of the governing equations. Moreover, from a physical point of
view, the assumption of small disturbances is supported by the fact that these
infinitesimal oscillations are always present in a dynamical system and cannot be
eliminated. Anyhow, as the disturbance velocity grow, non-linear effects become
important and the linear equations no longer accurately predict the perturbation
evolution. Although the linear theory has a limited region of validity, it turns
out to be useful to observe physical growth mechanisms and dominant disturbance
types. The linearized equations are important in identifying the onset and a possible
development of the instability, but not in considering its following evolution. Indeed,
when a perturbation sets in, after a possible initial transient growth, it shows an
exponential behaviour. However, the subsequent temporal evolution is modified
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by the non-linear dynamics. This interaction makes the perturbations assume a
behaviour which is no longer exponential.

The present work is developed within the linear theory framework and the laminar
flow here considered for the stability analysis is the two-dimensional wake past an
infinite circular cylinder. In general, the bluff-body wake is an important prototype
of free shear flow for the study as well as for the applications in environmental and
biological fluid dynamics.

First important contributions to the hydrodynamic stability are due to Helmholtz
(1868), Kelvin (1887a,b) and Rayleigh (1880, 1887, 1892, 1895, 1913, 1915). Inde-
pendently, Orr (1907a,b) and Sommerfeld (1908) framed the basis of the normal
mode theory. Although the stability has been widely recognized as an initial-value
problem, for several years the attention was mainly focused on the final fate of
disturbances imposed. It was considered sufficient to know whether or not a flow
is asymptotically stable or unstable. In this context, normal mode analysis turns
out to be a powerful and synthetic means to predict the perturbation asymptotic
behaviour.

Significant results for the two-dimensional wake stability are given, among others,
by Mattingly & Criminale (1972), Triantafyllou et al. (1986), Hultgren & Aggarwal
(1987), Huerre & Monkewitz (1990). In these works, and often in literature, sta-
bility analysis has been carried out according to criteria based on the study of the
dispersion relation in the surrounding of saddle points. Betchov & Criminale (1966)
first reported occurrence of singular points in the dispersion relation. Although
they were unable to explain how the flow could be influenced by singularities in
the eigenvalue relationship, they suggested that these particular points had some
special significance in the stability analysis. Afterwards, it was clear and largely
accepted that, as the saddle point occurs where group velocity vanishes, there is a
local increase of perturbation energy and this could lead to an absolutely unstable
configuration if the temporal growth rate is positive (see also Huerre & Monkewitz,
1990).

An important feature characterizing most of recent results in literature is the as-
sumption of local parallelism of the base flow (see Mattingly & Criminale 1972,
Triantafyllou et al. 1986, Hultgren & Aggarwal 1987, Huerre & Monkewitz 1990,
Monkewitz & Nguyen 1987). In the case of the bluff-body wake, at every longitu-
dinal station downstream the body, the wake profile is approximated by means of a
parallel flow with the same velocity profile. This is a restrictive assumption, as the
transversal dynamics of the system is largely neglected. Moreover, when using this
approach, absolute instability pockets are found in the near wake (see for instance
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Monkewitz, 1988; Young & Zebib, 1989), where the streamlines are not parallel and
the near-parallel flow assumption is no longer valid.

The recognition of the two-dimensional wake as a slowly evolving flow in the longitu-
dinal direction suggests that non-parallel aspects can be inserted into the stability
analysis through a multiple scales approach. Two scales are usually considered:
a long scale for the mean flow variations, and a short scale where the perturba-
tions vary. This method, known as WKBJ (Wentzel-Kramers-Brillouin-Jeffreys)
asymptotic analysis (see Bender & Orszag, 1978), identifies a small parameter that
characterizes the non-parallel aspects, and which is usually defined as the inverse
of the Reynolds number. The introduction of multiple spatial and temporal scales
(Schmid & Henningson, 2001) allows non-parallel effects to be directly inserted into
the stability analysis (see Bouthier, 1973; Belan & Tordella, 2006; Tordella, Scar-
soglio & Belan, 2006; Tordella, Scarsoglio & Belan, 2008). In the context of locally
absolutely unstable flows and according to the slow evolution of spatially developing
flows, the concept of global instability has been introduced and often adopted (see
among others Huerre & Monkewitz 1990, Chomaz 2005). A global mode can be
defined as an extended wavepacket over a distance of the same order of magnitude
of the scale characterizing the streamwise non-uniformity of the base flow. In other
words, if local absolute instability pockets show up in a sufficiently large wake re-
gion (of the order of the base flow scale), the instability can be defined as global
(see results by Chomaz et al., 1988; Monkewitz et al., 1993; Pier, 2002).

Only lately the transient growth has become of great interest and its impor-
tance for the complete temporal evolution of the perturbed system has been widely
accepted. Recent shear flows studies have shown that instability can be due to tran-
sient growth of disturbances (see Butler & Farrell 1992; Criminale & Drazin 1990;
Criminale, Long & Zhu 1991) long before the growing exponential mode occurs. In
principle, this kind of behaviour could cause perturbation amplitude that violates
the assumption of linearity and promote rapid transition, phenomenon known as
bypass transition.

There can be early time growth even if the asymptotic perturbation amplitude
is damped and this fact has been confirmed in different ways. First, for three-
dimensional perturbations, as the Squire and Orr-Sommerfeld operators are not self-
adjoint, the eigenfunctions are mutually non-orthogonal and this can cause algebraic
growth in the early time (Sommerfeld, 1949). Second, for three-dimensional pertur-
bations, resonance between Orr-Sommerfeld equation set of solutions and those of
the Squire equation can occur. Resonance has been demonstrated to be possible for
channel flow (Gustavsson & Hultgren 1980; Gustavsson 1981; Benney & Gustavsson
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1981) but does not occur for the boundary layer. Resonance in the free shear flows
is yet to be determined. In the end, the use of the Laplace transform to solve an
arbitrary initial-value problem (Gustavsson 1979) showed that branch cuts as well
as poles must exist when the inversion back to the real space is to be made. This im-
plies the existence of a continuous spectrum and the transient behaviour associated
to it.

Many contributions, often directed to find the optimal initial conditions that maxi-
mize the energy growth at a finite time, have been made for early-period dynamics
for fully bounded flows (e.g. Criminale et al. 1991; Criminale et al. 1997; Gustavs-
son 1991; Bergstrom 1993; Schmid & Henningson 1994, Schmid 2007) and partially
bounded flows (Lasseigne et al. 1999; Hultgren & Gustavsson 1981; Criminale &
Drazin 2000). About free shear flows, the attention was first focused to obtain
closed-form solutions to the initial-value inviscid problem (Bun & Criminale 1994;
Criminale, Jackson & Lasseigne 1995) by considering piecewise linear parallel basic
flow profiles. This analysis was then extended to obtain explicit unsteady solutions
through multiple scales analysis for continuous parallel basic flow profiles (Blossey,
Criminale & Fisher 2007). Recently, the initial-value problem first proposed by
Criminale & Drazin (1990) has been applied to a growing wake (parameterized
through the longitudinal coordinate and the Reynolds number), to study the tem-
poral dynamics of small three-dimensional perturbations applied to a spatially de-
veloping flow (Scarsoglio, Tordella & Criminale 2007; Tordella, Scarsoglio & Belan,
2008).

In the present study, the interest was first focused on the asymptotic fate of
disturbances through a multiple scales normal mode analysis. Then, the stability
analysis is considered as an initial-value problem to capture both the early transient
as well as the asymptotic behaviour of any disturbance initially imposed. The com-
mon aspect to both these analyses is the base flow description. The two-dimensional
bluff-body wake is approximated through two-dimensional non-parallel asymptotic
Navier-Stokes expansions (Tordella & Belan, 2003). This linking aspect will allow
results coming from the two approaches to be compared.

The fundamental aspect of the normal mode approach is the assumption of an expo-
nential time dependence, which allows the transformation of the linear initial-value
problem into a corresponding eigenvalue problem. This hypothesis yields the tempo-
ral asymptotic behaviour, once the most unstable mode is established, but is lacking
information on the transient growth. On the contrary, the initial-value problem for-
mulation for the stability analysis proposed by Criminale & Drazin (1990) does not
provide any a priori evolution in time, and the governing equations are expressed

4
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in terms of partial differential equations. In like fashion, the temporal evolution
of disturbances initially imposed can be observed at any time. As a very prelimi-
nary comment, the normal mode analysis turns out to be a powerful and synthetic
approach to observe whether or not a flow is asymptotically stable or unstable. Any-
how, as there are no results concerning the completeness of the discrete spectrum in
unbounded flows, the continuum should be examined in order to consider the most
arbitrary initial conditions. In the initial-value problem formulation both the early
transient growth (associated to the continuous spectrum) as well as the asymptotic
behaviour are directly taken into account, and distinction between discrete and con-
tinuous spectra is no more needed. However, the latter approach is less concise than
the modal analysis, as different parameters have to be considered.

In chapter 2 the physical problem is presented in details. First, a general quali-
tative description of the wake behind a finite body is given. In particular, attention
is paid to the base flow evolution at different Reynolds number values, since this is
a fundamental parameter to study the two-dimensional wake. Then, properties and
hypotheses made to approximate the base flow profile are introduced. The physical
domain is divided into two regions. An inner flow region, behind the body and in-
cluding the wake, and an outer flow region, behind the body but outside the wake,
can be identified. For both the regions analytical asymptotic expansions according
to the Navier-Stokes model are adopted. The matching criteria and the general
structure of the expansions are described, and the detailed expressions of the inner
and the outer flows are then given. The base flow is approximated through the inner
expansions, according to the boundary layer approach. Velocity profiles at differing
downstream stations and for Reynolds number values in the range between 20 and
100 are shown.

In chapter 3 the linear stability analysis is presented and carried on through
the classical modal treatment. The essentials of the normal mode theory for 2D
disturbances are introduced for viscous incompressible steady parallel flows. Af-
ter the perturbed system is linearized with respect to small oscillations, a partial
differential equation is obtained to describe the spatio-temporal evolution of the
disturbance. The normal mode hypothesis is adopted so that an asymptotic expo-
nential behaviour in time is prescribed for any disturbance, once the most unstable
mode is established. Subsequently, the Orr-Sommerfeld equation is derived by intro-
ducing the stability characteristics of the eigenvalue problem. The physical meaning
of the saddle points of the dispersion relation is discussed, and the configurations
of convective and absolute instability are then presented. Some general aspects
and significant results on three-dimensional perturbations are considered. A brief
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overview on the concepts of discrete and continuous spectra is made.

Chapter 4 presents a modal non-parallel stability analysis of the intermediate
region of the two-dimensional wake using a WKBJ method on the base flow previ-
ously derived in Chapter 2. Two scales - related to the mean flow evolution - are
defined through the inverse of the Reynolds number. The multiscaling is carried out
to explicitly account for the effects associated to the lateral momentum dynamics.
At the first order, the disturbance is locally tuned to the property of the instability,
as can be seen by the zero order theory (near-parallel parametric Orr-Sommerfeld
treatment). This leads to a very synthetic analysis of the nonparallel correction
on the instability characteristics. The system is perturbed by disturbances with a
wavenumber that varies along the wake and which is locally equal to the wavenumber
of the dominant saddle point of the zero order dispersion relation, taken at different
Reynolds numbers. In this way, the Reynolds number is the only parameter. It
is shown that the corrections to the frequency, temporal and spatial growth rate
are remarkable in the first part of the intermediate wake. In particular, absolute
instability pockets appear in the region where the WKBJ method is consistent. A
comparison with global data from numerical and experimental stability studies is
offered. An asymptotic analysis of the far wake is then proposed.

In Chapter 5 an asymptotic representation for the entrainment in the two-
dimensional wake is presented. The representation is obtained from the asymptotic
Navier-Stokes solution introduced in Chapter 2. The entrainment is defined as the
longitudinal volume flow rate variation in the streamwise direction. The general
n-order expansion term for the flow rate and the entrainment is given. The en-
trainment turns out to be maximum at the beginning of the intermediate region
just downstream of the symmetric counter rotating attached eddies. Moving down-
stream, it decreases continuously to zero, which is the asymptotic value in the far
field. It increases with the Reynolds number, which is varying in the range between
20 and 100. The spatial evolution of the entrainment depends on the Reynolds num-
ber up to a distance of almost 20 body scales. Afterwards, the Reynolds dependence
becomes weak. In the Re range here considered, the entrainment can be considered
negligible at a normalized distance from the body in between 50-60, that is, a dis-
tance value of the same order of magnitude of Re. This result is in agreement with
the scaling adopted in Chapter 4.

Chapter 6 can be thought of as a general introduction to the initial-value problem
formulation for the stability analysis. For this reason, motivation and meaningful
results in literature - concerning most of the traditional tools adopted to solve an
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initial-value problem - are reported. First attempts were addressed to a deeper un-
derstanding of the early transient and its possible influence on the complete temporal
evolution of disturbances imposed. Then attention was focused, through the use of a
moving coordinate system and transformations from the physical to the phase space,
on finding exact unsteady solutions for perturbations. To this end, an innovative
spatio-temporal multiscale approach, where the perturbation wavenumber is defined
as the small parameter, is adopted. The three-dimensional formulation in terms of
perturbation vorticity and velocity - here presented and extended in the next two
chapters to the stability analysis of the two-dimensional wake - is mainly due to
Criminale & Drazin (1990).

In chapter 7, the approach previously described is carried out to study the tempo-
ral dynamics of small perturbations applied to the 2D growing wake. The base flow
is represented by the first order terms of the Navier-Stokes expansions solution de-
fined in Chapter 2. The longitudinal velocity component is only considered, so that
the initial-value problem is a near parallel analysis parameterized on the streamwise
variable. In this regard, this study is complementary to the zero order multiscale
near-parallel Orr-Sommerfeld analysis presented in Chapter 4. The viscous pertur-
bative equations are written in the vorticity and velocity formulation. A combined
Laplace-Fourier transform in the streamwise and spanwise directions is performed
in order to consider a perturbation characterized by real streamwise and spanwise
wavenumbers, and a uniform or damped longitudinal distribution. Various physical
inputs associated to the initial condition — obliquity of the disturbance, number
of oscillations of the shape function, relevant cross-stream distribution, length and
spatial growth factor — are examined for a few Reynolds numbers of the order of the
critical value for the onset of the first instability. The transients are observed at a
few stations along the wake in the region where the entrainment process is active.
The early transient evolution offers very different configurations. The more impor-
tant parameters affecting these scenarios are the angle of obliquity, the symmetry
of the perturbation and the spatial growth rate. The transient can last hundreds
of time scales. For disturbances aligned with the flow, it can be demonstrated that
the long-term behaviour is in good agreement with normal mode analysis results
discussed in Chapter 4.

Chapter 8 presents a multiscale approach to study the stability of long waves
through the initial-value problem formulation. The small parameter of the multi-
ple scales analysis is the perturbation polar wavenumber. This choice is physically
supported by the fact that, in some flow configurations, long waves can be destabi-
lizing (for example Blasius boundary layer and 3D cross flow boundary layer). In

7
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such instances, the perturbation wavenumber of the unstable wave is much less than
O(1). The multiscaling is applied to the stability analysis of the 2D wake, whose
base flow is weakly non-parallel and approximated through both the longitudinal as
well as the transversal components of the Navier-Stokes expansion solutions defined
in Chapter 2. In this way, the lateral wake dynamics, that determines the wake
spatial growth and the associated entrainment process, is explicitly taken into ac-
count and directly inserted into the initial-value problem. As far as small values of
wavenumber (of the order of 1072 or less) are considered, the agreement between
multiscale at order O(1) and full linear problem is good for both the early transient
as well as the asymptotic fate of disturbances initially imposed.

In Chapter 9, concluding remarks as well as further developments and applica-
tions of the present work are offered. In particular, common aspects and differences
between the two stability approaches are pointed out while discussing results ob-
tained.



Chapter 2

Physical problem: the bluff-body
wake

The two-dimensional bluff-body wake is an important prototype of free shear flow
for the study and applications in fluid mechanics. For this reason its hydrodynamics
stability has been long studied. Here, in particular, the two-dimensional wake be-
hind an infinite circular cylinder is considered. In this chapter some general aspects
concerning the description of the physical system will be introduced (§2.1). After-
wards, details on the analytical formulation of the base flow will be given (§2.2).
The matching criteria and the general structure of the (inner and outer) expansions
describing the mean velocity field are discussed (§2.2.1). The detailed expressions
of the inner and the outer flows are given in §2.2.2. Then, in §2.3, the boundary
layer model is assumed to approximate the bluff-body wake profile and the formal
expression of the inner flow is given.

2.1 Base flow evolution with the Reynolds num-

ber

Qualitative aspects of the base flow evolution past a finite body in an open domain
are considered. In particular, the interest is aimed on the transition from the steady
to the unsteady state. The following is an introductory description mainly based on
experimental observations.

The body generating the wake is a circular cylinder with diameter D. The free
stream speed Uj is the velocity that would occur without the body and that is
effectively observed far from it. The cylinder is considered infinitely high, so that

9
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the influence of its extremities can be neglected, and the same behaviour is assumed
at any section normal to the cylinder axis.

For small Reynolds number values, the flow is symmetric upstream and downstream
the body. The two regions are quite specular. The streamlines are influenced by
the presence of the cylinder, even at many diameters far from it. The velocity is
remarkably different from Uy. As soon as Re is increased, the symmetry disappears.
When upstream, the flow tends to go all over paths closer to the body. When down-
stream, paths farer from it are followed. When Re is greater than 4, as upstream the
streamlines are close to the body, downstream the flow departs from body before the
back point of symmetry is reached. This leads to the separation of the flow and the
onset of two attached vortices. In this region, the fluid is rotating according to the
circular and close streamlines and is not going downstream. As the Reynolds num-
ber still increases, the vortices become bigger until a critical value of Re is reached
(Re ~ 40).

When Re > 40 the flow becomes unsteady, although the conditions imposed are
steady. The development of instability leads to a flow path, known as Karman
vortex street. From the confined region behind the body, two rows of vortices,
moving downstream with velocity lower than Uy, are forming. The vortices of each
row are moving in the same direction, that is opposite to the one on the other row.
The vortex streets commonly appear behind obstacles and their principal cause is
the instability of the flow. The process for which a vortex street takes place is known
as vortex shedding. In fact, as Re > 100, a periodic separation from the cylinder of
the vortices, that are going to form the Karman vortex street, is observable. This
phenomenon is quite continuous as, when a vortex is moving away from the body,
another one is already replacing it.

By comparing the oscillograms with velocity fluctuations at different downstream

stations, it can be seen that, for the same Re values, the irregularities become more
remarkable moving away from the cylinder. The presence of subsequent instabilities
leads to the break of the vortex street and the formation of a turbulent wake. In
this situation, the transition to a turbulent flow occurs.
Two types of secondary instabilities can be identified. The first arises when Re ~ 200
and acts all over the vortex street. The second occurs when Re > 400 and takes
place downstream the separation points from the body. The latter is the principal
cause of transition when Re > 400, as it appears close to the body. In fact, there
is a wide range of Reynolds number values, from 400 to about 3-10°, for which the
situation remains almost the same. The main instability forms the vortex street and
the secondary one acts like a disturbance, causing a turbulent wake.

10
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When Re ~ 3-10°, important changes related to the boundary layer flow are ob-
served. Up to this value the flow is laminar, beyond it transition to turbulence
occurs. In the range 3-10° < Re < 3-10°, transition happens in a quite compli-
cate way. The laminar flow close to the cylinder moves away from the wall as it
is entering into the two symmetrical vortices. The transition occurs quickly and
the turbulent flow is coming nearer to the wall again, close to where the laminar
separation happened. Beyond Re = 3-10°, transition occurs in the boundary layer.
There is no more laminar separation and subsequent turbulent reconnection.
However, in both cases, the turbulent boundary layer separates. The flow is moving
away from the wall to form the wake before the back stagnation point is reached.
Actually, this phenomenon happens even before when the boundary layer remains
laminar. When Re > 3-10°, the wake is narrower than for lower Re values. When
Re > 3-10° the flow entering into the wake is already turbulent and the transition
just behind the body is eliminated.

2.2 Base flow formulation

The analytical expressions of the velocity components of the base flow are here
presented in detail. The Reynolds number ranges from a value of 20 to a value of
100, that is the order of magnitude for the onset of the first instability.

The base flow is considered steady, incompressible and viscous, and described by
the continuity and Navier-Stokes equations

ou
or Oy
ou ou opP 1

= VU = 2.2
U@x+vﬁy+8x ReVU 0, (2.2)

ov ov. oP 1 _,

U%+V8_y+8_y_§vv_o’ (2.3)
where x is the coordinate parallel to the free stream velocity and y is normal, while
(U(z,y),V(z,y)) and P(z,y) are the velocity components and pressure respectively.
The independent spatial variable z is defined from 0 to +o0, y from —oo to 4o00.
All physical quantities are normalized with respect to the free stream velocity Uy,

the spatial scale of the flow D and the density.
The wake behind the cylinder is divided into two regions, inner and outer flows,
both satisfying the Navier-Stokes model. A full Navier-Stokes solution is, in fact,

a more acceptable outer flow model than a potential solution. At the same time,

0, (2.1)
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the analysis is not adopting the rapid decay principle. This a priori assumption
often leaded to complicate analytical expressions (see Goldstein 1933, Stewartson
1957, Imai 1951, Chang 1961, Kida 1984), as logarithmic terms had to be included
to maintain the exponential nature of the lateral decay. The problem is complete
with the specification of the boundary conditions which exclude the near wake and
involve symmetry to the longitudinal coordinate and uniformity in the far field (see
Figure 1 for a sketch of the laminar wake).

>
<

[N

NEAR - -~~~ INTERMEDIATE FAR

WAKE WAKE WAKE

Figure 2.1. Sketch of the 2D laminar wake behind the cylinder.

The inner flow is required to be a thin layer described by the Navier-Stokes model,
to keep its momentum constant along the x direction, and to entrain external fluid.
The outer flow is considered as a Navier-Stokes flow which symmetrically wraps the
inner flow and satisfies U — Uy, V — 0, P — P, for y — Ho0o. The domain is
composed of the intermediate and far wake

d<xz<oo;, —00<y<+00

12
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where d is the distance, which decreases with Re, from the center of the body
beyond which the thin shear layer hypothesis is valid. The intermediate flow region
is assumed to begin at x = d. The parameter d, namely a function of both Re and
the shape of the body, should not depend to any great extent on the details of the
actual shape. It usually varies from eight to four diameters for 20 < Re < 40 (Belan
and Tordella, 2002; Kovasznay, 1948).

As both the origin and the near wake are not included into the analysis, it is neces-
sary to introduce field information, that gives one of the accessory conditions along
the = coordinate (see Stewartson 1957), as follows

U(z.y; Re) = U.(y; Re)
V(z.y; Re) = Vi(y; Re) (2.4)
P(z.y; Re) = Pi(y; Re)

These conditions are both the result of numerical simulations as well as laboratory
experiments in the intermediate field. The second condition along x is the uniformity
condition at infinity.

It is now opportune to point out some important features that characterize the
present approach with respect to the previous analyses in literature (Goldstein, 1933;
Stewartson, 1957; Imai, 1951; Chang, 1961; Kida, 1984).

On one hand, the introduction of the intermediate region allows the adoption of
the thin shear layer hypothesis for the inner flow. On the other hand, it supports
a differentiation of behaviour of the intermediate flow with respect to its infinite
asymptotic.

The adoption of boundary conditions (2.4) gives a higher degree of field information
than the use of integral quantities, such as the drag or the lift coefficients.

The Navier-Stokes model can easily approximate the order of the pressure varia-
tions, that turn out to be of the fourth order. The pressure variations were usually
overestimated at the second order in previous studies (Chang, 1961; Kida, 1984).

The use of the Navier-Stokes equations, without restrictive hypotheses and valid
throughout the domain, shows rapid decay and irrotationality at first and second
order for the inner and the outer flows, respectively. At the higher orders, which
mainly influence the intermediate region, the decay is algebraic for the inner flow
and, thus, the outer flow becomes weakly rotational.

13



2 — Physical problem: the bluff-body wake

2.2.1 Matching rules and structure of the expansion solu-
tion

The matching of the inner and outer solutions is not performed directly on the
pressure but on its gradient, which is the actual physical quantity involved into the
equations. In order to consider that the flow non-parallelism implies a streamwise
evolution of the field, it is imposed

lim 0, P, = lim 0,P;, for x fixed. (2.5)
y—0 Y—00
where the subscripts o and ¢ indicate outer and inner variables, respectively. As the
wake dynamics mainly involves the convection and the diffusion of vorticity, it is
considered physically more significant to impose the second matching condition on
the vorticity rather than velocity

lim Q, = lim Q;, for z fixed. (2.6)
y—0 Y—00
In this way restrictive conditions of irrotationality are not imposed on the outer flow
and, at the same time, an irrotational configuration is not a priori excluded for the
outer region.

The entrainment — the transport of external fluid into the inner region — is taken
into account by imposing the matching between the inner and the outer transversal
velocities, that is

limV, = lim V; , for z fixed. (2.7)
y—0 Yy—00
The structure of the inner and outer expansion solutions is sought in the class of
inverse coordinate expansions that satisfies the boundary conditions at infinity and
allows a partial variable separation so that a sequence of linear systems of inhomo-
geneous differential equations for the two sets of variables (U;,V;,P;), (U,,V,,P,) is
obtained. For the inner flow, the quasi-similar transformation is introduced

1/2

E=x, n=2a y. (2.8)

The introduction of the expansion hypothesis

14



2 — Physical problem: the bluff-body wake

fi= fon) +a2fuln) + 2 foln) +--- (2.9)

for the inner variables satisfies the uniformity condition at infinity. At the same time,
the system fn(fm,n,@n,ag) = jl(fio,....,fi(n_l),77,8,],85; Re), obtained by substituting
(2.8) and (2.9) into Egs. (2.2)-(2.1), results to be linear at each order. Due to
the variable separation, the non-linear terms in (2.2) only include the products of
quantities of an order of less than n. These terms will eventually end up in the
inhomogeneous term.

The expansion hypothesis makes the second relation in (2.4) useless as, once U;(z,y)
is known, V;(z,y) is obtained by the continuity equation. This avoids the use of
experimental V' profiles which often suffer from the inaccuracy related to the small-
ness of the transversal velocity values (V' << U). The quasi-similarity is due to the
fact that every term in the expansion (2.9) is self-similar, while their sum is not (a
transformation is self-similar if it is invariant with respect to different scales).

For the outer flow the variable transformation is introduced

r=@?+y")"? s=y/x (2.10)

together with the expansion hypothesis for the three variables (U,,V,,FP,)

fo=fools) + 172 for(s) + 17" foa(s) + - - (2.11)

which satisfies the uniformity conditions at infinity. If (2.10) and (2.11) are sub-
stituted into (2.2)-(2.1), both the non-linear and the diffusive terms include only
quantities of orders of less than n — 1 at each order. This reduces the differential or-
der of the transformed equations by one and makes them linear. The inhomogeneous
linear ordinary differential system is of the third order of the form 6n<f onsS,0s) =
Po(Fo0sees Fotn1),5,05; Re).

As the system for the inner flow is of the fourth order, four constants of inte-
gration are introduced. Two of these can be determined by the symmetry of the
domain. For the outer flow, three constants of integration are needed. The latter
constants, together with the remaining two of the inner field, are determined through
the field boundary conditions (2.4) — which are actually two conditions on the vari-
ables U and P since the transversal velocity profile V', as previously mentioned, is
unnecessary — and the three matching conditions (2.5)-(2.7).
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2 — Physical problem: the bluff-body wake

2.2.2 Inner and outer expansions

The inner expansion is defined in the region

x> d(Re), ly| $V(x) = Y0 as T — 00,y — 00, (2.12)
T

where )Y(x) represents the boundary between the inner and the outer regions (see
dashed curves in Fig. 2.1). According to (2.9), an inner expansion solution of the
Navier-Stokes equations is proposed, so that the velocity and the pressure expansions
are

Ui= ¢o(n) + 2 2¢1(n) + 2 ¢a(n) + - --
Vi= xo(n) + 27 2x1(n) + 27 xa(n) + - - -
P = 71'0(77) +13_1/27T1<7]) —|—x_17r2(7]) 4+ ..

(2.13)

The continuity equation assures that xo = 0. This is confirmed by the uniformity
condition at infinity, which also determines the other two coefficients at order zero:
do(n) =1, mo(n) = Px/pUZ2. From continuity it can also be verified that x1(n) = 0.
Thus the velocity component V; = 7 xa(n) + .. & O(z™!). In general, coefficients
X» can be obtained directly from the continuity equation through the coefficients
¢n71-

By substituting the change of coordinate (2.8) and the expansion form (2.13) in
the Navier-Stokes equation in the z-direction, a general ordinary differential equation
for ¢,, n > 1, is obtained:

1 I n ., n

where the inhomogeneous term M, is sum of three parts:

M, =T, + Pyp + San. (2.15)

The first one, T},, comes from the non-linear term (U-V) U in the Navier-Stokes
equation in z-direction. It can be seen that Ty =17 =0, T, = —% 2 and, for n > 3,

n—1 n—2
i=1 i=1
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2 — Physical problem: the bluff-body wake

The terms Py, and Sy, correspond to the pressure gradient component 0, P and
the streamwise diffusion term 92U/ Re, respectively. In the simpler boundary layer
model both these terms are identically equal to zero at any order and, for this
reason, considered as high order Navier-Stokes corrections. It is found that P,,, =0
for n = 1,2,3 and Sy9 = Sy1 = Sg2 = 0, Sqz = (4Re)"'(3¢1 + 5n¢y + n*¢Y). For
n > 4, both the terms Sy,, and F,,, are non-zero and it is possible to write them as
functions of ¢g,...¢,_1, together with their derivatives at previous orders (for details
see Tordella & Belan 2003).
Thus, a hierarchy of ordinary differential systems can be expressed as

oy =0,L, ¢p = M,,n>1

- o n n—1 > 1
T, =0,n=0,,3;
7, = (P05 -1, X05--Xn—1), N > 4

where, as previously noted, ¢g =1, xo = 0, T = oo/ (pU?), T1 = m = 73 = 0.
The first equation can be solved directly for ¢, (Belan & Tordella, 2002), so that

Re 2

an(n) = Ae 47 [Canl (l—n l.Re 2

775, T’f] ) + ReHrn_1(77)Fn(n) (218)

where A is related to the drag coefficient Cp (A = 1(Re/m)"?cp(Re), see Be-
lan & Tordella, 2002), 4F; is the confluent hypergeometric function, Hr,_1(n) =

H,_1(3Re'/?n), where H,, are Hermite polynomials, and

Re 2

) = [ s Calnn (2.19)
Gn(n) = A™ [ My(n)Hry—1(n)dn . (2.20)

For n > 3, these integrals can be numerically evaluated or approximated using
special functions. Once ¢,, is known, the second equation in (2.17) gives

n—2
2

where &, = fon ¢n(¢)d¢. The m, are obtained by directly integrating the relevant
equation in (2.17).

Xn = gd)nfﬁr D, (2.21)
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2 — Physical problem: the bluff-body wake

The outer expansion is defined in the region behind the body and outside the
wake, that is

x>d(Re),\y]iy(x):gﬁcostio as T — 00,y — 00} (2.22)
T

According to (2.11), the expansions for the velocity and pressure outer fields are

U, = Up(s) +r Y2U(s) + 1 Us(s) + - -
Vo(s) +r7V2Vi(s) + r~Wa(s) + - - - (2.23)
Py = Py(s)+r 2Pi(s) +r'Py(s) + - -

S
I

By substituting into the Navier-Stokes and continuity equations, a hierarchy of
ordinary differential systems is obtained. The general system of order n can be
rewritten as follows

Ul = —252 (Uy/s + Vo + Pu/s) + U:
V= 22 P, + V: (2.24)
P, =252V, + P

where U, V¥, P* are inhomogeneous terms and

sy = (14 s2)%/2, (2.25)

2.3 Wake profile approximation through the in-
ner expansions: the boundary layer model

The inner and outer expansions are then used to form the composite expansion f.,
according to the rule fo, = fin+ fon— (fon)™, where (f,,)™ is the common part of f;,
and f,,, and can be calculated as the inner expansion of the outer expansion, or vice
versa. In the context of the present stability analysis, the wake is studied through
the boundary layer model. This means that only the inner field of the previous
expansions is used. The reason of this choice is that, although for this simpler
model the pressure field is constant, the entrainment is very efficiently accounted
for by the outer limit of the V field which has non-zero values very close to those
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Figure 2.2. Longitudinal velocity profiles at Re = 60 and at stations x =7, x = 17.

issued by the Navier-Stokes model. Moreover, the boundary layer model allows the
general order term of the expansion to be analytically determined.

Before giving the detailed expression of the velocity field used to describe the
wake profile, some aspects of the obtained Navier-Stokes solutions have to be pointed
out.

First, it should be noted the analytical simplicity of the expansion solution, also due
to the matching which, based on criteria that involve the joining of the longitudinal
pressure gradient, vorticity and entrainment velocity, simplifies the system of equa-
tions at higher orders. This makes the solution suitable to accurately approximate
the wake profile in the stability analysis.

Second, the solutions have been obtained relaxing the exponential decay principle
for the inner layer, whose addition to the governing equations, on one hand, restricts
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Figure 2.3. Velocity profiles at the downstream stations x = 20, x = 80 and for
Re = 20,40,60,80 and 100. Longitudinal velocity U: (a) = = 20, (b) x = 80,
transversal velocity V: (c) z = 20, (d) = 80.

their generality, while on the other makes the introduction of logarithmic terms in the
expansion necessary. The present approach however did not prevent the matching to
show the properties of rapid decay and irrotationality at the first and second orders
for the inner and the outer flows, respectively. At the higher orders, a fast algebraic
decay of the inner layer is obtained. The outer flow, up to the order r=2, linearly

=5/2 nonlinearly convects and diffuses it.

convects momentum and, from the order r

Here we list in sequence the inner expansions for the streamwise and the transver-
sal velocity (U and V', respectively) up to the third order. In Fig. 2.2 the longitudinal
velocity profiles are shown for two differing downstream stations (z = 7 and x = 17)

at Re = 60. In Fig. 2.3 the velocity profiles (U,V) at the downstream stations
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Figure 2.4. Velocity profiles for Re = 30,70 plotted at stations x = 10,20,40,60,80
and 100. Longitudinal velocity U: (a) Re = 30, (b) Re = 70, transversal velocity
V: (c) Re =30, (d) Re = T70.

xr = 20, x = 80 and for Re = 20,40,60,80 and 100 are plotted. In Fig. 2.4 the
velocity profiles (U,V) for Re = 30,70 at the stations = = 10,20,40,60,80 and 100
are plotted. The explicit expressions are

Ulzy) = doly) + di(zy)z/?

o () + qbg(x,y)x_?’/Q (2.26)
V(zy) = xo(zy) + xa(zy)z/?
+x2 (@)t + xs(zy)z 2 (2.27)
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2 — Physical problem: the bluff-body wake

Zero order, n=0

¢0(‘xay) = CO
Xo(zy) = 0
First order, n=1
pr(z,y) = —ACie v/
xi(zy) = 0
Second order, n=2
1 2 11 Rey?
_ __A2 —Rey?/(4x) CoF (== =
¢2(,y) e (Coibr (=555 )
2 1 1 /R
fe~Rev’ /) 4. 5%\/ mReerf(3 76?/)]
o A Yy —Rey?/(4x)
xa(zy) = —5 N

with Cy = —2.75833 + 0.21237 - Re — 0.00353 - Re? + 0.00002 - Re3.

Third order, n=3

2
2 1
du(wy) = A% V0N (2 Re")[ZCs — ReFy(ay)]

Xz
A? 11 (Y pec i 11 Rec?
wley) = —lGl=g 77 [ R
0
LY rejn L L ReyQ)]
2z N9 g
1 y —R y2/(2) T R€
_- ey?/(2z = erf(4] ==
2x 2Reer( 2:1;y)
2
pE T VEREY ) re? g L [
2V Re 4 «x 2V «x

with C3 = —2.26605 + 0.15752 - Re — 0.00265 - Re? + 0.00001 - Re?.

(2.32)

(2.33)

(2.34)

(2.35)



Chapter 3

The combined spatio-temporal
normal mode stability theory

In this chapter the linear stability analysis is introduced and carried on through
the classical modal treatment. The essentials of the normal mode theory are pre-
sented for two-dimensional viscous incompressible steady parallel flows. After the
perturbed system is introduced and the resulting equations are linearized, a partial
differential equation is obtained to describe the spatio-temporal evolution of the
perturbation (see §3.2). The normal mode theory is presented and, subsequently,
the Orr-Sommerfeld equation is derived by introducing the stability characteristics
(§3.3). The dispersion relation is defined and the concepts of convective and abso-
lute instability are discussed in §3.4. Some general aspects and significant results
on three-dimensionality of the perturbations and on the discrete and continuous
spectra are given in §3.5 and in §3.6, respectively.

3.1 Introduction

Traditionally, investigations of disturbances in shear flows have been characterized
using classical linear stability analysis. This concept is well founded and is, in
principle, correctly recognized as an initial-value problem. However, instead of con-
sidering the complete temporal evolution of the perturbations and analyzing the
physical cause of a possible instability, the attention has been widely focused on
determining whether or not the flow is asymptotically unstable. If only the question
of stability is to be answered, the modal analysis turns out to be a powerful and
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3 — The combined spatio-temporal normal mode stability theory

synthetic means. First contributions have been given by Orr (1907a,b) and Som-
merfeld (1908) who separately derived the now-famous Orr-Sommerfeld equation.
More recently, significant results in literature for the bluff-body wake stability have
been offered by, among others, Mattingly & Criminale (1972), Triantafyllou et al.
(1986), Hultgren & Aggarwal (1987), Huerre & Monkewitz (1990).

The modal theory to study the stability of the flow is based on the perturbative
analysis. Once the base flow is known, small oscillations are imposed and their
asymptotic fate is considered. If they are damped the flow is stable, while if they are
amplified the flow is unstable. In the framework of the modal analysis, the solution
of the linearized perturbative equations turns into the resolution of an eigenvalue
problem, the Orr-Sommerfeld equation.

3.2 Perturbed flow and linearized disturbance equa-
tions

It is now assumed the base flow to be steady, parallel, incompressible and viscous.
It is described by the physical quantities

U= Uly)
V=20 (3.1)
P = P(zy).

The perturbed flow can be decomposed into a steady part and a fluctuating com-
ponent that oscillates about the base flow

u(z,y,t) = Uly) + a(z,y,t)
v(zyt) = 0(z,y,t) (3.2)
p(xyt) = Plzy) + pry,t)

where the tilde superscripts indicate fluctuation components that are small with
respect to the corresponding mean system quantities (|a/U| < 1 e |p/P| < 1). By
writing the continuity and the Navier-Stokes equations for the perturbed flow and
then subtracting from these the corresponding ones for the base flow, one obtains
the following

Oy + 0,0 =0 (3.3)
1
Ou+ Udu+ U'd + 0,p + 10yt + 00,0 = Ev%j (3.4)
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3 — The combined spatio-temporal normal mode stability theory

1
040 4+ Ud,0 + 0yp + 10,0 + 00,0 = R—V%, (3.5)
e

where U’ = dU/dy.

The system of equations (3.3)-(3.5) is non-linear with respect to the disturbance
terms. The non-linear terms are products of the fluctuating velocities and their
derivatives. If the oscillation has frequency w, these terms will have frequency
0 o 2w. This interaction will either modify the base flow (mean-flow distortion)
and feedback to the fluctuating components or introduce higher harmonics. Such
difficulties are overcame if it is assumed that the products of the fluctuations and
their derivatives have small amplitudes. The terms w0, 4, v0,u, 10,0 and V0,V are
negligible in comparison with the other terms as a small disturbance multiplied by
a small disturbance results in a term of smaller order of magnitude and no longer
influences the equations to this order of approximation. The linear system is

Ot + 0y = 0 (3.6)
1
Ot + U0+ U'D + 0,p = ﬁv% (3.7)
_ _ N
0 + Ud,0 + 0yp = EV%' (3.8)

The perturbations applied to the system will evolve independently because the non-
linear terms, that would permit interaction, have been neglected. The same funda-
mental property of linearity occurs in other fields (acoustics, electromagnetism, ...),
but non-linear equations must often be retained to capture the essential physics.
Luckily, the solution of the linear system is sufficient to describe problems where
small oscillations influence the base flow. Moreover, it should be reminded that
the infinitesimal perturbations cannot be removed and are always present in any
physical system.
Due to the assumption of small disturbances, the solution of the original problem
can be approximated with the one of the linear system. However, as soon as the
perturbation energy grows, the non-linear equations are required to correctly capture
the perturbative evolution. For this reason, only the onset — and not the following
temporal evolution — of a possible instability is the aim of the linear stability theory.
By differentiating (3.7) with respect to y and (3.8) with respect to z and sub-
tracting the resulting equations to eliminate the pressure gradient terms, a system
composed by the continuity equation (3.6) and by the following third order equation

94(0,T — 0,0) + Uy (0,1 — 0,9) + Ut = év%aya — 0,0). (3.9)
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is obtained. Defining the streamfunction ¢ as © = 0,¢, v = —0,9, the continuity
equation (3.6) is automatically satisfied and the resulting single partial differential
equation for 1 is found to be

1

2.0 " —
(0, + U0,)V=p — U" 00 e

Vi, (3.10)
where V* = V2. V2. This fourth order partial differential equation for 1) can be
solved, in principle, subject to appropriate initial and boundary conditions. Equa-
tion (3.10) is sometimes referred to as the Orr-Sommerfeld equation in partial dif-
ferential equation form.

3.3 Normal mode hypothesis and Orr-Sommerfeld
equation

The linearity of the system is immediately exploited by seeking solutions in terms of
complex functions. In this way, a variable separation is introduced and a reduction
from a partial differential equation (3.10) to an ordinary differential equation is
allowed. Normal mode solutions of the form

1 1 ) o
U(w,y,t) = 5(7) +u*) = a(u(y)e“(’”’“’t) + u(y) e the=oT)y,

1 1 , o
Bayt) = 50+ = §(V(y)€z(hx_m +v(y)e ), (3.11)
i 1o 1 e o
playt) =50 +57) = 5P ™ + p(y) e ),

are to be found. The quantities 4, 0, p indicate the complex normal mode, while
u(y), v(y), p(y) are functions of the y only and the * quantities are the complex
conjugates. Therefore, the sum of the normal mode and its complex conjugate is the
real disturbance quantity. The perturbative quantities can be treated separately as
the system is linear. In principle, since the complex conjugate values can be obtained
from the quantities themselves, it is only necessary to solve for the complex quantities
@, 0, p. To be solutions for the perturbations, the modal expansions (3.11) have to
satisfy the system (3.6)-(3.8). In this way the partial differential equations system
(independent variables x, y, t) reduces to a ordinary differential equations system
(independent variable y).
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Moreover, the amplitude and the phase of the oscillations can be expressed through
the use of complex functions, as the eigenvectors u(y), v(y), p(y). For any distur-
bance, in fact, the amplitude of the cosine and the amplitude of the sine components
are to be given. This is done through the real and the imaginary parts of the above
complex functions, respectively. With a single complex quantity, the two values
(phase and amplitude) characterizing the oscillation can be expressed.

In the above relations h = k + s is identified as the complex wavenumber in
x-direction, where k is the wavenumber of the perturbation (wavelength A = 27/k)
and s is the spatial growth rate. The complex frequency is ¢ = w + ir, where w
identifies the frequency of the perturbative wave and r is the temporal growth rate.
The wave velocity is defined as ¢ = ¢, + ic; = o/h, while the phase velocity is
v, = w/k.

In the more general spatio-temporal stability analysis, both h and ¢ are complex.
The amplitudes of the perturbative functions , © and p are proportional to e ***",
For the temporal evolution, if » > 0 for one mode, the corresponding perturbation
exponentially grows until the non-linearities become relevant to the system. The
mode is unstable. If » = 0 the mode is marginally stable, while if » < 0 the mode is
stable. In general, as a small perturbation can excite all the modes, it is sufficient
that r > 0 for only one mode to have an unstable configuration for the flow. On the
contrary, it is necessary that r < 0 for all the modes to have a stable configuration.
Similar considerations can be made for the spatial evolution. If s < 0 for one mode
the flow is spatially unstable. On the contrary, if s > 0 for all the modes the flow is
spatially stable.

To separately consider the temporal and the spatial stability it is sufficient to let
s =0 and r = 0, respectively.

Let the streamfunction ) be represented by a normal mode form

P yt) = 50 +87) = 5B + gy ) (312)

By substituting (3.12) into the equation (3.10), the following equation holds

" 2 "o L " 2 1 4
(U= 0)(@¢" = 170) = U"d = o (6" = 20°¢" + 1"0), (3.13)

known as the Orr-Sommerfeld equation. From the partial differential equation
(3.10), an ordinary differential equation of the fourth order is found. Proper bound-
ary conditions have to be given for the closure. For bounded flows, the boundary
conditions require that ¢ and ¢’ vanish at the walls. For unbounded flows, ¢ and ¢’
must vanish if |y| — oo.
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If the fluid is taken as inviscid (Re — 00), a second order differential equation
(U —c¢)(¢" — h?¢) —U"¢ =0, (3.14)

was first derived by Rayleigh (1880) and known as Rayleigh equation. Although
often referred as the ”inviscid Orr-Sommerfeld” equation, the Rayleigh equation is
not a special case (Re — o0) of the Orr-Sommerfeld equation as it was derived more
than 25 years before it.

3.4 Dispersion relation: convective and absolute
instability
The Orr-Sommerfeld eigenvalue problem can be expressed as
[A(h,Re) + ¢B(h)]¢ = 0, (3.15)

where A and B are square and, in general, complex matrices. In principle, a non-
trivial solution of the homogeneous system can be obtained by imposing that

det[A(h,Re) + cB(h)] = 0. (3.16)

However, the analytical solution of the problem is given only for very simple base
flow profiles (e.g. piecewise linear profiles). Numerical means are usually required
for more complicate velocity profiles.

From the general solution of the Orr-Sommerfeld equation at a fixed Re, the
dispersion relation between the wavenumber and the frequency can be obtained

D(h,o; Re) = 0. (3.17)

and the explicit form holds
o = o(h; Re). (3.18)

The dispersion relation gives significant information about the stability character-
istics h and o, as a discrete set of eigenvalues o,, (with h and Re parameters) can
be found. Moreover, this expression is fundamental for a deeper stability analysis
involving the velocity group definition and the saddle point perturbative hypothesis.
First, the complex group velocity v, = do/0h is defined as the velocity of a wave
packet evolving in time and space. Second, a saddle point of the dispersion relation
occurs when the velocity group v, vanishes, that is

do(h; Re)

5 =0 (3.19)

28



3 — The combined spatio-temporal normal mode stability theory

In these regions of the phase space, the perturbation can grow in time as there is a
local increase of energy.

In this context, the instability is defined as convective if r < 0 for all the modes
and if, for at least one mode, s < 0 with group velocity v, equal to zero. If the
coordinate system is moving with the phase velocity of the wave the perturbation
is amplified, but it remains small at a fixed point as time passes. The disturbance
is convected away.

The instability is absolute if, for at least one mode, » > 0 and the group velocity v,
vanishes. The perturbation is locally growing in time.

The linear theory allows to describe the onset of instability as, when a per-
turbation establishes, its first behaviour is exponential. However, the subsequent
temporal evolution is modified by the non-linear dynamics. This interaction makes
the perturbations assume a behaviour which is no longer exponential. Therefore,
the linearized equations are useful to study the onset and a possible development of
the instability, and not to consider its following evolution.

3.5 Three-dimensionality and Squire’s theorem

Up to now, only two-dimensional disturbances have been analyzed. The normal
mode theory can be extended from two to three dimensions considering a perturba-
tion velocity field with a z-direction component, (a(x,y,z,t), 0(x,y,z,t), W(z,y,z,t)).
An additional complex wavenumber in the spanwise direction is then introduced in
the phase space. The three-dimensional Orr-Sommerfeld equation — expressed in
terms of the transversal velocity and no longer in terms of the streamfunction of the
perturbation — can be obtained similarly to the two-dimensional one.

Squire (1933) recognized that, through a simple transformation now known as Squire
transformation, the three-dimensional Orr-Sommerfeld equation can be reduced to
the same form as the two-dimensional Orr-Sommerfeld equation. First, this implies
that a three-dimensional problem can be transformed into a two-dimensional one.
Second, for parallel flows, only the two-dimensional problem has to be studied for
determining stability, as two-dimensional and three-dimensional quantities are linked
together through the Squire transformation. Third, the two-dimensional and three-
dimensional problems have the same formulation, except that the two-dimensional
problem has a lower value of the Reynolds number. Finally, the wave velocity ¢
remains unscaled for the three-dimensional and the two-dimensional problems. All
these remarks are summed up in the following theorem
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Theorem 3.5.1. Squire’s Theorem (1933): If an exact two-dimensional parallel
flow admits an unstable three-dimensional disturbance for a certain value of the
Reynolds number, it also admits a two-dimensional disturbance at a lower value of
the Reynolds number.

In other words the theorem could also be stated as, ” The minimum Reynolds number
for instability will be higher for an oblique three-dimensional wave than for a purely
two-dimensional one.” Or, ”"To each unstable three-dimensional perturbation there
corresponds a two-dimensional one with a lower Reynolds number (and with a higher
longitudinal wavenumber).” Therefore, in the framework of the normal mode theory,
only two-dimensional perturbations will be considered.

Anyhow, it should be reminded that the Squire theorem only applies to parallel
flows. For more complicated flows, such as three-dimensional or curved mean flows,
three-dimensional perturbations have to be considered. Moreover, theorem (3.5.1)
does not exclude the possibility that, for sufficiently high Reynolds number values,
an unstable oblique wave can occur even if the corresponding two-dimensional one
(with the same longitudinal wavenumber k) is stable.

3.6 Discrete and continuous spectra

Finding the most unstable mode, for fixed values of the parameters (e.g. Re) of the
dispersion relation, is enough for the stability question to be answered. If instead
the complete temporal evolution is the aim of the analysis, then all the modes
must be known. The transient becomes critical and cannot be evaluated without
this information. Moreover, to consider the most general perturbation, the discrete
spectrum given by the relation dispersion has to be joined by the continuous one.
Even if in the following normal mode analysis (see §4) the main goal will be to
determine whether or not the flow is unstable, it is worth mentioning some significant
results on the discrete and continuous spectra.

The discrete spectrum is, in general, a (finite or infinite) set of discrete temporal
modes of the Orr-Sommerfeld equation. For profile on a bounded domain, DiPrima
& Habetler (1969) showed that this set is complete. Any initial disturbance can be
expanded in terms of normal modes and thus the complete solution can be expressed
in terms of them. For unbounded domains, general completeness theorems do not
exist. However, Miklavci¢ & Williams (1982) and Miklavéic (1983) proved rigorously
that if the mean flow decays exponentially to a constant in the freestream, then only
a finite number of eigenvalues exists for a fixed Re, while if the mean flow decays
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3 — The combined spatio-temporal normal mode stability theory

algebraically, then there exists an infinite discrete set of eigenvalues. In the first
case, a continuum must exist for a complete set to span the space solution, while in
the latter case no continuum exists.

Moreover, for unbounded flows, most of the numerical works to date (see Criminale
et al. 2003) suggest that there is only a finite number of discrete modes (in same cases
only one). Since a finite set of modes on the unbounded domain is not complete,
it cannot be used to describe an arbitrary perturbation. The continuous spectrum
must be considered. Grosch & Salwen (1978) and Salwen & Grosch (1981) showed
(not rigorously) that for unbounded flows the set consisting of the discrete modes
and the continuum is complete. According to this result, to complete the solution
the continuum part has to be included. This can be exploited considering the Orr-
Sommerfeld equation with bounded solutions at infinity. For the discrete set ¢ and
¢’ are required to vanish when y — oo, while for the continuous spectrum ¢ and ¢’
are required to be bounded when y — oo.
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Chapter 4

Multiscale analysis of the wake
instability through a synthetic
perturbative hypothesis

In this chapter, the stability of the two-dimensional non-parallel wake (previously
derived, see §2.3) is analyzed using a multiscale method. After an introduction with
a brief state of the art (see §4.1), the base flow is expressed through the new slow
variables introduced by the multiscale (see §4.2.1). A spatio-temporal multiscaling
is then performed so that the non-parallel effects of the mean flow are directly
introduced into the modal stability analysis (§4.2.2). A synthetic hypothesis based
on the dominant saddle points of the local dispersion relation is considered to excite
the system (§4.2.3). Results, in particular the appearance of absolute instability
regions in the first pert of the intermediate wake, and a comparison with global
data from numerical and experimental stability studies are offered in §4.2.4. An
asymptotic analysis of the far wake is then proposed in §4.3. Concluding remarks
are given in §4.4.

4.1 Introduction

The two-dimensional bluff-body wake is a spatially developing flow where self-
sustained oscillations occur (see, among others, Mattingly & Criminale 1972, Zebib
1987, Triantafyllou et al. 1986, Huerre & Monkewitz 1990, Oertel 1990). The distur-
bances, modelled as viscous and incompressible, grow linearly and two-dimensionally
in a region of absolute instability that is downstream to the back stagnation point
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4 — Multiscale analysis of the wake instability through a synthetic perturbative hypothesis

of the body generating the wake. This region is preceded and followed by a re-
gion of convective instability (Monkewitz 1988, Yang & Zebib 1989, Hannemann &
Oertel 1989, Pier 2002). The perturbation concentrates in the absolute instability
region and tunes to a frequency that corresponds to a global mode, usually selected
according to criteria based on the saddle points of the dispersion relation (see, for
instance, Chomaz et al. 1991, Monkewitz et al. 1993).

In literature, the base flow is usually considered as locally parallel and the analysis
is decomposed into a sequence of equivalent problems. At every longitudinal station
downstream the body, the wake profile is approximated through a parallel flow with
the same average velocity profile (e.g. Mattingly & Criminale 1972, Triantafyllou
et al. 1986, Hultgren & Aggarwal 1987). This is a restrictive assumption, as the
transversal dynamics of the system is present neither in the base flow nor in the
perturbative equations. Instead, when the base flow evolution is slow compared to
the disturbance quantities, the structure of the equations suggests the non-parallel
aspects to be inserted through a perturbation approach based on the multiscale
analysis. Two scales are usually considered: a long scale for the mean flow variations,
and a short scale where the perturbations vary. At the first order, the multiscale
allows a differential equation to be written for the wave modulation, which gives the
corrections on the stability characteristics. If the multiscale is on the spatial variable,
the modulation equation is ordinary and the corrections are on the wavenumber
(Tordella & Belan 2005). If the multiscale is on both the spatial and the temporal
variables, a partial differential equation for the modulation is obtained (see Bouthier
1972).

4.2 Multiscale approach for the stability analysis

The recognition of the bluff-body intermediate and far wake as a system which slowly
evolves with respect to the unsteady fluctuating field leads to the introduction of
the slow spatial and temporal variables

Ty = &w, t, = €t7 (4].)

1
where ¢ = e according to the thin shear layer assumption for the wake with

e

Re € [30,100]. The multiple scales method — often referred to as WKBJ (Wentzel-
Kramers-Brillouin-Jeffreys) method — relies on the introduction of the small dimen-
sionless parameter ¢, the inverse of the Reynolds number, which characterizes the
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4 — Multiscale analysis of the wake instability through a synthetic perturbative hypothesis

non-parallelism of the base flow and allows its decomposition. Thus, in terms of
the base flow stream function ¥, the hypothesis ¥ = W(zy,y) is made. In this way,
the (intermediate and far) wake is actually a system which shows a slow streamwise
evolution (see §4.2.1).

The hypothesis is accompanied by the assumption that this evolution can influence
the stability characteristics through a spatio-temporal modulation of the perturba-
tive wave, which turns into a correction on the complex wavenumber and frequency.
The multiscale approach results in an expanded perturbative equation which, here,
will be truncated and solved up to the first order of accuracy with regards to e (see
§4.2.2).

In the present study, the disturbance is considered as a variable wave which, at
every longitudinal station, corresponds to the most unstable mode. In other words,
the perturbative wave has a wavenumber equal to that of the dominant saddle
point of the local dispersion relation. This allows the slow streamwise variation to
be incorporated into the coefficients of the modulation equation, where the only
remaining parameter is the Reynolds number (see §4.2.3).

This results in the determination of the complex wave modulation and downstream
distribution (order 0 and order 1) of the stability characteristics values associated to
the dominant saddle point of each intermediate section. The longitudinal distribu-
tions of the frequency can be compared to global numerical and experimental values,
and information about the wake regions where the two data match is obtained (see
4.2.4).

4.2.1 Base flow

The inner solution of the asymptotic Navier-Stokes expansions up to O(z~%/2) is
assumed to be an approximation of the wake profile (see §2.3) and the adimensional
velocity components (U,V') can be written as

U = 1T+a Pgi(n) + 2 ga(n) + 272 ¢5(n) (4.2)
Vo= o xe(n) + o P (n).

According to what previously mentioned, the base flow is a slowly evolving system
and is assumed to be expanded through the small parameter

U(z1,y) = Vo(z1,y) +eWi(o1,y) + - (4.4)
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—-1/2

Since the quasi-similar transformation (2.8) becomes n = (Re z1)~"/?y, the velocity

components of the base flow can now be expressed as

U(ryy) = 0,9 = Us(21,y) + eUi(z1,y) + -+ (4.5)
V(zyy) = —0,Y = —e0,,V =eVi(x1,y) + - (4.6)
By only considering the integer powers of € up to the first order, Eqs. (4.2), (4.3)

can assume the multiscale structure (4.5), (4.6). For the longitudinal component U,
it turns out that

U = 1+ Reil/zx;l/%l(y/\/Re x1) + Re a7 ¢o(y/+/ Re x1)
+Re_3/2x1_3/2¢3(y/\/ Rexy)
= 1+ Re 2 P, ()] + e [ 0an) + ReT P ()] L (47)

so that

U() = 1+ R€_1/2$1_1/2¢1 (48)
Uy 27 ¢y + Re a7 gy

The transversal component V', at the same order of approximation, is given by

Vo= Re 'a7'xa(z1,y) + Re 227y (21,y)
= e e xa(n) + Re V2 xs () (4.10)

so that
Vi = 1‘1_1)(2 + x1—3/2R€—1/2X3 (4.11)

4.2.2 Orr-Sommerfeld equation through the multiscaling

For the two-dimensional non-parallel wake the linearized perturbation equation
(3.10) becomes

OV*Y + (0, V), + V,0,V*) — (9,V>¥), — ¥,0,V*) = év% , (4.12)
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with boundary conditions

lim v(a0) =0, (4.13)
yl—o0
|1‘im Oy (z,y,t) =0, (4.14)
y|—o0

and where U(z,y) and ¢ (z,y,t) are the stream functions for the base flow and the

perturbation, respectively. The following perturbation hypothesis is then introduced
(Nayfeh 1973; Saric & Nayfeh 1975)

w = @(xay% 8) ele(l’,t 8) = [¢0(x17y7t1) + €P1 (‘rhyatl) + e ] ele(x7t’ 8)' (415)

According to the Whitham (1974) theory,

(9x0 = ho = k’o -+ iSO (416)
8t9 = —0p = —(u)() + iT()), (417)

where 0 = hox — ogt. The quantities hg = kg + iSg and oy = wg + @7, as defined
in §3.3, are the complex wavenumber and the complex frequency, respectively. ko
is the wavenumber and sq is the spatial growth rate, while wy is the frequency and
ro is the temporal growth rate of the perturbation. In terms of the slow variables
(x1,t1) and 6, the spatial and temporal derivatives transform as

833 — hoag + 683“, 815 — —0'089 + 58151. (418)

By applying this transformation to the linearized perturbation equation (4.12), a
hierarchy of ordinary differential equations, truncated at the first order in e, is
obtained.

The zero order equation (¢°) is the homogeneous Orr-Sommerfeld equation,
where x; and the Reynolds number Re are parameters,

Apo = 00Bypo (4.19)
wo — Oaslyl — o0 (4.20)
Oypo — 0Oasly| — oco. (4.21)
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with A = {(85 — h3)? —ihoRe [Uo(aj - h)-Uil}, B = —iRe(0; — hg). Tt is
useful to write ¢o(z1,t1,y) = A(x1,t1)(o(21,y), where A is the spatio-temporal mod-
ulation determined at the next order. Thus, the eigenvalue problem (4.19-4.21)
becomes

Ao = 0BG (4.22)
G — Oaslyl — o0 (4.23)
0yCp — Oas|yl — o0 (4.24)

By numerically solving the system (4.22)-(4.24), the eigenfunction (, and a discrete
set of eigenvalues og,(x1; ho,Re) are obtained. By selecting the eigenvalue with
the largest imaginary part a first approximation of the dispersion relation oy =
oo(x1; ho,Re) is found. According to the Briggs (1964) criterium, a further analysis
of this relation, discussed later in §4.2.3, gives the loci of the branching points.

The first-order theory (O(g!)) gives the non-homogeneous Orr-Sommerfeld equa-
tion, which is parametric in z; and Re

Ag@l = 0'08(,01 + MSO() (425)
1 — Oasly| — o0 (4.26)
dyp1 — Oaslyl — oo (4.27)

where A and B are the operators defined above, and the linear differential operator
M defined as

M = { [Re(2ho00 — 302Uy — UY) + 4ih] 0y, (4.28)
+(Re Uy — 4iho)d;,,,, + —Re V1(9 — h3d,) + ReV{'0,  (4.29)
+ihoRe [U1 (92 — h2) — U] + Re(92 — h2)), } (4.30)

is a function of the zero-order dispersion relation and eigenfunction as well as of
the base flow. It accounts for entrainment effects through the explicit presence of
velocity transversal component V. Equation (4.25)-(4.27) can be now used to obtain
the modulation function A(xq,t;), which was left undetermined at the zero order,
and to obtain the first order corrections of the stability characteristics.

By means of ¢g(x1,t1,y) = A(z1,t1)¢(21,y), My is equal to MA(y, and can be
rewritten as
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MAG = {00, A[My + Mo02] + 9y A [My + Msd2]

FA M, + Mo, + My + M0, + M50? + Mgd?] }Co

r1yy

~

= MG (4.31)

where the coefficients M, are

M, = Re(2hooo — 3hiUy — UY) + 4ih3 (4.32)
M, = RelU,— 4ihg (4.33)
Ms = —ihoRe(0; + h§)U, (4.34)
My = —Re(0] +hi)Vi (4.35)
Ms = ihgRel, (4.36)
Mg = ReV, (4.37)
M; = —Reh? (4.38)
Ms = Re. (4.39)

It should be noticed that, in the case of spatial multiscale, coefficients M,;, Mg do
not exist and this leads to the simple ordinary differential equation d,1A(z;) =
ih1(z1)A(x1), where h; depends on the M;, j = 1,...,6 (see Tordella & Belan 2005).
To avoid secular terms in the solution of (4.25)-(4.27), the non-homogeneous term
in equation (4.25) should be orthogonal to each solution of the adjoint homogenous
problem. This problem can be written considering the hermitian conjugate equation

Aéo = USBCI) )

where * indicates the complex conjugate quantity, and

{(07 — h*)? —ihgRe [(0; — hg’)uo — Dyuo] }
= iRe(@j — R .

T

The same equation can be rewritten in the complex conjugate form

ATCT = ooB¢
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where

B = B* and (S is the eigenfunction of the adjoint homogeneous problem. The
orthogonality condition is expressed as

(G M) = / G Moy = / G MAGdy = 0. (4.40)

This leads to an evolution equation for the modulation A

(00, A) / & My + Mad?) oy + (0, A) / G [Mr + Me??] Gody

+A / G [M10y, + M3, + Mz + M0, + Ms0; + Mg0y)] Gody =0 (4.41)

1Yy

which is a partial differential equation for x; and ¢;, and has complex and variable
coefficients. By substituting A(w1,t;) with e*@#) (see Bouthier 1972) and going
back to the original coordinates x and ¢, the equation (4.41) can be written as

Owa + p(x)0ya +eq(z) =0 (4.42)

where coefficients

JZo G [My+ Mo} ] Go dy

r) = =2 4.43
pl) ey [M7+Msa§] Gody (4.43)
and
¢ [MO,, + M2+ Ms + M0, + Ms0? + Mgd3] ¢ d
q(m):f_ooco [ 1 2051 yy 3 40y 50y Gy}CO Y (4.44)

I G [ M7 + Mgd2] ¢ody

are not singular.

The modulation equation (4.42) is numerically solved specifying proper initial
and boundary conditions. The considered spatial domain extends from a few body-
scales D downstream from the body to the far field (in the present computations
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x; < x < xy, where z; = 3 and zy = 60). Since the differential equation is of the
first order for the variable x, only one boundary condition has to be imposed. The
modulation equation is required to satisfy to asymptotic uniformity in the far field
x = xy, that is the Neumann condition

(0p@) e, = 0, ¥ 1. (4.45)

A natural choice for the initial condition is

Ay 1—o = (const) (1 +1). (4.46)

The solution at the first order is 1 (z1,y,t1) = A(x1,t1)¢1 (21,y) while for the complete
problem (order 0 + order 1) is

U= (o +ep1)e’ = A(w1,t1)(Co +£Gr)e” = (Co +e¢r)e T (4.47)

By defining a = if; and the complete phase as © = 0 + 6, the solution (4.47) can
be written as

Y= (Co+eCr)e® . (4.48)

The Whitham theory can be also applied to the complete phase, obtaining

0,0 = h=k+is (4.49)
0,0 = —0=—(w+ir), (4.50)
where h and o are the complex wavenumber and the complex frequency of the

complete problem, respectively. Using relation (4.18), one has

o = —00/0t = —0400/00 + 0O [0t, = —a + 00, /L. (4.52)

The first order corrections of the instability characteristics are thus obtained as

hl = 891/8(E1 = k’l + iSl,Ul = —891/8751 = W1 +iT1 . (453)
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Once a (or equivalently 6;) is numerically known, the corrections of the stability
characteristics h; and oy are obtained by numerical differentiation of the same so-
lution a.

In particular, the solution is known on a discrete spatial domain xq,zs....x5, and
can be integrated forward in time in ¢y,tq,...t);. However, the temporal derivatives
are computed at the first temporal step ty, as the linear stability analysis can only
describe the onset of the instability and not its following temporal evolution, which
is influenced by the interaction of the growing non-linearities.

Moreover, it should be recalled that the first order analysis does not influence the
dispersion relation approximation and the subsequent saddle points research, which
are both determined at the zero order. The perturbation hypothesis based on the
saddle points sequence determines, at the first order, an a posteriori correction on
the stability characteristics previously approximated at the zero order.

4.2.3 Saddle point perturbative hypothesis

Coefficients p(z) and ¢(z) of the modulation equation (4.42) are functions of the
disturbance and of the base flow. The base flow is only present in p through the
zero-order longitudinal velocity Uy, while the first order longitudinal and transversal
velocities U; and V; are present in gq. The distributions of the real and imaginary
parts of coefficients p and eq are here computed by inserting in hy and og the
values of the dominant saddle point of the zero order dispersion relation taken at
each x position along the wake. For a visualization, see the multidimensional map
for frequency wy(ko, so) and temporal growth rate ro(ko,so) in Fig 4.2, and the
two-dimensional level curves for frequency (dashed lines) and temporal growth rate
(solid lines) in Fig. 4.1, for Re = 35 and = = 4.

The distributions of coefficients p and eq (real and imaginary parts) are instead
shown in Fig. 4.3 for Re = 35, 50 and 100.

In so doing, the disturbance is locally tuned, through the modulation function,
to the property of the instability as can be seen from the zero-order theory (near-
parallel parametric Orr-Sommerfeld treatment). This leads to a synthetic analysis
of the non-parallel correction on the instability characteristics. In such a way, the
parametrization with respect to the longitudinal position in the wake (Belan and
Tordella 2006) (see Fig. 4.7) is not necessary since the evolution of the zero order
dispersion relation is directly inserted into the variable coefficients of the modulation
equation. The streamwise variation of the instability characteristics is deduced from
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Figure 4.1. Saddle point level curves for Re = 35, x = 4. wp=cost (dashed
curves), ro=cost (solid curves).

the spatial and temporal derivatives of the modulation function. With this new ap-
proach, the system is considered as locally perturbed by waves with a wavenumber
that varies along the wake and which is equal to the wavenumber of the dominant
saddle point of the zero order dispersion relation, taken at different Reynolds num-
bers. Since the perturbation is no more parameterized with respect to a given wave
number, the Reynolds number remains the only parameter of the present stability
analysis. The branching points distribution along the longitudinal coordinate and
for Re = 35,50 and 100, is given in Table 4.1.

As the Orr-Sommerfeld problem (4.22-4.25) solution is necessarily computed on
a numerical bounded domain instead of on the theoretical unbounded one, the de-
termination of the saddle points is sensitive to the extension of the actual numerical
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(@)

-2.2 02 | kO
(b)

-22 0.2 0

Figure 4.2. Multidimensional map: (a) wo(ko, so) and (b) 79(ko,s0); Re=35, x=4.
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Figure 4.3. Real (a) and imaginary (b) part of the modulation equation coefficients.

~1.2

Figure 4.4. Saddle point level curves for Re = 50, x = 7. wp=cost (dashed
curves), ro=cost (solid curves).

domain and to the number and choice of the collocation points.
Moreover, problems arise when small values of ky are reached because singularities
are present on the sy axis in the complex wave number plane. This aspect already
becomes important at a few diameters behind the cylinder, since the wavenumber
rapidly decreases with the longitudinal coordinate x. See Fig. 4.4 (Re = 50, x = 7),
where the saddle point research is already affected by singularities present at ky = 0.
For these reasons, by minimizing the relative error between the data and the
curves, truncated Laurent series have been used to extrapolate the saddle point
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X Re = 35 Re = 50 Re = 100
3.00 | hp = 0.9730 -i1.9040 | hy = 1.3850 -i2.2160 | hg = 2.9000 -i1.5960
oo = 1.0194 -10.4861 | o¢ = 1.2504 -i0.4567 | o9 = 1.5825 +i0.1513
4.10 | hg = 0.4167 -11.7171 | hg = 0.6254 -i2.0754 | hg = 2.3544 -i2.2444
oo = 0.8388 -i0.6022 | oo = 1.0430 -i0.6286 | oo = 1.5138 -i0.1695
5.20 | hg = 0.2242 -i1.5156 | hy = 0.3505 -i1.8620 | hg = 1.6796 -i2.5098
oo = 0.6857 -i0.6486 | oo = 0.8681 -i0.7067 | o¢ = 1.3992 -i0.3818
6.30 | hg = 0.1381 -i11.3477 | hg = 0.2232 -i1.6712 | hg = 1.2244 -i2.4207
og = 0.5769 -i0.6597 | oo = 0.7366 -i0.7368 | o9 = 1.2755 -i0.5357
7.40 | hg = 0.0929 -i1.2123 | hg = 0.1547 -i1.5125 | hg = 0.9249 -i2.2238
oo = 0.4951 -i0.6545 | 09 = 0.6361 -i0.7433 | oo = 1.1537 -i0.6304
9.60 | hp = 0.0500 -i1.0129 | hy = 0.0874 -i1.2736 | hg = 0.5789 -11.8246
oo = 0.3810 -i0.6249 | o¢ = 0.4951 -i0.7254 | oo = 0.9426 -i0.7106
12.35 | hg = 0.0280 -i0.8474 | hg = 0.0516 -11.0718 | hy = 0.3657 -i1.4590
oo = 0.2917 -i0.5794 | oo = 0.3838 -i0.6842 | oo = 0.7469 -i0.7209
16.20 | hg = 0.0154 -i0.6996 | hg = 0.0301 -i0.8895 | hy = 0.2235 -i1.1465
oo = 0.2172 -10.5211 | 0¢ = 0.2889 -i0.6253 | 0o = 0.5645 -i0.6888
22.80 | hg = 0.0075 -i0.5537 | hg = 0.0159 -i0.7082 | hy = 0.1218 -i0.8782
oo = 0.1504 -i0.4457 | o9 = 0.2001 -i0.5447 | oo = 0.3853 -i0.6225
32.15 | hg = 0.0038 -i0.4446 | ho = 0.0087 -i0.5717 | hy = 0.0675 -i0.7166
oo = 0.1058 -i0.3766 | oo = 0.1370 -i0.4686 | oo = 0.2563 -i0.5532
44.80 | hp = 0.0020 -i0.3671 | hg = 0.0051 -i0.4743 | ho = 0.0392 -i0.6271
oo = 0.0774 -i0.3204 | oo = 0.0940 -i0.4056 | o9 = 0.1692 -i0.4951
59.65 | hg = 0.0012 -i0.3170 | hg = 0.0033 -i0.4112 | hy = 0.0251 -i0.5820
oo = 0.0608 -i0.2808 | oo = 0.0672 -i0.3609 | o¢ = 0.1157 -i0.4542

Table 4.1. Distribution of the saddle points along the longitudinal coordinate.

behavior from data at the lower x values. These data are more accurate, because
the values of ky are not too small at these longitudinal stations. The extrapolat-
ing curves obtained are in agreement with the asymptotic analysis of the stability
characteristics, see §4.3, Fig. 4.9.

Assuming that kg is non-negative, its extrapolating function is ko(z) = Y, cfa~"i =
1,2,.... For the other stability characteristics (sq, wo, 70), the extrapolating func-
tions are so(z) = >, ca™™ wo(z) = >, a™ rg(a) =Y, a7 i=12,....

The Laurent series coefficients for the stability characteristics are given in tables

4.2 and 4.3, while in table 4.1 the longitudinal evolution of the extrapolating curves
for the stability characteristics is shown. The domain of validity is 3 < =z < 60
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Re ko(z) =, cFa™ so(x) =Y, cia™
35 | F=10.0205 ¢k = 2.7405 c; =-0.1610 ¢ = -9.5190
ck = 15.1650 ¥ = 8.1000 5 = 12.8700
50 | cF =0.1100 c& = 4.8450 c; = -0.2140 ¢ = -12.0660
& = 20.0700 ¢§ = 5.4000 c5 = 18.1800
100 | cF =0.7175 ¢k = 45.8525 | ¢ = -0.0005-10% ¢5 = -0.0007-10°
b = 38.3850 ¢§ = -312.3000 | ¢ = -0.2271-10% ¢} = 1.2726-103
s = -1.8436-10°

Table 4.2. Complex wavenumber extrapolating curve of the downstream distribu-
tion of the dominant saddle points.

Re wo(x) =Y, Fa™"! ro(x) =, cia="t!
&7 = 0.0187 ¢5 = 2.0880 ¢ = -0.1403 ¢} = -9.4102
35 cg = 28.5906 cj = -201.5260 ¢y = 65.0415 ¢ = -230.5392
cg = 601.3316 c¢g = -688.1536 ct = 472.4563 c; = -420.4417
¢y =-0.0114 ¢5 = 4.5533 cy = -0.1999 ¢; = -10.8650
20 ¢y = 9.1532 ¢f = -78.4682 ¢y = 79.9060 ¢ = -285.3133

@ = 205.6623 ¢ = -220.1156 | L = 576.7085 ¢} = -502.1086

@ = 0.0000 ¢5 = 0.0081-10° | ¢} = -0.0003-10° ¢ = -0.0092-10°
100 | ¢ = 0.0531-10% ¢ = -0.5530-103 | ¢ = 0.0405-10° ¢, = 0.2403-103
& = 1.6819-103 ¢¢ = -1.7701-10° | ¢f = -1.5176-10% ¢§ = 2.1540-10°

Table 4.3. Complex frequency extrapolating curve of the downstream distribution
of the dominant saddle points.

and the Reynolds number values are Re = 35,50,100. In Fig. 4.5, some significant
data (symbols) computed in the early spatial domain and the relative extrapolating
curves for the stability characteristics are shown in the spatial range 3 < z < 30.

4.2.4 Results

The first-order correction of the instability characteristics is obtained through re-
lation (4.53), after the modulation equation (4.42) is solved with the associated
accessory conditions, (4.45) and (4.46).

It can be seen, in Fig. 4.6, that the correction of the characteristics values - at the
saddle points - increases with the Reynolds number. At the subcritical Reynolds
number, Re = 35, the lowest value here considered, the correction is negligible
throughout the intermediate and far domain.
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Figure 4.5. Instability characteristics at order zero: (a) wavenumber, (b) spa-
tial growth rate, (c) angular frequency (pulsation), (d) temporal growth rate;
Re = 35,50,100. Computed data (symbols) and extrapolating curves.

Another general feature, which is Reynolds number independent, is the vanishing
of the first-order correction as x — co. In the first part of the intermediate wake,
3 < x < 20, the multiscaling correction instead increases the values of all the four
characteristics. The perturbation wave has, here, shorter wavelength and temporal
period, and an increase of spatial and temporal growth rates is observed, see Fig.
4.6. While an increase of the temporal growth rate » means a wave configuration
that is more unstable in the absolute sense, an increase of the spatial growth rate s
results in a perturbation configuration that is convectively more stable.

The largest variations between the complete and the zero-order results are shown
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Figure 4.6.

Instability characteristics: (a) wavenumber, (b) spatial growth rate,
(c) angular frequency (pulsation), (d) temporal growth rate; Re = 35,50,100.

by the pulsation w and the temporal growth factor r, see Fig. 4.6(c,d). In fact, for
these quantities, corrections of the order of 50 ~ 100% can be observed in the first 15
diameters downstream to the body. At Re = 100, the complete pulsation exhibits
a point of relative maximum for x ~ 7. The temporal growth factor r becomes
positive, for both Re = 50 and 100, in the first part of the intermediate wake region.

Thus, at these Reynolds numbers, absolute instability pockets appear which extend
to x ~ 7 and x ~ 10, respectively.

The instability turns out to be convective
throughout the spatial domain. In the meantime, the analysis leads to marginal

conditions of convective and absolute stability for the asymptotic wake (s,r — 0

as © — 00, respectively) for all the Reynolds number considered (Re = 35,50,100).
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Figure 4.7. Comparison between the instability characteristics with the present
perturbation hypothesis (spatial sequence of saddle points) and the perturbation
with ho(z = 4.10)=cost at Re=50: (a) wave number, (b) spatial growth rate, (c)
pulsation, (d) temporal growth rate.

This latter result on marginal stability will be later confirmed by the asymptotic
analysis (see §4.3).

It should be noted that the first order corrections are really relevant, especially
for the complex frequency, in the near wake for increasing values of the Reynolds
number. The order of correction can easily reach 100% or more in this region, and
this means that here the non-parallelism effects are no longer negligible. Moreover,
corrections have to be much smaller than the original values to be acceptable. Thus,
instability characteristics values for longitudinal coordinates about © < 5 — 7 only
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offer a qualitative behaviour but are, in no way, valid for the stability analysis.
As previously said, indeed, the near wake region falls outside the domain of the
present analysis. Going downstream, the first order corrections become smaller
but still important, at least in the intermediate wake. In the far wake, they are
vanishing. Considering the spatial evolution of first order corrections with respect
to zero order values, an extension of the multiscale to second order corrections seems
unnecessary. The O(g?) corrections would not affect results so much in the region
where parallel flow theory is valid, and they would be completely useless where first
order corrections are already too big.

T T T T v

0.4r x,=4.64 A Zebib (1987)
O Pier (2002)

0.2 O Williamson (1988) |
—— present solution
-.=. present solution + Aw
O | | | |
30 45 60 75 90 105

Re

Figure 4.8. Comparison between the global pulsation data according to Pier
(2002), Zebib (1987), Williamson (1988) and present solution (accuracy Aw = 0.05).

Fig. 4.7 shows a comparison between the results of the present perturbation
hypothesis and those obtained considering the system disturbed by a wave with a
complex wave number which is kept constant downstream to the wake (Belan and
Tordella, 2006), and equal to the zero-order value shown at the saddle point in
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x = 4.10, see Fig. 4.7(a,b). One can see that the two perturbation hypothesis yield
the same results close to x = 4.10, but differ downstream, where, in latter case, the
perturbation is no longer locally tuned to the most unstable wave number, which
results in forcing the system to the chosen wave number in the positions of the wake
that are different from = = 4.10. A similar behavior is observed if the position of the
forcing point is moved along the wake. It can thus be concluded that the present
perturbation, being tuned to the natural sequence along the longitudinal coordinate
of the proper wave numbers, is an efficient tool to highlight the evolution of the
stability properties in the intermediate wake.

Data from the global results obtained by Pier (2002, DNS simulations), Williamson
(1988, laboratory observations), and Zebib (1987, numerical experiments) are in-
cluded in Fig. 4.8. In this figure the x positions pointed out represent the wake
sections where the longitudinal distribution of pulsation obtained with the present
method match the global pulsation obtained in these numerical and laboratory ex-
periments. These regions, for Re = 50 and 100, are very close to the ones where the
temporal growth rate r is observed to change its sign leading to absolutely unstable
configurations (see Fig. 4.6(d)). A linear interpolation on the frequency points de-
termined is proposed. The experimental data fall within an accuracy of £5% around
the pulsation interpolating curve that grows with the Reynolds number.

4.3 Eigenfunction and eigenvalue asymptotic the-
ory

Based on the Orr-Sommerfeld problem properties at zero order, an asymptotic anal-
ysis of the stability characteristics kg, sg, wg, 7o is here presented in the limit z — oo.

The present nonparallel stability analysis shows that the saddle point wave num-
bers ko decay rapidly as x — oo. Thus we can assume this decay as a hypothesis
of behavior of the solutions of equation (4.22). In the same equation, the base flow
longitudinal component Uy appears together with its second y derivative 85(]0. The
relevant asymptotic forms are

Uo = 1+ $71/2¢1(y1}71/2) =1- T ~ O(l) (454)
e \/r
ARe ARe?y? _
KUy = ——— 57— ~0@™?). (4.55)

Qe 4z 2 de 1z 12

51



4 — Multiscale analysis of the wake instability through a synthetic perturbative hypothesis

It can be seen that 8§U0 is negligible in comparison to Uy, therefore operator A,
which is present in (4.19) and (4.22), becomes

A= {(0; — h§)? —ihgRe Uy (87 — h3)} . (4.56)

Now the eigenvalue problem (4.22) with the relevant boundary conditions can be
rewritten in the form

{07 — h§ —ihgRe Uy} f = —iReoq f, (4.57)

f—0as|y| — oc.

where

flay) = (05 = hg)wo(e,y)- (4.59)

It is useful to rewrite the base flow in the form Uy = 1 + g(x,y), where g(z,y) =

e 2
— Az~Y2e="FF is the well-known asymptotic gaussian law for velocity defect in the
wakes. Parameter P = ihgRe and the generalized eigenvalue w = i Recg—ihgRe —h}
are also introduced. The eigenvalue problem (4.57) finally becomes

(-0, +Pg) f=wf, (4.60)

with the same boundary conditions. In this equation, P = thoRe ~ —sgRe is a
real parameter according to the hypothesis ky ~ 0. One can observe that (4.60) is
the stationary Schrodinger equation. Moreover, if we assume sg < 0, in agreement
with the numerical results described in §4.2.4, positive values are obtained for the P
parameter. Product Pg(z,y) at a given x is therefore a negative function throughout,
that vanishes as |y| — oo. This makes the eigenvalue problem (4.60) become the
famous 1D ’potential well” problem, which has been widely treated in theoretical
physics (see Messiah, 1960).

Some properties of this problem should be mentioned at this point: the operator
in (4.60) is now self-adjoint and thus the eigenvalues w are real. The eigenvalue
spectrum has a discrete part {wg,wq,ws...}, and all these eigenvalues satisfy the
inequality

Imin < Wp < O, (461)
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where ¢pin = —Ax~1/2 is the axial value of g (wake center). There is also a contin-
uous spectrum in the range w > 0, but its physical meaning lies outside the aim of
the present analysis.

These properties lead to interesting consequences. First, since w is real

S{w} = ${iReoy — ihgRe — hi} = —ko(Re + 2s0) + Rewy = 0, (4.62)

so that kg ~ 0 implies

wo ~ 0, (4.63)

that is, if the saddle point wave numbers kq vanish rapidly, the pulsation wgy should
also vanish rapidly. This result is in good agreement with the present numerical
computations, see figure 4.6.

Second, since ko ~ 0, the inequality (4.61) shows that

Gmin < —roRe + so(Re + sg) < 0. (4.64)

However, in the limit z — 00, gmin — 0. Thus, —rgRe + so(Re + s¢) ~ 0 and a
relation between the asymptotic behavior of the temporal and spatial growth rates
can be found:

o ~ So + S5/ Re. (4.65)

Since finite values for an asymptotic uniform flow at infinity are unphysical,
because uniformity means absence of spatial and temporal scales, and since positive
infinite values for rg are a priori excluded, it can be evinced that both rg,s9 — 0.

In the asymptotic limit, this result is in good agreement with the numerical

computations, as shown in Fig. 4.9 where the computations are compared with the
simple curves rq = sq + s3/Re (unitary proportionality constant).
Moreover, it should be noted that the only hypotheses made for the asymptotic
analysis are on the wavenumber ky, which is supposed to rapidly decay as © — oo,
and on the spatial growth rate sy, which is required to be negative throughout
the spatial domain. The two assumptions lead, in the far wake, to an asymptotic
behaviour for the complex frequency, which is in good agreement with the numerical
results of the zero order dispersion relation. Thus, the marginal conditions for
convective and absolute stability shown by the multiscale Orr-Sommerfeld results in
the far wake are confirmed by the present asymptotic analysis.
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Figure 4.9. Temporal growth rate, ro(z). Comparison between the asymptotic

behaviour rg = sq(x) + so(z)?/Re and present solution at order zero (extrapolated
curves, see Tables 4.2 and 4.3); Re = 35, 50, 100.

4.4 Concluding remarks

The spatially varying disturbance used here to represent the amplitude modulation
turns out to be a synthetic way of pointing out the behaviour of the convective
instability in the intermediate and far bluff-body wake. This disturbance is tuned
to the local proper wavenumbers along the wake and is associated to a classical
spatial and temporal WKBJ analysis carried out on the two-dimensional base flow
previously derived in §2.3. The multiscaling explicitly accounts for the non-parallel
effects associated to the lateral momentum dynamics, at a given Reynolds number.

The first-order corrections allow absolute instability pockets to be determined in
the first part of the intermediate wake. These pockets are present when the Reynolds
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number Re is equal to 50 and 100, but are absent when Re is as low as 35. This
is in general agreement with the standard notion of a critical Reynolds number of
about 47 for the onset of the first observable instability.

The size of the correction increases with Re and is larger for the pulsation and
the temporal growth factor than for the spatial growth factor. It is negligible for
the wavenumber.

The pulsation variation with Re of the wake region where the temporal growth
factor is almost equal to zero is in good agreement with experimental global flow data
in literature. Another result of the present study is that the convective instability,
observable throughout the domain at both zero and complete orders, asymptotically
sets on a condition of marginal stability. All the four instability characteristics vanish
at infinity downstream the body generating the wake flow.

The far wake asymptotic behavior, shown by this WKBJ analysis and indepen-
dently obtained through an analysis based on the properties of the Orr-Sommerfeld
problem, is in good agreement with the numerical computations and highlights the
same marginal stability condition as r — oo.
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Chapter 5

Streamwise evolution of the
entrainment in the steady 2D

bluff-body wake

The analytical description of the two-dimensional bluff-body wake is not only a
powerful means to analyze the non-parallel effects on the stability, but it can also
be useful to consider phenomenons, associated to the lateral momentum transport,
as the entrainment of the external fluid into the wake region.

In this chapter an asymptotic representation for the entrainment in the 2D steady
wake is presented. After the entrainment process is introduced for laminar and
turbulent flows (see §5.1), a formal definition of entrainment will be deduced as
the longitudinal volume flow rate variation, through the analytical Navier-Stokes
expansion derived in §2.3. The first four orders of the expansion coefficients are
listed (see §5.2). The streamwise behaviour of the entrainment is presented in §5.3.
Two possible lateral integration limits are discussed: the displacement thickness and
the wake thickness, which is explicited through the introduction of a threshold e.
The concluding remarks are given in §5.4.

5.1 Introduction

The dynamics of entrainment and mixing is of considerable interest in engineering
applications such as pollutant dispersal or combustion, but it is also relevant in geo-
physical and atmospherical situations. In all these cases, flows tend to be complex.
In most of them, entrainment is a time dependent multistage process both in the

56



5 — Streamwise evolution of the entrainment in the steady 2D bluff-body wake

laminar or turbulent regime of motion.

The entrainment of an ambient fluid in a shear flow is a convective-diffusive
process, which is widespread in the physical domain when the Reynolds number is
greater than a few decades. It is a key aspect associated to the lateral dynamics
of spatially evolving flows. However, quantitative data concerning the entrainment
spatial evolution are not very frequent in literature and are difficult to determine
experimentally. In fact, it is not easy to obtain quantitative experimental observa-
tions either in the laboratory or in the numerical simulation context. In some cases,
as fluid entrainment by isolated vortex rings, theoretical studies (Maxworthy 1972)
are followed by experimental observations (Baird, Wairegi and Loo 1977; Miiller and
Didden 1980; Dabiri and Gharib 2004).

It should be noted that, in literature, more attention has been focused on complex

unsteady and highly turbulent configurations than to their laminar counterparts.
In unsteady configurations, the entrainment process is related to repeated cycles of
viscous diffusion and circulatory transport. In turbulent flows, the external fluid is
first included by the highly stretched and twisted inner turbulent motion (large-scale
stirring) and is then mixed, at the molecular level, by the action of the small-scale
velocity fluctuations. To this end, see for instance the recent experimental works
on free jets by Grinstein 2001, or on a plane turbulent wake by Kopp, Giralt and
Keffer 2002.
In steady laminar flows, the stretching dynamics is generally absent or close to its
onset. In this case, the entrainment is mainly governed by the balance between the
longitudinal and lateral nonlinear convective transport and the lateral molecular
diffusion.

Here, the entrainment variations with the Reynolds number (Re € [20,100]) and
the longitudinal coordinate will be discussed. It increases with the Reynolds number
but, after about 20 diameters downstream the body, the dependence becomes weak.
The entrainment will turn out to be maximum at the beginning of the intermediate
region and it will be vanishing in the far wake. In the Re range here considered, the
entrainment is negligible beyond about 50 — 60 diameters downstream the body, a
distance which is of the same order of magnitude of Re. This result is in agreement
with the multiscaling approach adopted in the wake stability analysis to represent
the slow system variation (see §4.2).

5.2 Volumetric low rate and entrainment

Recalling the inner expansion in §2.2.2, the base flow velocity components are
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Ulzy) = ¢olwy)+ dr(zy Zﬁny (5.1)

V(zy) = xo(z.y)+ xa(zy an ry)x (5:2)

The normalized volumetric flow rate () can be defined as

= )dyd
Q) = L[ vea:
- s [atwaritz 1 [ [ otaaanes

4! /w/o d(z,y)dydz + ..
N

= @)+ q@)a P+ g+ =) gu(z)z? (5.3)

n=0

where § = §(z,Re) is a measure of the half inner wake thickness, z,, is an arbitrary
spanwise length and

1 Zw 6 1 1
)= 2240 /_ /0 On(2,y)dydz = < /O On(2,y)dy. (5.4)

Since the wake is symmetric around the x coordinate, the adimensionalized longi-
tudinal velocity U is integrated in the transversal direction between 0 and §.

The wake width ¢ is a function of x and Re and it can be defined in terms of
the displacement thickness of the boundary-layer theory (see Belan & Tordella 2002,

eq.(40))

qn(x

S Re) = - (L;Z T /0 (1= u(wy: Re))dy (5.5)

If the wake width is approximated using the longitudinal velocity up to n = 1,
U(z,y) = do(z,y) + 27 2¢1 (z,y) = 1 — Az—/2e~Rev’/(40) one obtains

2

d(z,Re) = Y=Y

/ (AI_I/Q —Rey2/(4w))dy —9 Rzre 1/27 (56)

see Fig. 5.1. The approximated asymptotic behavior § ~ z'/2 can then be obtained.
The wake width can alternatively be defined by introducing the parameter €, so
that
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Figure 5.1. Wake displacement thickness ¢ in (5.5)—(5.6) as a function of
for Re = 20,40,60,80,100.

|1 — U(x,yw; Re)| = ¢, (5.7)

Thus, we can define the physical width y,, as the half-wake thickness where condition
(5.7) is met, with 0 < € < 0.1. At the n =1 order, the wake width is

2 A

@[ﬂog(ﬁ NG

See Fig. 5.2, where the dependence on € of the wake width is shown in parts (a,

b) and where a comparison between definitions (5.5) and (5.7) is presented on the
volumetric flow rate in parts (c, d).

Yuw(x; €,Re) = )]1/2. (5.8)

The entrainment is the physical quantity taking into account the volumetric flow

dQ(x)
d

rate variation in the streamwise direction, and is defined as F(z) = ———. Using
x

expansion (5.3), one obtains

E(x) =
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Figure 5.2. Wake width y,,, in (5.7)-(5.8), as function of € for Re = 20, Re = 60,
Re =100 at x = 15 (part a) and = = 60 (part b). In parts (¢, d) the volumetric flow
rate () is shown as function of € according to y,, definition (5.7)—(5.8) (solid curves
with symbols) and ¢ definition (5.5)—(5.6) (dashed curves) for Re = 20, Re = 60,
Re = 100. Downstream stations z = 15 (¢) and = = 60 (d).

where

x 1
t(a) = L = LG [ ontwaiy (5.10)

and where the sequence of the coefficients of the flow rate expansion (5.3) is enlarged

to include the elements ¢ o =0 and ¢_; = 0.
The expression for coefficients ¢, (x,y) is

go(z,y) =1, (5.11)
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which satisfies the boundary condition on U as x — oo, and

1-n1 Rey?
" — A" —Rey?/(4z) R =+
¢ (:E7y) € [C 1 1( 2 2 Ax )
+ReHr,_(z,y)Fn(z,y)], n > 1, (5.12)

see §2 for details on the involved functions and the constants C,, (see also Belan &
Tordella, 2002; Tordella & Belan, 2003). Once ¢,, are known, coefficients x,, can be
obtained through the continuity equation, so that

XO('Tvy) - 07 (513)
which satisfies the boundary condition on V' as x — oo, and

Toly) = ﬁ[m_lu,y) (-2 /  bur(2,0)dC) m > 1. (5.14)

The entrainment E(x) can thus be directly related to the transversal velocity V'
through coefficients x,,, as

n— 2

en(x) =tp(x) — 5 Gn—2(T) (5.15)
with
e J y
wio =L [ [ Sy 616)
and

anlz) = @ /0 Ny /0 y[c“a%an(x,c)]dCdy. (5.17)

5.2.1 Expansion of the first four orders

Here we list in sequence the flow rate (5.3) and the entrainment (5.9) up to the third
order. The explicit expressions are

Qz) = qo(x) + q(x)z™ " + ga(x)z™" + gs(a)z™*? (5.18)
E(z) = to(x)+ tl(x)x_1/2 +to(z)z ™ + (t3(z) — %ql(x))x_3/2 (5.19)
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Zero order, n=0

@plr) = 1
to(z) = 0 (5.21)
First order, n=1
A [ 2 A
q(x) = 5 e~ Rev’ /) gy — —gerf(\/%) (5.22)
hiz) = Ad<f/ & /) dy) = 0 (5.23)
dx " '
Second order, n=2
A2 0 1 1 Rey?
- = —Rey?/(4x) .
wle) = ~55 [ AR (5.5 )
Rt 4o Y\ Reort( ,/Re I}y (5.24)
\/_
A% d 1 ~Rey?/( 11 Rey’
- - = ey /(4x)
ta(2) 2 d:c(é/{ Cabi(=55 )

2 1 Re
—Rey?/(4x) - g i S
+e + 2\/Ex/wReerf(Q\/ " y)|}dy) (5.25)

Third order, n=3

A3 J 2 y2 1
@(x) = 5 ) {e~Rev’/Ua) (9 Re—)[503 — ReFs(z,y)|}dy (5.26)
x

2

@m::AQQ/{R%WW—&%@@—&&@MMA@W>

5.3 Streamwise evolution of the entrainment pro-

cess

The asymptotic behaviour of the expansion solutions (5.1)-(5.2) in the lateral far
field is important to determine the entrainment spatial evolution. At finite values of
x, the coefficient function ¢ for the streamwise velocity decays to zero as a Gaussian
law for n = 1 and as a power law of exponent —2 for n = 2 and of exponent —3 for
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n > 3. The coefficient function x for the transversal velocity goes to zero for n = 0,1
and to a constant value for n > 2. This allows V to vanish as 2=%/2 for z — 0.
When z — oo this solution coincides with the Gaussian representation given by the
Oseen approximation. It can be concluded that, at Reynolds numbers as low as
the first critical value and where the non-parallelism of the streamlines is not yet
negligible, the division of the field into two basic parts, an inner vortical boundary
layer flow and an outer potential flow, is spontaneously shown up to the first order
of accuracy (n = 1). At higher orders in the expansion solution, the vorticity is
first convected and then diffused in the outer field. This is the dynamical context
in which the entrainment process takes place.

Figure 5.3 shows the volumetric flow rate @ = Q(z,Re) and the entrainment
E = E(z,Re) obtained from expansions (5.3), (5.9). It can be observed that these
quantities significantly depend on the flow control parameter up to a distance of
nearly 20 body scales. In fact, at = 5, by varying Re € [20,100], @ varies from
0.62 to 0.24. An increase of Re by a factor 5 produces a decrease of () by a factor
of about 2.5. However, this factor at  ~ 22 reduces to 1.1, see Fig. 5.3(a). An
opposite situation is observed for the entrainment, which is the derivative of the
volumetric flow rate, see Fig. 5.3(b). An increase of Re from 20 to 100 produces,
at x = 5, an increase of E by a factor of about 3. By moving further downstream,
the decrease of () and the increase of £ with Re continue to reduce to just a few
percent at about x € [50,60]. At this distance the volumetric flow rate is close
to 90% of the far field unitary value. Correspondingly, the entrainment process is
practically exhausted. It is interesting to observe that this distance happens to be of
the same order of magnitude of Re. This means that the multiple scales used in the
multiscaling stability analysis to represent the slow time and space wake evolution

-7 = ¢t and £ = ex, where ¢ = — (see §4.2) - are linked to the exhaust of the
entrainment process. The unitary values of the slow temporal and spatial scales are
reached where the entrainment vanishes.

It should be noted that the behaviour shown by the entrainment is qualitatively
close to the trend shown by the wavenumber and pulsation evolution of the dominant
saddle points of the zero order dispersion relation yielded by the nonparallel Orr-
Sommerfeld stability analysis (see §4.2.3-4.2.4 and for details Tordella, Scarsoglio
and Belan 2006, ; Belan and Tordella 2006). In relation to this observation, the
values of () and E at Re = 50 and 100 for which the instability becomes absolute
are pointed out in Fig. 5.3 (triangle and circle symbols). It is interesting to note that
these highlighted positions (z ~ 10) are close to the beginning of the intermediate
wake where the spatial evolution is intense, but inside the region where the thin
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Figure 5.3. Downstream distribution of the volumetric flow rate ) (a) and
entrainment E (b) for Re = 20,40,50,60,80 and 100. Integration carried out
using the § wake width definition in (5.5)—(5.6). The triangle (Re = 50) and
the circle (Re = 100) are values related to the wake regions where absolute
instability occurs, according to a recent Orr-Sommerfeld spatio-temporal mul-
tiscale analysis (see §4.2.4 and for details Tordella, Scarsoglio and Belan 2006;
Belan and Tordella 2006).

shear layer hypothesis is valid. This aspect a posteriori makes the use of the WKBJ
method, for the stability analysis in slowly varying flows, self-consistent.

The choice of the lateral integral scales that can be used to determine integral
quantities such as the volumetric flow rate and the entrainment is here discussed.
An intuitive quantity in this regard is the wake width y, which, in order to be
defined, needs the introduction of an arbitrary threshold, see (5.8)-(5.7) and Fig.
5.2. Selecting a very small threshold € would be meaningless because it would imply
a transversal length of integration going to infinity, which would not allow the finite
flow rate variations associated to the wake momentum defect to be estimated.

An alternative to the wake width g, is the displacement thickness d, an integral
quantity often used in the boundary layer theory and which is directly associated
to the momentum defect in the wake, see (5.5)-(5.6). Figures 5.2 and 5.4 show
that the results obtained using the displacement thickness § are very close to the
results obtained using a threshold equal to 0.01 (a position where the streamwise
component of the velocity reaches 99% of the free stream velocity). As known, the
displacement thickness is a very common definition used in boundary layer literature
and engineering applications.
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Figure 5.4. (a) Volumetric flow rate @ and (b) entrainment E as function of z
for Re = 40. Integration carried out using y,, wake width definition in (5.7)—(5.8),
solid curves with € = 1076,107%,1072,10~!. The dashed curves represent Q and E
obtained using the displacement thickness d, in (5.5)—(5.6).

5.4 Concluding remarks

The entrainment distribution in the intermediate and far laminar wake has been
analytically determined as an asymptotic expansion, using the Navier-Stokes ex-
pansion solutions for the inner field of the wake that successfully match an external
Navier-Stokes field (see §2). The general n-order term of the expansion is explicitly
obtained.

The entrainment is intense downstream the separation region, where the two-
symmetric standing eddies are situated. Here, the maximum of the distribution
is reached and the dependence on the Reynolds number is clear: the entrainment
trebles when Re is increased from 20 to 100. The subsequent downstream evolution
presents a continuous decrement of the entrainment which, in the case of a wake
flow, has to vanish in the far field. The decrease is almost concluded for all the
Re here considered at an average distance from the body of 50 — 60 diameters,
which is a value of the same order of magnitude as the control parameter Re. This
result means that the Reynolds number dependence becomes weak when moving
downstream and disappears in the far field. Moreover, it confirms the validity of
the multiscaling approach often adopted in wake stability analyses (see §4.2) and
carried out using the multiple spatial and temporal scales. The slow temporal and

spatial scales 7,6 are usually taken equal to 7 = et and { = ez, where ¢ = Te
e
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According to the present analysis, the physical scales 7 ~ 1, ~ 1 correspond to the
downstream region where the entrainment process is considered to be extinguished.
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Chapter 6

Transient dynamics and
asymptotic behaviour: the
initial-value problem

In this chapter, the three-dimensional initial-value problem concepts for the linear
stability study of a steady shear parallel flow are introduced. Although the stability
analysis has been widely recognized as an initial-value problem, the temporal dy-
namics of the perturbations has only recently become an important topic in stability
theory. The motivation, meaningful results in literature and the basis of the initial-
value problem formulation are given in §6.1 and §6.2. The next two sections will be
mainly dealing with a brief introduction to a traditional tool to solve an initial-value
problem, that is the Laplace transform (see §6.3), and with the goal, through a mov-
ing coordinate system and the Fourier transform, to find explicit unsteady solutions
for perturbations (see §6.4). The three-dimensional formulation here presented will
be then developed and extended to study the stability of the growing wake in §7. An
innovative spatio-temporal multiscale approach, where the small parameter will be
defined through the perturbation polar wavenumber, is presented in §6.5 and then
carried on for the weakly non-parallel wake stability in §8.

6.1 Introduction

Attention on the early transient behaviour of the perturbations has been widely
developing only in recent years, even if both Kelvin (1887 a, b) and Orr (1907 a,
b) had already recognized that the early transient contained important information.
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6 — Transient dynamics and asymptotic behaviour: the initial-value problem

First, because of the many complexities in the mathematics formulation and the
lack of adequate computing in the early stages of the development, it was practi-
cally impossible to find either exact or approximate solutions. Second, traditional
studies did not indicate that the transient dynamics could have any influence on the
ultimate behaviour and it was simply ignored. Nowadays, it is becoming clear that
the purpose of modal formulation computations is of predicting the asymptotic fate,
and that in the early transient important events for the stability analysis can occur.
In fact, a transient growth can take place long before the exponential growth. In
principle, this behaviour could cause perturbation amplitude that violates the as-
sumption of linearity and promote rapid transition, phenomenon known as by-pass
transition.

It should be noted that the leading equations in stability analysis have different
properties than those that are common in initial-value and boundary-value problems.
In fact the principal one, the Orr-Sommerfeld equation, is of the fourth order and not
self-adjoint. The Orr-Sommerfeld equation does not have a set of known functions
that can be used to express arbitrary perturbations. There are means to form inner
products (see Drazin & Reid 1984) in this case, but only for the viscous channel
flow the discrete spectrum is complete (see DiPrima & Habetler 1969). In the
inviscid case, only the continuous spectrum exists (see Case 1960, 1961; Criminale,
Long & Zhu 1991). The boundary layer (Mack 1976) and the unbounded flows,
that exponentially decay to a constant in the free stream, have a finite number of
discrete modes. Anyhow, the presence of the continuous spectrum is a recognition
of the fact that there can be algebraic growth rather than just exponential.

Moreover, the attention mainly focused on the transient growth does not prevent
the present formulation from capturing the perturbation asymptotic fate. Through
the initial-value problem formulation, in fact, the complete temporal evolution of
arbitrary perturbations is known. Beyond the transient, the asymptotic temporal
limit can be reached and compared with the results given by the Orr-Sommerfeld
analysis (see §7.4).

On the one hand, the normal mode theory turns out to be a synthetic means, as the
Reynolds number is the only parameter, of answering to the question of whether or
not the flow is stable in the long time scale (see §3 and §4). On the other hand,
only ascertaining that there may be at least one positive eigenvalue is not sufficient
to conclude that the flow is unstable (see Grosch & Salwen, 1978 and Salwen &
Grosch, 1981), as the continuous spectrum must be examined.

The initial-value problem formulation developed in the following will be dealing with
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6 — Transient dynamics and asymptotic behaviour: the initial-value problem

more parameters than the modal analysis (the most affecting ones are the symme-
try, the obliquity and the wavenumber of the perturbation) and can be thought of
as an extended alternative for evaluating the system response to arbitrary three-
dimensional disturbances. In fact, the direct calculation of the continuous spectrum
is no longer necessary as the transient behaviour, that is consequence of such a
spectrum, is unequivocally captured by the alternate scheme.

Moreover, based on this formulation, an optimization procedure - which will not
be developed here - can be determined without using a variational method. The
optimization scheme indicates the initial conditions that can lead to the largest
relative perturbation energy growth at a certain time (for details see results for
channel flows in Criminale et al., 1997).

6.2 The initial-value problem

The stability analysis will be considering arbitrary three-dimensional perturbations.
There are two principal reasons to generalize the formulation including oblique
waves. First, the Squire theorem is formulated within the modal stability analy-
sis and applies to the asymptotic fate of disturbances. Nothing can be concluded
on their early growth. Second, as noted in §3.5, the Squire theorem does not rule
out the possibility that, for high enough Reynolds number, an unstable oblique
oscillation can occur even though the purely two-dimensional one (with the same
longitudinal wavenumber) is damped. This point is referred to by Watson (1960) as
well as Betchov & Criminale (1967), but has not been exploited to date.

To this end, before carrying on with the fundamentals of the initial-value problem,
the Squire equation in partial differential equation form is introduced

~ -1 5
(ék + U@x)wy + Ulaz?} = EVQWZI’ (61)

where w, = 0,u — 0,w is the transversal component of the perturbation vorticity.
This second order not self-adjoint equation can be obtained - by considering a gen-
eral three-dimensional disturbance velocity field (u(z,y,z,t),0(z,y,2,t),w(x,y,z,t)) -
through the same linearity assumption as in §3.2 and is necessary for the stabil-
ity analysis of three-dimensional perturbations. Moreover, the partial differential
Orr-Sommerfeld equation (3.10) can be alternatively expressed as

(0, + Ud,) V2 — U"0,7 = év‘*a (6.2)

in terms of the perturbation transversal velocity v.
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From the mathematical complexities of the Orr-Sommerfeld equation - which
does not have a detailed set of known functional solutions and whose operator is of
the fourth order and not self-adjoint - and the Squire equation, it can be concluded
that there are algebraic as well as exponential solutions in time. There are two
main reasons for this. First, the eigenfunctions of the Orr-Sommerfeld and the Squire
equations are mutually non-orthogonal as the operators are not self-adjoint, and this
can cause algebraic growth for early time (see Sommerfeld 1949). Second, a possible
resonance between the Orr-Sommerfeld and Squire solutions can lead to algebraic
dependence. In the Squire equation, the inhomogeneous term is proportional to the
normal velocity component and is usually referred to as the lift-up term (Landhal
1980). This equation can be resonant if there is a matching of the frequencies of the
respective modes of the normal velocity with the dependent variable of the equation.
Resonance has been demonstrated to be possible for channel flow (Gustavsson &
Hultgren 1980; Gustavsson 1981; Benney & Gustavsson 1981) but does not occur
for the boundary layer. Resonance in the free shear flows is yet to be determined.
Moreover, the use of the Laplace transform to solve an arbitrary initial-value problem
(see Gustavsson 1979) showed that branch cuts as well as poles must exist when the
inversion back to the real space is to be made. This implies the existence of a
continuous spectrum and the transient behaviour associated.

Regardless the underlying source that is the cause, the algebraic growth trans-
lates into a linear time dependence. The perturbations can increase algebraically to
quite large amplitudes and eventually decay, for viscous dissipation, after a maxi-
mum is reached in finite time. Then, any exponential growth will prevail beyond
this point as time passes. For some problems, however, the transient growth can
be unbounded and the assumption of linearity is overcome long before the domi-
nance of any exponential growth. If, instead, there is no growing mode, the flow is
considered stable even if the initial growth reaches an amplitude that violates the
linearity assumption. These concepts will be put in the proper stability context as
the formulation is presented.

The equations (6.1)-(6.2) represent the point of departure for the initial-value
problem formulation. A two-dimensional Fourier decomposition in the x — z plane
is performed for every dependent variable, so that in the (a,7) phase space the
equations become

(0, + iaU) Ao —ialU"d = Al (6.3)
1
(0 +ial)w, +inU'v = EA% (6.4)
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and can be used in a very general way to understand the initial-value problem. The
angle of obliquity is ¢ = tan~!(vy/a) and the polar wavenumber is k = /a2 + 2.
The Fourier transform assures that all the dependent variables are bounded in the x
and z coordinates, which both range from —oo to +00. The remaining variable y €
(—00, + 00) also requires boundary conditions for the velocity to be met. However,
the initial conditions are not necessarily given in terms of velocity. In fact, vorticity
is the actual physical quantity describing the perturbation dynamics, and this can
be seen through the kinematics relation

ow, 0w
Vi =2 - =2, 6.5
YT o 0z (6:5)
which in the phase space becomes
AD = iow, — iYW, = ik, (6.6)

where wy is the perturbation vorticity component in the ¢ direction. The equations
(6.3), (6.4) and (6.6) are now clearly describing the disturbance dynamics in terms
of vorticity, and this further substantiates the choice of initial conditions in terms
of vorticity rather than velocity.

An important result for a correct formulation was given by Grosch & Salwen
(1978) and Salwen & Grosch (1981). They showed that any solution to (6.3), to-
gether with an initial condition, can be expressed as

a,y,y,t) Z A;e™it o (y) + Ve(ypt) (6.7)

where N is the number of dlscrete modes and is finite, A; are the amplitude fac-
tors, w; are the frequencies, v;(y) are the eigenfunctions, and V,(y,t) represents the
continuum spectrum. Once an initial condition is prescribed, the amplitude factors
and the continuum spectrum can be found requiring the orthogonality between the
eigenfunctions and the adjoint eigenfunctions. As the system has to be numerically
solved, there are some difficulties in determining the eigenfunctions. This proce-
dure, although formally correct, is of limited use as cannot be easily applied. Thus,
alternative methods for analysis will be presented in the following. However, sig-
nificant results are to be noted. For the Blasius boundary layer, Salwen & Grosch
(1981) showed that, in the case ¢ = m/2, only the continuous spectrum exists, and
therefore transient growth is possible. The early growth is completely due to three-
dimensionality of perturbations. In fact, resonance is not possible for the boundary
layer (Benney & Gustavsson 1981) and, for ¢ = 7/2, there is no contributions from

71



6 — Transient dynamics and asymptotic behaviour: the initial-value problem

non-orthogonality of the Orr-Sommerfeld and the Squire operators. This result
represents a further demonstration of the influence - on the transient growth - of
three-dimensionality, which can be the cause of the perturbation algebraic growth.

6.3 Laplace transforms

A traditional tool to solve an initial-value problem is the Laplace transform in time.
Significant contributions in the study of shear flows are due to Case (1960, 1961),
Gustavsson (1979) and Hultgren & Gustavsson (1981). The Laplace transforms

@(y,s):/ o(y,t)e " and J)y(y,s):/ @, (y,t)e ", (6.8)
0 0

can be directly applied to equations (6.3) and (6.4), so that they become

(s +ialU)Av —iaU"t — RLAAU = [AD]=o, (6.9)
€

1
(s +ialU)w, 4+ iyU'v — EA% = @y(y,0). (6.10)

The two leading partial differential equations are now ordinary ones, both with inho-
mogeneous terms. It should be noted that the specific initial conditions are directly
inserted into the equations and deeply influence the stability analysis. Unluckily,
only general properties can actually be found with this approach, as the ordinary
differential equations (6.9) and (6.10) are the same as the modal theory ones.

The stability analysis of the Blasius boundary layer was studied by Gustavsson
(1979) by means of the Laplace transform. In the evaluation of singularities in the
complex plane, he found out that branch cuts as well as poles are to be considered
when inverting the transform to the real time. The branch cut is the same as a
singularity (condition where the coefficient of the highest derivative vanishes). The
presence of these singularities implies that a continuum must exist. In this sense,
important results - confirming the presence of branch cuts in the complex space
when making the inversion of the Laplace transform to the real time - are also given
by Case (1960, 1961) for inviscid Poiseuille flow and general inviscid problems for
incompressible flows.

The use of Laplace transform is not remarkably different from the modal analysis.
In literature, it turned out to be useful to prove that the transient growth must exist
but, as the specific initial conditions strongly determine the subsequent dynamics,
other strategies for the initial-value problem formulation are to be examined.
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6.4 Moving coordinates and piecewise linear pro-
files: the exact solutions case

Kelvin (1887 a, b) and Orr (1907 a, b) first tried to find analytical unsteady solutions
for perturbations. Beside the class of exact solutions given by Craik & Criminale
(1986), more recent works (among others Criminale & Drazin 1990, 2000; Criminale,
Long & Zhu 1991; Bun & Criminale 1994; Criminale, Jackson & Lasseigne 1995)
with equivalent bases are aimed to explicitly solve initial-value problems.

According to this approach, the fundamental mechanism is that the disturbance
vorticity is advected by the base flow, while the mean vorticity is, in turn, advected
by the disturbance. For viscous problems, the perturbation vorticity can also be
diffused. If the mean flow is piecewise linear, then the base vorticity is piecewise
constant. In the case of particular travelling waves, this condition ensures that
the solutions of the full Navier-Stokes perturbative equations are exact (Craik &
Criminale 1986). In a more general fashion, Criminale & Drazin (1990) showed that
a set of basic solutions can be found for the linear perturbation problem. These
solutions are of closed form and contain both the discrete as well as the continuous
spectra allowing for arbitrary perturbations, so that the early transient and the
asymptotic behavior are captured. Moreover, the inviscid formulation is no longer
dealing with the critical layer concept and the perturbation scheme is, in general,
regular rather than singular.

The continuity and Navier-Stokes equations for perturbations applied to a steady
and incompressible flow can be expressed as

!

V-u = 0 (6.11)
@—FU Vit+d -Vi+i-VU = —Vi+ -~V (6.12)
o — T T T T = PTReV # '

where the underbar denotes a vector quantity. Craik & Criminale (1986) assumed
that the perturbation velocity can be written in the form

ufz,t) = f(zt)u(), (6.13)

so that V-u = u-V f = 0. In this way, for reasonable functions f and @, the non-linear
terms in the Navier-Stokes equations vanish identically as u - Vu = fu - V(fu) =
fi-Vf®u = 0, where ® indicates the tensor product Vf®a = Vf4” . In this special
case, the perturbation system turns out to be linear without requiring disturbances
to be small with respect to the mean flow.
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In general, the hypothesis of travelling wavelike fluctuations (6.13) is not adopted,
since it is too specific as initial condition. Thus, the solution of linearized perturba-
tive equations is consistent if oscillations are small with respect to the mean flow.
Various works are aimed to obtain explicit solutions for small initial perturbations
and reference can be made to Criminale & Drazin (1990). The fundamentals of the
method are, on the one hand, a coordinate transformation that changes the partial
differential equations to ones where the coefficients are at most functions of time
and, on the other hand, the use of piecewise linear functions to model the mean
profiles.

Here, the problem of the inviscid mixing layer (Bun & Criminale 1994) is illus-
trated as a guideline for the initial-value problem formulation. The mean flow is
U = (0y,0,0) and the moving coordinate transformation is defined as

& =1x — oyt, (6.14)

which can be used when the mean profile can be expressed as U; = 0;;(t)x; + UL (¢).
After the Fourier transform is performed in & and z directions for the perturbation
quantities, the Rayleigh and Squire equations in the phase space are, respectively

0
—Av = 0 6.15
at v Y ( )
P
a_ztu = 0singu, (6.16)
where 25 96
AES 8_;; + Qiaata—z — (k* + o*0?t?)0, (6.17)
and, by definition, @, = —iyt + i0w and kw = —vu + aw. The transformation

(6.14) can be thought of as a moving set of coordinate that is changing position
with the mean flow velocity. Due to (6.14), there is neither advection or production
of perturbation vorticity throughout the spatial domain. At the same time, for the
piecewise linear profile assumption the advection of the mean vorticity is only present
in equation (6.16). Far field conditions are satisfied by the boundedness of the
dependent variables in the phase space. In y direction, boundedness is automatically
met in view of the form the equations take, while matching conditions are needed
where the mean velocity changes from one linear variation to another. Equations
(6.15) and (6.16) are written in terms of the velocity components, but are equations
for vorticity, as the following relations w, = tkw and w, = —%A@ hold, where w,
(see §6.2) is the vorticity component in ¢ direction.
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The simplified form of equations (6.15) and (6.16), obtained through the moving
coordinate transformation (6.14) and the use of a piecewise linear profile, allows
exact solutions to be obtained. In general, a vector field can be decomposed into
its solenoidal, rotational and harmonic parts. As the velocity is divergence free,
only the harmonic and the rotational parts remain. In the case of a three section
piecewise linear mean profile, the vorticity is initially imposed in the inner shear
region, while no initial value is given in the non-shear regions, thus the outer flow
is irrotational. The general solution has to remain bounded when y — 400, and is
expressed as

A(t)e Y < =Y
D= B(t)ekyfiaoty + C(t)efkyfiaoty + ,[)R —1o < Y < Yo
D(t)e=*v ()

where the coefficients are only function of time and vy indicates a particular rota-
tional component. The solution is obtained requiring the continuity of v and the
pressure p - which can be expressed through the momentum equations in terms of
0 - at the two locations y = —yy and y = yo where the base flow changes. Among
other results, Bun & Criminale (1994) found that the algebraic growth can lead to
non-linearity before an exponential mode occurs.

In a similar way the piecewise jet and wake (Criminale, Jackson & Lasseigne
1995) and the Couette flow (Criminale, Long & Zhu 1991) are studied in the invis-
cid limit. The results show that the rapid algebraic growth can evolve and three-
dimensionality is not to be neglected. The boundary layer is instead analyze in the
viscous case (Criminale & Drazin 2000) and the solutions, although complicate, are
expressed in explicit form through the method of matched asymptotic expansions.
The main results substantiate, once again, that linear disturbances can grow so
much in the transient as to promote non-linear growth.

6.5 Multiple scales analysis

The approach described above is mainly focused on the determination of explicit
solutions for the initial-value problem, regardless the fact that the mean flow has
discontinuous derivatives. How a continuous mean flow influences the perturbation
dynamics is a question that is still to be answered. To this end, an analytical
means of solving initial-value problems with continuous and parallel mean profiles
is presented. The problem is again described in terms of vorticity and a moving
coordinate transformation simplifies the governing equations in the phase space.
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Moreover, the perturbation scheme results to be regular rather than singular. The
essentials of the method are illustrated for the case of the Blasius boundary layer
(see Lasseigne, Jackson, Joslin & Criminale, 1999).

In the Fourier space, the Orr-Sommerfeld and Squire equations (6.3)-(6.4) are joined
by the following equation

V== — k¥ =TI. (6.18)
Now, for f,f),djy, a transformation of the kind

f\ — 6ikcos(¢)t€—6k‘2tf (619)

holds, where € = 1/Re. This is a special case of the more general moving coordinate
transformation (see §6.4), as all quantities are shifted with the value of the free
stream velocity. The governing equations become

vV =T (6.20)
-

g—z - 82—;; = ikcos(¢)(U — 1)T — ikcos(¢)U"v (6.21)
2—

% - 5aa;y = ikcos(¢)(U — 1), — iksin(¢)U'v (6.22)

When y — oo, the right hand sides of equations (6.21) and (6.22) vanish, as U — 1,
U — 0 and U” — 0. The two equations reduce to the heat diffusion equations in
the free stream and are easily solvable. When ¢ = /2, the system can be explicitly
solved throughout the domain.

In some flow configurations, long waves can be destabilizing (e.g. Blasius bound-
ary layer and 3D cross-flow boundary layer). Results on the stability of 2D and 3D
boundary layers (see, among others, Mack, 1976; Schlichting 1968; Reshotko, 1976;
Reed & Saric, 1989; Saric, Reed & White, 2003) confirm this fact and show that
the perturbation wavenumber k is much less than O(1) when instability occurs. In
fact, large wavenumber values would imply short scales that can be easily damped.
Moreover, Lasseigne et al. (1999) noted that with the more general moving coordi-
nate transformation - which is changing position with the mean flow velocity - the
terms t, kt, k®t? are present in the Laplace operator. All these points suggest that
multiple times and multiple scales can be identified, and & is the ideal parameter to
carry on a regular perturbation scheme. Specifically, two spatial and three temporal
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scales can be identified. Spatially, the scales are y and Y = ky. Temporally, they are
t, 7 = kt and T = k*t. In the inviscid limit, the third temporal scale T is no longer
needed, as it is the asymptotic limit in time for the viscous problem, see (6.19).
The dependent variables T'(y,Y t,7,T; k,0), v(y,Y t,7,T; k,0), ©, (y,Y,t,7,T’; k,¢) should
be now expanded as follows

I = f0+kf1+k2f2+"',
0] Vo + KUy + Ky + -+ -
W, = Wyo+ ko + KDy +-+, (6.23)

with & < 1. Initial conditions at order O(1) are defined as in the full problem,
and at next orders (O(k), O(k?), ---) are equal to zero. Boundary conditions re-
main as stated in the full problem. It is necessary that the series expansions begin
as indicated, so that all variables are at the same order of magnitude. This point
can be noted from relations for w, and wy, and the constraint of incompressibility
that requires the velocity to be divergence free. After the expansions (6.23) are
substituted into equations (6.20)-(6.22) with appropriate initial conditions, the vor-
ticity equations become a series of forced heat equations, while the equation for
the transversal velocity results in a series of equations forced at the outset. At any
order, the resulting equations can be explicitly solved. For the Blasius boundary
layer (see Lasseigne et al. 1999), a comparison between this method and the direct
numerical integration of the linear partial differential equations is presented. The
agreement is good, even to low orders of expansions.
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Chapter 7

Temporal behaviour of small
three-dimensional perturbations
applied to the growing wake

The linear stability of the two-dimensional wake - whose profile is derived in §2.3
- is studied as a three-dimensional initial-value problem through the formulation
presented in the previous chapter. Two main innovative features are introduced
here. First, the mean flow - which is parameterized with respect to the Reynolds
number and the longitudinal coordinate - is approximated through the longitudinal
component of the inner Navier-Stokes expansion (see §2.3), to include the slow spa-
tial evolution of the system in the stability analysis. Then, a complex wavenumber
in streamwise direction is considered when the transformation to the phase space
is performed. The leading equations are no more explicitly solvable, but numerical
means are required. However, most of the general features described in Chapter 6
still hold and can be extended here.

In synthesis, Laplace and Fourier decompositions are performed in streamwise and
spanwise directions, respectively. The perturbation is characterized by real stream-
wise and spanwise wavenumbers, and a uniform or damped spatial distribution along
the longitudinal direction. Amplified streamwise distributions are not considered
since the perturbation kinetic energy is required to be finite. The resulting equa-
tions in the phase space are numerically solved after appropriate initial and boundary
conditions are imposed. In §7.3, an exploration of different transient configurations
will be shown with particular attention to those parameters - such as the angle of
obliquity, the length, the symmetry and the spatial damping rate - which most af-
fect the early growth and the asymptotic fate. In §7.4 the perturbation asymptotic
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states are reproduced and, in the longitudinal case, it can be demonstrated that
the agreement with modal analysis turns out to be good for both symmetric and
asymmetric initial conditions. Concluding remarks are discussed in §7.5.

7.1 Introduction

The two-dimensional wake stability has been widely studied by means of normal
mode analysis (see §4.1). However, as previously stated, in this way only the asymp-
totic fate can be determined, regardless the transient behaviour and the underlying
physical cause of any instability. Recent shear flows studies (Butler & Farrell 1992;
Criminale & Drazin 1990; Criminale et al. 1991) have been showing the impor-
tance of the early time dynamics, which can in principle lead to non-linear growth
long before an exponential mode occurs. The recognition of the existence of an
algebraic growth, due - among other things - to the non-orthogonality of the eigen-
functions (Sommerfeld 1949) and a possible resonance between Orr-Sommerfeld and
Squire solutions (Benney & Gustavsson 1981), recently promoted many contribu-
tions directed to study the early-period dynamics. For fully bounded flows works
by Criminale et al. 1991, Criminale et al. 1997, Gustavsson 1991, Bergstrom 1993,
Schmid & Henningson 1994, Schmid 2007, and for partially bounded flows works by
Lasseigne et al. 1999, Hultgren & Gustavsson 1981, Criminale & Drazin 2000, can
be cited. As for free shear flows, the attention was first aimed to obtain closed-form
solutions to the initial-value inviscid problem (Bun & Criminale 1994; Criminale et
al. 1995) by considering piecewise linear parallel basic flow profiles. Recently, by
means of multiscale approach, explicit solutions have been obtained for continuous
parallel base flow profiles (Blossey, Criminale & Fisher 2007).

The initial-value problem is here extended to include, in the stability analysis, a
more accurate description of the mean flow. In particular, the longitudinal com-
ponent of the Navier-Stokes expansion solutions described in §2.3 is considered, so
that the problem is parameterized on xy - the longitudinal coordinate - and the
Reynolds number Re. The formulation will be carried on similarly to what first
proposed by Criminale & Drazin (1990). Early transient and asymptotic behaviour
are examined for the base flow configurations corresponding to Reynolds numbers
(Re = 50,100) of the order of the critical value for the onset of the first instability,
and for longitudinal sections z( inside the intermediate region of the flow where
the entrainment process is working (see §5.3). Different physical inputs - linked to
the shape, the obliquity, the length and the symmetry of the perturbation - which
most influence the subsequent temporal evolution are presented. In the initial-value
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problem formulation, the introduction of a complex wavenumber in the streamwise
direction is an innovative feature suggested by the combined spatio-temporal modal
stability analysis. The imaginary part of the complex longitudinal wavenumber,
which determines the longitudinal evolution of the perturbing wave, plays an im-
portant role in the whole temporal evolution of the perturbation. In fact, varying
the order of magnitude of this parameter leads to actually different temporal trends.
A longitudinal asymptotic comparison with modal results - carried out considering
arbitrary initial conditions and not waves related to the most unstable mode - is
made. It can be demonstrated that the agreement is good for both the frequency as
well as the temporal growth rate.

7.2 The initial-value problem

7.2.1 Formulation

The first orders (n = 0,1,2) of the inner longitudinal component velocity field are
taken as a first approximation of the base flow. The analytical expression is reported
below for convenience

U(y;zo,Re) =1 — aC’lxal/Qe 4 x0 — %X&le 4 xo

Rey?
11 2 T
w oy (“LL Bey ) gy VrRe v (vRe Y ) Loy
2°2 4$0 2 v/ X0 2 v/ X0

By changing the longitudinal coordinate xy, which plays the role of parameter to-
gether with the Reynolds number, the base flow profile (7.1) will locally approximate
the behaviour of the actual wake generated by the body. The wake sections taken
into account are in the interval 3 < z, < 50. Base flow configurations corresponding
to a Re of 50,100 are considered. In figure 7.1 a representation of the wake profile
at differing longitudinal stations is shown.

The continuity and Navier-Stokes equations - describing the system perturbed
with small disturbances - are linearized and expressed as

Ju Jv OJOw
S 2
ox + oy + 0z 0 (72)
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- --Re=50
——Re =100

x0=5 x0=10 x0=15

Figure 7.1. Wake profile U(y; xo,Re) at different longitudinal stations xy and for
different Reynolds numbers.
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where (u(x,y,2,t), v(x,y,z,t), w(x,y,zt)) and p(z,y,z,t) are the perturbation velocity
and pressure respectively. introduced. The independent spatial variables z and y are
defined from —oo to +00, = from 0 to +o00. All physical quantities are normalized
with respect to the free stream velocity, the spatial scale of the flow D and the
density. By combining equations (7.3)-(7.5) to eliminate the pressure terms, the
linearized equations describing the perturbation dynamics become
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0 d o WU 1,
0 o .  0vdU 1,
(& + U%)wy + &d—y = EV Wy (77)

where w, is the transversal component of the perturbation vorticity. The physical
quantity I" is defined as
Vo =T (7.8)

In so doing, the three coupled equations (7.6), (7.7) and (7.8) describe the perturbed
system. Equations (7.6) and (7.7) are the Orr-Sommerfeld and Squire equations
respectively, known from the classical linear stability analysis for three-dimensional
disturbances and written in partial differential equation form. From kinematics, the
relation

~ Ow, Ow,

F —

~ Ox 0z
physically links together the perturbation vorticity in the x and z directions (&, and

(7.9)

w,, respectively) and the perturbation velocity field. If equations (7.6) and (7.8) are
combined together, the following equation is valid

or or WU 1

o U0 oy Re
which, together with (7.7) and (7.8), fully describes the perturbed system in terms of
vorticity. This formulation is not that common in linear stability analysis, although

V2T (7.10)

the dynamics description is physically more appropriate in terms of vorticity than
velocity. For piecewise linear profiles it turned out to be useful in obtaining analytical
solutions (see §6.4). For continuous profiles, the governing perturbative equations
cannot be analytically solved in general, but they assume a reduced form in the free
stream (Blossey et al. 2007). Equations (7.7), (7.8) and (7.10) show that the only
cause of any perturbation vorticity production is the interaction between the mean

vorticity in z-direction (2, = —dU/dy) and the perturbation strain rates in x and
z directions (22 and 22, respectively).

7.2.2 Laplace-Fourier transforms

The perturbations are Laplace and Fourier decomposed in the x and z directions,
respectively. A complex wavenumber o = v, + icy; along the z coordinate, as well
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as, a real wavenumber 7 along the z coordinate are introduced. In order to have
a finite perturbation kinetic energy, the imaginary part «; of the complex longitu-
dinal wavenumber can only assume non-negative values. In so doing, perturbative
waves can spatially decay (a; > 0) or remain constant in amplitude (a; = 0). The

perturbation quantities (v,I',&0,) involved in the system dynamics are now indicated
as (0,I',w,), where

+oo +o0
it ay) = / / 509,20 drdz (7.11)
—00 0

indicates the Laplace-Fourier transform of a general dependent variable in the o —
phase space and in the remaining independent variables y and ¢t. The governing
partial differential equations are

82@ 2 2 . A -
o (k* — aj + 2ikcos(¢p)a;)o =T (7.12)
or . N U .
Friniie (ikcos(p) — a;)UT + (ikcos(¢) — ozi)d—ygv
o
+ é[g—;; — (k* — a + 2ikcos(¢)a;)T] (7.13)
Oy . o au .
5 = (ikcos(¢) — a;)Uwy, — zkszn(¢)d—yv
1 0%, 9 2. .
+ E[ o7 (k* — o + 2ikcos(¢p)a;)wy] (7.14)

where ¢ = tan~'(vy/a,) is the perturbation angle of obliquity with respect to the
x-y physical plane, k£ = \/m is the polar wavenumber and «, = kcos(¢),
v = ksin(¢) are the wavenumbers in z and z directions respectively. The imaginary
part «; of the complex longitudinal wavenumber is a spatial damping rate in stream-
wise direction. In figure 7.2 the three-dimensional perturbative geometry scheme is
shown.

From equations (7.12)-(7.14), it can be noted that there can’t be either advection
or production of vorticity in the free stream. Vorticity can only be diffused as just
the diffusive terms remain when y — oo. Perturbation vorticity vanishes in the
free stream, regardless if it is initially inserted there (if inserted, vorticity is finally
dissipated in time when y — o0). This means that the velocity field is harmonic if
Yy — 00.
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can be shaped in terms of set of functions in the L? Hilbert space, as
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temporal linear stability analysis that is a quite standard procedure for normal mode
[ =

The introduction, through the Laplace decomposition in z-direction, of a complex
theory, but is not that common for initial-value problems. Both transient behaviour
and asymptotic fate of the disturbances will be discussed in the following considering
conditions to be solved. Among all solutions, those whose perturbation velocity
field is zero in the free stream are sought. Periodic initial conditions for

wavenumber « is an innovative feature,

the resulting influence of this new characteristic.
7.2.3 Initial and boundary condit
Governing equations (7.12), (7.13
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5(0,y) = e~ cos(ng(y — o)),  case A

and

0(0,y) = e~ sin(ng(y — yo)),  case B

for the symmetric and the asymmetric perturbations, respectively. Parameter ng
is an oscillatory parameter for the shape function, while yy is a parameter which
controls the distribution of the perturbation along y (by moving away or bringing
nearer the perturbation maxima from the axis of the wake). In Fig. 7.3, the above
initial conditions are shown, in terms of ©(0,y), for different values of ng.

1f n | (b) |

<O

Figure 7.3. (a) Symmetric and (b) asymmetric initial conditions with
yo = 0 and ng = 1,5.

The transversal vorticity w, is chosen initially equal to zero throughout the y domain,
to directly observe which is the net contribution of three-dimensionality on the
transversal vorticity temporal evolution. Otherwise, non-zero initial conditions for
the transversal vorticity

Wy = i(ya— aw), (7.16)

can be shaped in terms of set of functions in the L? Hilbert space, and one of the
following conditions can be adopted

CASE I : 0(0,y) = e~ @9 sin(ng(y — yo)), @(0,y) = e~ sin(ng(y — wo)),
W(0,y) = e~ %) sin(ng(y — yo));
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CASE 11 : 9(0,y) = e~#%)cos(ng(y — o)), @(0,y) = e~ @~ sin(no(y — yo)),
W(0,y) = e~ sin(ng(y — yo));

CASE III : 9(0,y) = e~ ¥ sin(no(y — y0)), @(0,y) = e~ ¥4 cos(no(y — vo)),
W(0,y) = e~ cos(ng(y — yo));
CASE 1V : 9(0,y) = e~ %) cos(no(y — 10)), @(0,y) = e~ ¥4 cos(no(y — o)),
W(0,y) = e~ @) cos(ng(y — yo));

Results will later show how the initial introduction of normal vorticity can influence
the evolution of disturbances.
The trigonometrical system is a Schauder basis in each space L?[0,1], for 1 < p < 0.
More specifically, the system (1,sin(noy),cos(noy),...), where ng = 1,2,..., is a
Schauder basis for the space of square-integrable periodic functions with period 2.
This means that any element of the space L?, where the dependent variables are
defined, can be written as an infinite linear combination of the elements of the basis.
Once initial and boundary conditions are properly set, the partial differential
equations (7.12)-(7.14) are numerically solved by method of lines on a spatial finite
domain [—ys, + ys]. The value y; is chosen so that the numerical solutions are
insensitive to further extensions of the computational domain size. Here, y; is of
the order of magnitude 10!. The spatial derivatives are centre differenced and the
resulting system is then integrated in time by an adaptative multi-step method
(variable order Adams-Bashforth-Moulton PECE solver).

7.3 Transient dynamics of the perturbations

In general, one of the salient aspects of the initial-value problem is to observe the
early transient evolution of various initial conditions. To this end, a measure of
the perturbation growth can be defined in the phase space through the disturbance
kinetic energy density

1 [T .12 12 ~12
e(tiay) = 5 (la]” + [o° + |@[")dy

2 ur
11 s 9% ) )
- §—|a2+72|/ (|a_y’2+|oz2-|—72||v|2+|wy|2)dy, (7.17)
,yf

The total kinetic energy can be obtained by integrating the energy density over all
« and ~. The normalized amplification factor G(t) can be introduced
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G(t;ay) = %. (7.18)

This quantity can effectively measure the growth of a disturbance of wavenumbers
(c,y) at the time ¢, for a given initial condition at ¢ = 0 (Criminale et al. 1997,
Lasseigne et al. 1999). The temporal growth rate r is defined as

logle(t; ov,y)|

2t ’
and is introduced to evaluate both the early transient as well as the asymptotic
behaviour of the perturbation. It can be noted that r is not defined for t = 0. This

r(t; ayy) = t>0 (7.19)

quantity has a precise physical meaning asymptotically in time.

In the following, a summary of significant transients for three-dimensional per-
turbations is presented. The results are all concerning the intermediate asymptotic
region of the wake, which is where the spatial evolution is mainly taking place.
This region can be considered of an extension equal to the distance from the body
where the entrainment process is becoming negligibly small. For laminar steady 2D
wakes this length turns out to be of the order of Re (see §5.3). In particular, the
polar wavenumber k changes in a range of values reaching at maximum the order of
magnitude O(1), according to what suggested by recent modal analyses (Tordella,
Scarsoglio & Belan, 2006; Belan & Tordella, 2006). The order of magnitude of the
spatial damping rate a; can vary around the polar wavenumber value.

First, a configuration with initial non-zero normal vorticity is considered. Figure
7.4 displays that initial vorticity w, does not actually influence the perturbation
evolution. Amplification factors in cases (II) and (IV) almost coincide with the one
of the case with symmetric transversal velocity and zero initial vorticity (case A).
A similar behaviour is shown by the amplification factors of cases (I) and (III),
which are very close to the one of the case with asymmetric transversal velocity and
zero initial vorticity (case B). Analogous agreements can be obtained with different
values of parameters. This means that the contribution of the transversal vorticity
to the global energy growth G is basically all due to the three-dimensionality of the
imposed disturbance. This fact is true in the case where the disturbance is weakly
inclined with respect to the base flow plane (¢ = 7/8), and is even more evident
for larger values of the obliquity angle. The transversal vorticity is immediately
generated when ¢ # 0, regardless the choice of the initial conditions. According to
this result, normal vorticity will be initially taken equal to zero in the following.

Figure 7.5 yields differing examples of early transient periods and the corresponding
temporal growth rates r when the obliquity angle ¢ is varied. A growing wave
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Figure 7.4. The amplification factor G as function of time. Re = 100,
=03, a, =01, 60 =1,y =0, ¢ = w/8, xg = 8.50, differing initial
conditions (cases A, B, I, II, III, IV).

becomes damped when the obliquity angle is larger than 3/87. For transversal
waves with ¢ > 3/8m, a low maximum of energy (G ~ 7) is reached before the
perturbations are asymptotically damped.

Figure 7.6 shows that, for an unstable configuration occurring for a purely three-
dimensional disturbance, the amplification is only delayed in time for higher values
of ng (a logarithmic scale is used on the ordinate in Fig. 7.6a). This means that, in
the temporal asymptotic limit, the effect of a perturbation oscillating many times
across the basic flow is as destabilizing as the effect of a single spatially fluctuating
wave. On the contrary, transients are actually affected by the spatial frequency of
oscillations. By increasing ng, the temporal trend of G is no more monotone but
initial decreases of energy - lasting up to 15 time scales - are present before the
asymptotic unstable states are reached.

Other examples of early transient periods and corresponding temporal growth rates
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Figure 7.5.
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Effect of the obliquity angle (¢). (a) The amplification factor G and

(b) the temporal growth rate r as function of time. Re = 100, k = 1.5, o; = 0.01,
no =1, yo = 0, xo = 14, symmetric initial condition, ¢ = 0,7/8,7/4,(3/8)m,7 /2.
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r are shown in Figures 7.7 to 7.11.

5

Figure 7.6.
amplification factor G and (b) the temporal growth rate r as function of time.
Re =50, k=0.9, a; =0.15, ¢ = 7/2, yo = 0, zp = 14.00, asymmetric initial
condition, ng = 1,3,5,7.
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Effect of the shape function oscillatory parameter (ng). (a) The

Fig. 7.7 displays that almost purely three-

dimensional perturbations are all asymptotically stable when varying their wavenum-

bers k. But before the asymptotic states, they all show maxima of energy in the

transients. Increasing k, the growth rate of the transient seems to tend to a limiting
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value (see solid line in the figure 7.7a). The maximum growth is obtained for k ~ 1
and reaches a value G ~ 6.

6

20 40 60 80 100

Figure 7.7. Effect of the wavenumber k. (a) The amplification factor G and (b)
the temporal growth rate r as function of time. Re = 100, o; = 0.01, ng = 1,
¢ =3/8m, yo = 0, ¢ = 6.50, asymmetric initial condition, k£ = 0.5,1,1.5,2,2.5.

In Fig. 7.8 an interesting phenomenon is observed for a purely three-dimensional
wave. It can be seen that, by increasing the order of magnitude of «;, perturbations
that are more rapidly damped in space lead to a faster growth in time (a logarithmic
scale is used on the ordinate in Fig. 7.8a). Moreover, uniform («; = 0) and slowly
damped perturbations in streamwise direction are asymptotically damped in time,
while for increasing values of the spatial damping rate the disturbances are deeply
amplified in time.
In Figure 7.9, the influence of y, (the position where the concentration of the pertur-
bation energy is maximum) on the perturbation evolution is considered. In asymp-
totically stable cases (a)—(b), the damping is more rapid and the maxima of energy
disappear for larger yo values. In asymptotically unstable cases (¢)—(d), an increase
of yo leads to a delay of the perturbation amplification, and minima of energy are
present before the asymptotic growths are reached (note that in part (c) of Fig.
7.9 a logarithmic scale was used on the ordinate). This means that if most of the
perturbation energy is outside the base flow region, for an unstable configuration
the growth is delayed in time, while for a stable configuration the decrease of energy
is accelerated and the asymptotic state is reached earlier.

Figure 7.10 takes into account the influence, on the early time behaviour, of the
perturbation symmetry and of the wake region considered in the analysis, which is
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Figure 7.8. Effects linked to the presence of the imaginary part in the wavenumber
a. (a) The amplification factor G and (b) the temporal growth rate r as function
of time. Re =50, k =12, n9 =1, ¢ =x/2, yo = 0, zy = 14.50, symmetric initial
condition, «; = 0,0.01,0.05,0.1.

represented by the parameter zy. All the configurations considered are asymptoti-
cally amplified, but the transients are different. The asymmetric cases (a) present,
for both the intermediate position xy = 10 (solid curve) and the far field position
xo = 50 (dashed curve), two temporal evolutions. For zy = 10 a local maximum,
followed by a minimum, is visible in the energy density, then the perturbation is
slowly amplifying and the transient can be considered extinguished only after hun-
dreds of time scales. For xy = 50 these features are less marked. It can be noted
that the far field configuration (xy = 50) has a faster growth than the intermediate
field configuration (zo = 10) up to ¢t = 400. However, in the asymptotic state the
growth is comparable. In the symmetric cases (b) the growths become monotone
after few time scales (¢ = 20) and the perturbations quickly reach their asymptotic
states (around ¢t = 50). The intermediate field configuration (zo = 10, solid curve)
is always growing faster than the far field configuration (xy = 50, dashed curve).
This particular case shows a behaviour that is generally observed in this analysis,
that is, asymmetric conditions lead to transient evolutions that last longer than the
corresponding symmetric ones, and demonstrates that the transient growth for a
longitudinal station in the far wake can be faster than in the intermediate wake.

However, the more noticeable results presented in Fig. 7.10 are that the asym-
metric growths in the early transient are much less rapid than the symmetric ones
and that the function G, in the case of asymmetric perturbations only, clearly shows
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Figure 7.9. Effect of the shape function parameter yy. (a)-(c) The amplifi-
cation factor G and (b)-(d) the temporal growth rate r. Re =100, k = 1.2,
a; = 0.01, ng = 1, x = 12, symmetric initial condition, yg = 0,2,4,6. (a)-(b):
¢p=m/2. (c)-(d): ¢ =0.

a modulation which is very evident in the first part of the transient, and which cor-
responds to a modulation in amplitude of the pulsation of the instability wave, see
for example results for the asymmetric case in Fig. 7.13(b). In the early transient
the angular frequency oscillates around a mean value with a regular period, which is
the same visible on G, the square norm of the velocity oscillation, and an amplitude
which is growing until this value jumps to a new value around which oscillates in a
damped way. This second value is the asymptotic constant value. This behaviour is
always observed in the case of asymmetric longitudinal or oblique instability waves.
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Figure 7.10. Effect of the symmetry of the perturbation. (a) - (b): The amplifica-
tion factor G as function of time. (a) asymmetric initial condition, (b) symmetric
initial condition. Re = 100, £k = 0.6, o; = 0.02, ng = 1, yo = 0, x9p = 11 and
50, ¢ = m/4. Intermediate (zg = 11, solid curves) and far field (z9 = 50, dashed
curves) wake configurations. The periods Tinser,Tfqr are those of the modulation
visible on G, in the intermediate and far field, respectively.

Instead, it is not shown by transversal (¢ = 7/2) waves or by symmetric waves
where, on the one hand, the asymptotic value is rapidly reached after a short mono-
tone growth and, on the other, the growth is many order of magnitude faster, and as
a consequence, a modulation would not be easily observable. Thus, two time scales
are observed in the transient and long term behaviour of longitudinal and oblique
perturbations: namely, the periodicity associated to the average value of the pulsa-
tion in the early transient, clearly visible in the asymmetric case only, and the final
asymptotic pulsation. The asymptotic value of the pulsation is usually higher than
the initial one.

Figure 7.11 illustrates a very interesting comparison between two-dimensional and
three-dimensional waves (a logarithmic scale on the ordinate is used in part (a) of
Fig. 7.11). The purely two-dimensional wave (solid curve) is immediately reaching
a low maximum of amplitude (at about ¢t = 15), then the perturbation decreases
while oscillating and reaches an absolute minimum around ¢t = 150. Afterwards,
the disturbance slowly grows up to about ¢ = 300, where an inflection point of the
amplification factor GG occurs. Then, the growth becomes faster and the perturbation
is strongly amplified in time. The purely three-dimensional perturbation (dashed
curve) is instead immediately amplified following a monotone trend, and does not
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Figure 7.11. Effect of the angle of obliquity ¢. (a) The amplification factor G
and (b) the temporal growth rate r as function of time. Re = 100, k = 0.7,
no =1, a; = 0.02, yp = 0, zp = 11.50, asymmetric initial condition, ¢ = 0 (solid
curves), ¢ = m/2 (dashed curves).

present fluctuations in time. The initial growth is actually rapid and an inflection
point of the amplification factor G can be found around ¢ = 50. Beyond this point,
the growth changes its velocity and becomes slower, but still destabilizing. Both
cases have asymmetric initial conditions and are ultimately amplified. The two-
dimensional case turns out to be more unstable than the three-dimensional one, as
the 2D asymptotically established exponential growth is more rapid than the 3D
one (see solid and dashed curves in Fig. 7.11(a) for ¢ > 400). However, it should
be noted that for a quite extended part of the transient (up to about ¢ = 380), the
three-dimensional perturbation presents a larger growth than the two-dimensional
one. Moreover, both the transients are lasting hundred time scales, a fact that is in
agreement with what previously stated for asymmetric inputs. This configuration
presents a 3D rapid growth, a condition that could in principle lead to by-pass
transition. However, in this case, the early 3D amplification is slower than the 2D
asymptotic growth (compare thick line and solid curve beyond ¢ > 400, in Fig.
7.11(a)), thus the lift-up mechanism cannot occur.

As a general comment, a long-term unstable behaviour (see Figures 7.6 and 7.11)
as well as initial transient growth followed by asymptotic damping (see Fig. 7.9) is
shown for viscous transversal waves (¢ = 7/2). Unstable final behaviour for purely
transversal waves was instead always observed in inviscid stability analysis carried
out with the present initial-value problem formulation (see Blossey et al. 2007)
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in the two-dimensional parallel jet and mixing layer. An initial transient growth,
followed by a non permanent decay, is also displayed by two-dimensional waves (see
Fig. 7.11). Longitudinal waves, however, have in general a monotone increasing or
decrasing behaviour, and sometimes show a minimum of energy before an ultimate
growth. A two-dimensional perturbation is usually reaching its (stable or unstable)
asymptotic state faster than oblique waves, when the other parameters are fixed (see
an example in figure 7.12, §7.4).

7.4 Asymptotic behaviour and comparison with

normal mode analysis

Computations to evaluate the long time asymptotics are made by integrating the
equations forward in time beyond the transient (Criminale et al. 1997; Lasseigne et
al. 1999) until the temporal growth rate r, defined in relation (7.19), asymptotes to
a constant value (dr/dt < €). The choice of the threshold € can offer a quantitative
support of when the transient can be considered extinguished. In Fig. 7.12; the
temporal growth rates of three configurations with different angles of obliquity are
shown. The open circles indicate when r can be approximated as a constant value,
according to the above criterium (e ~ 107%). These results demonstrate that, as
stated before, an increase of the angle of obliquity implies transients that last longer.

The angular frequency (pulsation) f of the perturbation can be defined consid-
ering the phase ¢ of the complex wave at a fixed transversal station (for example

y=1)

@z(y = 17t7 avfy) )

t; = o(y = 1,t; = tan™" 7.20
p(t;ay) = arg(d(y = Lt; 7)) = tan (ﬁr(y I (7.20)
and then computing the time derivative of the phase perturbation ¢
de(t; ay
ftany) = | 5 ) (7.21)

Although defined at any time ¢, the frequency f is here referred to as an asymptotic
property of the perturbation. Since defined through the perturbation velocity field,
it is reasonable expecting constant values of frequency, once the asymptotic state
is reached. Moreover, it can be observed that the temporal scale over which the
pulsation asymptotes to a constant value is, at maximum, as long as the scale of the
extinguishing transient, according to the criterium dr/dt < € (see for example Fig.
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Figure 7.12. Temporal growth rate r as function of time (continuous curves) and
temporal length of the transient (open circles) according to the criterium dr/dt < e,
with e ~ 107, Re =100, k = 1.2, a; = 0.05, ng = 1, yo = 0, 29 = 10.50, symmetric
initial condition, ¢ = 0,7/4,7/2.

7.13). This means that, beyond the time for which dr/dt < e is becoming valid,
both temporal growth rate and frequency are reaching their asymptotic values.

In Fig. 7.13, the complete evolution in time of the temporal growth rate and the
frequency, for symmetric and asymmetric initial conditions, is shown for a particular
configuration (kK = 0.5, a; = 0.02, zp = 10, ¢ = 0, Re = 100). These results
verify that the transient is lasting longer for asymmetric inputs rather than for the
symmetric ones (see Fig. 7.10), as can be seen by symbols indicating when the
asymptotic state is reached. In this case, according to the criterium dr/dt < e
with € ~ 107, the asymptotic state can be considered as reached beyond t = 90
for symmetric inputs, and beyond ¢ = 600 for asymmetric inputs. In general, for
asymmetric perturbations the transient is extinguished after a time scale ¢t ~ 102,
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Figure 7.13. (a) Temporal growth rate and (b) angular frequency as function of
time for symmetric (dashed curves) and asymmetric (solid curves) initial conditions,
and temporal length of the transient (circles: symmetric perturbation, triangles:
asymmetric perturbation) according to the criterium dr/dt < e. Re = 100, xg = 10,
k=05 0,=002 ¢=0,1y0=0,n9=1, e~ 1074

while for symmetric disturbances the transient time scale is ¢ ~ 10. Moreover, as
previously said, the frequency asymptotes to a constant value after a time, at most,
equal to the one of the extinguishing transient. Here, this fact is confirmed for both
symmetric and asymmetric disturbances, as the frequency reaches its asymptotic
value just before the transient can be thought of as concluded (see symbols in Fig.
7.13(b) indicating the length of the transient, according to the criterium dr/dt < ¢).
It should be noted that, for the asymmetric case, frequency f and temporal growth
rate r rapidly oscillate around a mean value in the transient up to ¢ = 500 and
then reach their asymptotic states, while in the symmetric case a monotone trend
is observed for both frequency and temporal growth rate before the final states are
reached.

Figure 7.14 presents a longitudinal comparison between the initial-value problem
and the asymptotic theory results represented by the zero order Orr-Sommerfeld
problem in terms of temporal growth rate » and pulsation f.

In fig. 7.14 the imaginary part «; of the complex longitudinal wavenumber is fixed,
and differing polar wavenumbers (k = «,.) are considered. For both the symmetric
and asymmetric arbitrary disturbances here considered, a good agreement with the
stability characteristics given by the multiscale near-parallel Orr-Sommerfeld theory
can be observed. However, it should be noted that the wavenumber corresponding
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Figure 7.14. ng=1,y0=0, ¢ =0, e ~ 107%. (a) Temporal growth rate and (b)
pulsation. Comparison among the asymptotic results obtained by the initial-value
problem analysis (circles: symmetric perturbation; triangles: asymmetric pertur-
bation), normal mode analysis (solid curves), and experimental data (Williamson
1989, thick line in (a) and square in (b)). a; = 0.05, zo = 11, Re = 50.

to the maximum growth factor in the case of asymmetric perturbations is about
15% lower than the one obtained in the case of symmetric perturbations and the
one obtained by the normal mode analysis. When the perturbations are asymmetric,
the transient is very long, of the order of hundreds time scales. This difference can be
due either to the fact that the true asymptote is not yet reached, or to the fact that
the extent of the numerical errors in the integration of the equations is higher than
that obtained in the case of symmetric transients, which last only a few dozen time
scales. Note that this satisfactory agreement is observed by using arbitrary initial
conditions in terms of elements of the trigonometrical Schauder basis for the L?
space, and not by considering as initial condition the most unstable waves given by
the Orr-Sommerfeld dispersion relation. Moreover, a maximum of the perturbation
energy (in terms of r) is found around k£ = 0.8 and confirmed by both the analyses.

As shown in Fig. 7.14, initial-value problem results are also contrasted with the
laboratory experimental results obtained in 1989 by Williamson, who gave a quanti-
tative determination of the Strouhal number and wavelength of the vortex shedding
— oblique and parallel modes — of a circular cylinder at low Reynolds number. The
comparison is quantitatively good, because it shows that a wavenumber close to the
wavenumber that theoretically has the maximum growth rate at Re = 50 (see part
(a) of Fig. 7.14) has a — theoretically deduced — frequency which is very close to
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the frequency measured in the laboratory. At this point, also the laboratory exper-
imental uncertainty, globally of the order of a +10% in an accurate measurement
set up, should be introduced. The uncertainty associated to the laboratory method
and to the theoretical model (estimated through the difference between the position
of the maximum growth rate showed by the two cases of asymmetric and symmetric
perturbation) overlaps, which confirms the quality of this comparison. The same
quantitative agreement is observed also at Re = 100.

7.5 Concluding remarks

The three-dimensional stability analysis of the intermediate asymptotics of the two-
dimensional viscous growing wake has been considered as an initial-value problem.
The vorticity formulation is analogous to the one first proposed by Criminale &
Drazin (1990). The perturbative equations are Laplace-Fourier transformed in the
plane normal to the base flow. Differently to what usually done, a complex wavenum-
ber in the streamwise direction has been introduced, by means of a spatial Laplace
transform in streamwise direction.

An important point is the kind of base flow used in the formulation. Since the
longitudinal component of the Navier-Stokes matched asymptotic expansion is only
considered, the initial-value problem becomes a near parallel analysis parameterized
on the streamwise variable, which makes this study similar to a zero order multiscale
near-parallel Orr-Sommerfeld analysis. The use of a parameterized base flow can
be thought of as a first step to better describe the spatial evolution of the physical
system. In this regard, the introduction of the imaginary part of the longitudinal
wavenumber (the spatial damping rate) was done to explicitly include also in the
structure of the perturbation, which otherwise would have been homogeneous in the
x coordinate, a degree of freedom associated to the spatial evolution of the system.

Various transient scenarios have been observed in the region of the wake where
the entrainment is present for Re 50,100. For example, initial damping followed by
a fast growth for perturbations aligned with the basic flow, initial transient growths
that smoothly level off and are followed either by an ultimate damping or by a slow
amplification for oblique waves. As a general and summarizing comment, it can be
concluded that the most important parameters affecting these configurations are the
angle of obliquity, the symmetry of the perturbation and the spatial growth rate.
While the symmetry of the disturbance is remarkably influencing the transient be-
haviour leaving inalterate the asymptotic fate, a variation of the obliquity and the
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spatial growth rate can significantly change both the early trend and the final sta-
bility configuration. The number of oscillations and the distribution in y direction
were also considered. However, their effect is only to extend or shorten the length of
the transient, while the ultimate state is not different. More specifically, if the per-
turbation oscillates rapidly or lies mainly outside the shear region then, for a stable
configuration, the final damping is accelerated while, for an unstable configuration,
the asymptotic growth is delayed. The asymptotic fate of purely transversal viscous
waves can show a long-term unstable behaviour as well as initial transient growth
followed by asymptotic damping. On the contrary, a weak final growth is generally
observed for inviscid transversal waves in 2D parallel jets and mixing layers studied
with the same initial-value problem formulation.

For disturbances aligned with the flow, it has been demonstrated that the asymp-
totic behaviour is in good agreement with the zero order results of spatio-temporal
multiscale modal analyses. It should be noted that this agreement is obtained not
using as initial condition the most unstable wave given by the Orr-Sommerfeld dis-
persion relation at any section of the wake, but arbitrary initial conditions in terms
of elements of the trigonometrical Schauder basis for the L? space.
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Chapter 8

Multiple scales analysis for the
stability of long waves in
near-parallel flows

In this chapter, the three-dimensional stability analysis of long waves applied to the
two-dimensional wake is studied as an initial-value problem by means of a multi-
ple scales approach. Since different scales can be identified in the stability analysis
of spatially developing flows, the polar wavenumber can be considered a small pa-
rameter for a perturbative analysis in the limit of long waves. Indeed, there are
some flow configurations for which long waves are destabilizing (for example Blasius
boundary layer and three-dimensional cross flow boundary layer). In such instances,
wavenumber of the unstable wave is much less than O(1).

The initial-value problem formulation is carried on in terms of velocity and vorticity,
similarly to what first proposed by Criminale & Drazin (1990), but considering
now a non-parallel base flow (see §8.1.1). The base flow is, in fact, approximated
using both the longitudinal as well as the transversal components of the asymptotic
Navier-Stokes expansions (see §2.3), so that non-parallelism is directly inserted in the
stability analysis. A regular perturbation expansion for £ — 0 is defined in §8.1.2.
The introduction of a complex wavenumber in streamwise direction, considered when
the transformation to the phase space is performed, makes the equations solvable
at any order. A combined Laplace-Fourier transform in the x and z directions is
proposed in order to consider a perturbation characterized by real streamwise and
spanwise wavenumbers, and a uniform or damped spatial longitudinal distribution.
Growing streamwise distributions are not allowed, as the perturation kinetic energy
has to remain finite. Perturbative equations are presented and discussed up to
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order O(k). Results concerning the perturbation temporal evolution are presented in
§8.2. Comparisons between multiscaling O(1) and full problem solutions in the early
transient show a good agreement in differing physical configurations (see §8.2.1).
An asymptotic comparison between multiscale data and full problem results can
be made. It can be demonstrated that the agreement turns out to be very good.
Conclusive comments are given in §8.3.

The recognition of some free shear flows as systems which slowly evolve with
respect to small unsteady perturbations allows the use of asymptotic methods (see
Bender & Orszag, 1978) to study their stability.

In literature, the WKBJ method has been usually adopted, defining as small param-
eter the inverse of the Reynolds number, ¢ = 1/Re (see for example Bouthier, 1973;
Belan & Tordella, 2006; Tordella, Scarsoglio & Belan, 2006). In this way, the per-
turbative method is based on the base flow parameter characterizing its streamwise
evolution. However, it should be noted that an asymptotic perturbative expansion
based on the inverse of the Reynolds number leads to a singular perturbation anal-
ysis, as in the Orr-Sommerfeld equation the highest order term is vanishing for e
values going to zero.

Here, instead, the definition of the polar wavenumber k as small parameter of the
perturbation approach (see Lasseigne et al., 1999; Blossey, Criminale & Fisher,
2007) leads to a regular perturbation scheme. The use of a perturbation Laplace
decomposition in streamwise direction (Scarsoglio, Tordella & Criminale 2007) yields
solvable equations at any order. The validity of the multiscale approach is here
analyzed in the case of the two-dimensional wake.

8.1 The initial-value problem by means of multi-
scale approach

8.1.1 Formulation

The inner solution, that includes both the longitudinal and the transversal com-
ponents of the asymptotic Navier-Stokes expansions up to O(z~%/2) (see §2.3), is
considered to approximate the wake profile. In this way, the transversal non-linear
and diffusive dynamics of the base flow is directly introduced into the initial-value
problem formulation. The base flow is not parameterized with respect to the lon-
gitudinal coordinate only (see §7.2.1 and Scarsoglio et al. 2007), but a further
improvement concerning the base flow spatial evolution is made. In fact, the two
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velocity components are both explicit functions of x and y. As a consequence, the
non-parallelism is fully included and its influence on the perturbation evolution can
be considered.

The continuity and Navier-Stokes equations for the perturbed system are lin-
earized with respect to small three-dimensional oscillations

ou Jdv Ow
D T, 1
ox * Jy * 0z 0 (8.1)

— 4 U+t U—+1—+V—+—=—=—V (8.2)

v oV v oV dv  Op 1 oo
(9t+u8:c+U81:+1)8y+v8y+8y_ﬂ’evv (8.3)

— 4+ U—4+V—+=—=—V0 (8.4)

where (u(x,y,z,t), v(x,y,z,t), w(x,y,zt)) and p(z,y,z,t) are the perturbation velocity
and pressure respectively. The independent spatial variables z and y are defined
from —oo to +o0, z from 0 to +oo. All physical quantities are normalized with
respect to the free stream velocity, the spatial scale of the flow D and the density.
By combining momentum equations (8.2)-(8.4) to eliminate the pressure terms, the
resulting governing equations become

V% = T, (8.5)
or 0 0 1 o= 00,0 0*Q,._ 09,0 00,
el 2 T — Z _ il
ot [U(?x + V@y ReV ] [ oxr Ox * 0x? Ja -1 Jy Ox * 8x8y]v +

0000 | OVOD, OVOT, 0UO VO 56
Or 9z Oy 0z Ox 0z or 0x  Ox Oy '
Ow, 0 o oU 1 25 ou ov  IdV ow

= U4V 4+ - VD (8.7)

ot oz oy T or Re' T g0z oz oy

where the perturbation vorticity (&,,w,,w,), the mean vorticity in spanwise direc-
oV oU ~  Ow, Jw,

tion 2, = % oy and the kinematics relation I' =
x Yy x z

included. Equations (8.6) and (8.7) are the Orr-Sommerfeld and Squire equations
respectively, written in partial differential equation form and expressed through dif-

have already been

ferent dependent variables. Since 7 scalar unknown quantities (4,0,w,W,,Wy,Wy,1)
are involved in the three scalar equations (8.5)-(8.7), four more scalar relations are
needed. Thus, the perturbation vorticity definition and the continuity equation
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G = Vi (8.8)
V- E 07
where w = (W,,wy,w,) and u = (u,v,w), formally close the perturbative system

(8.5)-(8.7). From equations (8.5)-(8.7), it can be noted that perturbation vorticity
vanishes in the free stream.

A combined spatial Laplace-Fourier decomposition in the z-z plane is now performed
for every dependent variable. The transformed perturbation quantities @,Q,f) are
now called (4,w,I'). A general function

+oo +o0
ytan) = / / Gz t)e o dudz (8.10)
—00 0

indicates the Laplace-Fourier transform of a dependent variable in the ot — « phase
space and in the remaining independent variables y and ¢. In general « is complex
(v = . + i), while v is real. In order to have a finite perturbation kinetic energy,
the imaginary part «; of the complex longitudinal wavenumber can only assume
non-negative values. In so doing, perturbative waves are allowed to spatially decay
(a; > 0) or remain constant in amplitude (o; = 0). The governing equations (8.5)-
(8.7), joined by the scalar relations (8.8)- (8.9), can now be expressed as follows

%0 , e

o (k* — a? + 2ikcos(p)ay)o =T (8.11)
or A

ow . R

where the perturbation angle of obliquity ¢ = tan~!(v/a,) with respect to the z-
y physical plane, the polar wavenumber k = \/a? + 2, the wavenumbers «, =
kcos(¢) and v = ksin(¢) in the x and z directions respectively, and the spatial
damping rate «; in the streamwise direction have already been introduced. The
terms G, H, K, L and M are ordinary differential operators, written in the form
G = G(y; k,0,c;,Re), and similarly for H, K, L and M, since they are function of
y, and are parameterized through the polar wavenumber k, the angle of obliquity
¢, the spatial growth rate oy, the Reynolds number Re. With respect to equations
(7.12)-(7.14), equations (8.11)-(8.13) have additional terms due to the transversal
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component V' of the base flow (and its longitudinal and transversal variations). A
more accurate description of the mean vorticity leads, among other things, to the
explicit presence in equation (8.12) of the transversal vorticity w,. This means that
three-dimensional effects causing the perturbation transversal vorticity evolution
can now directly influence the temporal behaviour of the other disturbance vorticity
components. If ¢ = 0 there is no production of transversal vorticity at any time, and
transversal vorticity contribute in equation (8.12) vanishes. The explicit expressions
for operators in equation (8.12) are

_ ; . N /N H c 9 o .14
G= i(kcos(¢) + 1)U —V y + oo [83/2 k* 4+ a3 ikcos(¢)ay), (8.14)

i(kcos(¢) + i)  0°Q, 0 0*Q, . .09,
k2 + 2ikcos(d)a; — a2 922 Oy Oxdy i(keos(9) + mi)é?_y +
N k?cos®(¢) + 2ikcos(¢)ai — af — k*sin*(¢) 092, 0

k% + 2ikcos(¢)a; — o ox Oy
+  (K*cos*(¢) + 2ikcos(d)ay; — a?)g—g + kzsinQ(gb)aa—‘y/ +
k*cos®(¢) + 2ikcos(¢)a; — a? OU 52 k%sin®(o) oV 9?
k2 + 2ikcos(p)a; — a2 Oz By k2 + 2ikcos(P)a; — a? dy Oy?
, .0V 9 i(kcos(¢) +ic;) OV O?
— ilkeos(e) + mi)gﬁ_y + k2 + 2ikcos(d)a; — o2 Oz Oy’
Ke 4 ksin(o) 9*Q, B 2(kcos(¢) + oy ) ksin(¢) 09,
k% + 2ikcos(¢)a; — a? Oz? k% + 2ikcos(¢)o; — a? Ox
N (keos(¢) +iay)ksin(¢) OU 0 (kcos() + ici)ksin(¢) IV 0
k% + 2ikcos(@)o; — o2 Oz Oy k% + 2ikcos(¢)ay; — a2 Oy dy
v ksin(¢) oV 9?

or k21 ikcos(d)a; — o2 Dz Oy?’

(8.15)

— iksin(¢) (8.16)

while for operators in equation (8.13) the following relations hold

: : 0 1 o 25, 2 o
L= — ‘i(kcos(¢) +ic;)U — Va—y + E[a_gﬂ — k* 4 o — 2ikcos(p)ay] +
ou i(kcos(§) +ic;) OV O
dx k2 + 2ikcos(¢)a; — a? Ox Dy’
N iksin(¢) oV 9?
M= — 9 9
iksin(9) dy k% + 2ikcos(¢)a; — a2 Ox Oy?

(8.17)

(8.18)
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The full linear system (8.11)-(8.13) is to be solved subject to appropriate initial and
boundary conditions. Among all solutions, those whose perturbation velocity field
is zero in the free stream are sought. Periodic initial conditions for

0?0

= a7 (k* — aF + 2ikcos(p)a;)d (8.19)

can be shaped in terms of set of functions in the L? Hilbert space, as

8(0,y) = e @ cos(ng(y — yo))  or  9(0,y) = e ¥ sin(ng(y — yo)), (8.20)

for the symmetric and the asymmetric perturbations, respectively. Parameter ng
is an oscillatory parameter for the shape function, while y, is a parameter which
controls the distribution of the perturbation along y (by moving away or bringing
nearer the perturbation maxima from the axis of the wake). It can be verified (see
§7.3) that a possible introduction of an initial transversal vorticity w,(0,y) # 0 does
not substantially modify the perturbation temporal behaviour, as the contribution
of the transversal vorticity to the perturbation energy evolution is basically all due to
the three-dimensionality of the disturbance, regardless the specific initial condition
imposed. Thus, initial condition for w, is chosen equal to zero.

The trigonometrical system (1,sin(ngy),cos(noy),...), where ng = 1,2,..., is a
Schauder basis for the space of square-integrable periodic functions with period
27. This means that any element of the space L?, where the dependent variables
are defined, can be written as an infinite linear combination of the elements of the
basis.

Once initial and boundary conditions are included, the full linear system (8.11)-
(8.13) is numerically solved by the method of lines on a spatial bounded domain
[—ys, + y¢]. The value of y; is chosen so that the numerical solutions are not
sensitive to further extensions of the computational domain size. Here, for the
stability analysis of long waves, the numerical domain 2y; can vary its order of
magnitude between 10! and 102

8.1.2 Multiple spatial and temporal scales

In the stability analysis of spatially developing flows, different scales can be identi-
fied. In general, long and slow scales - related to the slow base flow evolution - as
well as short and fast scales - linked to the disturbance dynamics - can be defined.
The WKBJ method has been usually carried on adopting as small parameter of
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the perturbation expansion the inverse of the Reynolds number (see for instance
Bouthier, 1973; Belan & Tordella, 2006; Tordella, Scarsoglio & Belan, 2006), which
characterizes the non-parallelism of the base flow. Here, the choice of the small
parameter is no more related to streamwise evolution of the base flow, but is based
on the perturbation characteristics.

In some flow configurations, in fact, it is observed that long waves can be destabi-
lizing. Examples of this behaviour are the two-dimensional Blasius boundary layer
as well as the three-dimensional cross-flow boundary layer. Studies on 2D and 3D
boundary layers (see, among others, Mack, 1976; Schlichting 1968; Reshotko, 1976;
Reed & Saric, 1989; Saric, Reed & White, 2003) confirm this fact and show that
the perturbation wavenumber & is much less than O(1) when instability occurs.
In general, large wavenumber values would imply short scales that can be easily
damped. Moreover, an inspection of equations (8.11)-(8.13) reveals the presence of
the wavenumber k at different orders of magnitude and suggests that multiple times
as well as multiple scales can be identified through it.

Thus, the small parameter which allows for a regular perturbation scheme is the
polar wavenumber k. Two spatial scales - a short one, y, and a long one, Y = ky
- are defined. For the temporal dynamics, three temporal scales - the fast one, t,
and the slow ones, 7 = kt and T = k?t - can be determined. Note that the scale
T = k2t is related to the viscous terms and becomes unnecessary in the inviscid
case. The perturbation quantities (f},f,d)y) are now function of y,Y,t,7, T, thus can
be expressed as [ = f(y,Y,t,T,T; k,¢,;), and similarly for 0 and w,. The respective
operators in the equations become

) ) o 5,0
& = & + kE + k 8—T (8.21)
) ) )
% = o + ko (8.22)
2 2 2 2
o _ 9 + 2k 0 + k? 0 (8.23)

dy? 0y? OyoY oY2

A regular perturbation expansion for the dependent variables (@,f‘,d)y) can be as-
sumed and expressed as

Do + kOy + k20 + -+ -,
Do+ kD) + KTy + -+
Wy = @yo—i—]{?@yl—szd}yg—l—"', (824)

S>
|

=
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with the following initial conditions

A

To(y,Y,0,0,0;k,0,00) = T'(1.Y,0,0,0; k,ob,i),
1 (y,Y,0,0,0; k,é,0) T2 (y,Y,0,0,0; ko) = - - - = 0, (8.25)
Wyo(y,Y,0,0,0; k,p,00) = @y (y,Y,0,0,0; k,0,04),
Wy1(y,Y,0,0,0; k,0,00) = @y2(9,Y,0,0,0; k,0,04) = --- = 0. (8.26)

Initial conditions at order O(1) are defined as in the full linear problem, while at
higher orders (O(k),0(k?),...) are equal to zero. Boundary conditions remain as
stated in the full linear problem. It is necessary that the series expansions begin as
indicated, so that all variables are at the same order of magnitude. This point can
be noted from the definition, in the phase space, for f, wy, and the constraint of
incompressibility that requires the velocity to be divergence free.

Substituting relations (8.24) - together with the transformations (8.21)-(8.23) - in
the full linear system (8.11)-(8.13), the following ordered hierarchy of equations,
expressed up to O(k), results

Order O(1)

82@0 2~ A
gz ot = o (8.27)
or .
8t0 — Gyl — Hypy = 0 (8.28)
Awyo .
aé’ — Loy = 0 (8.29)

where the subscript h (h = highest) indicates that these operators, at any order of
the multiscaling, are involving only terms at the highest order of the perturbation
expansion (8.24). As the order is here O(1) (h = 0), these operators are acting on
quantities (fo,@o,d)yo). Operators Gy, = Gy(y; ¢,a4,Re) as well as Hy, and L are
function of the only short scale y. Their explicit expressions are

108



8 — Multiple scales analysis for the stability of long waves in near-parallel flows

G, = aU-V= 4 (L , 8.30
4 @ dy + Re(8y2 + i) (8.30)
g - 0.0 1000 00 ge. U, O
T o dy «; 0x? Oy “Oy  Oxdy Oz 1 Oy?
1, ,0 0
iy OV 31
+ o+ ) (8.31)
0 1 02 ou 10V 0
Ly = aU—-V—+4—(5=5+aj) — — + ———. 8.32
" « 8y+Re(8y2+al> ox +ai Ox Jy (8:32)
Order O(k)
0 R %0, . .
ayzl +alt, = _28y8§/ + 2icos(¢) ity + I'y (8.33)
or . or .
@_tl — Gy — Hypy, = —a—TO + Gl + Hy1to + Knoayo  (8.34)
0w . ow . .
atyl — Lhwyl = — 872'/0 + thlwyo -+ Mh,ﬂ]o (835)

where the subscript 2 — 1 (h = highest) indicates that these operators, at any order
of the multiscaling, are involving only terms at order h — 1 of the perturbation
expansion (8.24). As the order is here O(k) (h = 1), these operators are acting on
quantities (f’g,@o,@yo). Operators G,_1 = G,_1(y,Y’; ¢,c,Re) as well as Hy,_1, Kj_1,
L1 and M}_, are function of both the short scale y as well as the long scale Y.
The explicit expressions are

, 0 1 0? )
Gh1 = —icos(p)U — V8_Y + E[ZW — 2icos(¢)ay], (8.36)
o0, 0 10%°Q, 0 i 0*Q, 0 . o9,
W = 5rov “ ooy~ a2 gz gy ~ s, F
- 2 o _ou + 2ia»cos(¢)a—U + 3 0 oV + a-a—vi +
ydY Oz ’ Ox  «; 0y?0Y Ox "0z Y
i v o oV 9
+ pcos(0) G — eos(0) G (8.37)
2 0, a4 0P, OV 1 2
Kp1 = a—ism(cb)% - a—?sm(qb) Tz Zsm(@%(l - a—?a—yQ% (8.38)
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and
Lis = —ieos(O)U —V 2t L0 sicos(g)a +
h_1 = —icos ov * ReCayov icos(@)ay
10V, 0 i 0
+ ZZE%_YJFEZCOS(@@TJ)’ (8.39)
- ou (A vV o2
Mh_1 = —ZSZH(¢)a—y - a—?Sln(gb)@—xa—yz (840)

Some remarks are in order here. First, a comment concerning the role of «; is needed.
Equations above are derived under the hypothesis a; # 0. If a; = 0, there is no
temporal evolution of perturbations. This means that disturbances initially imposed
remain constant as time passes and reach, in the end, an asymptotic condition of
marginal stability (r = 0). This fact is deduced considering equation (8.27). For
a; = 0, the homogeneous solution assumes the expression 0y, = c¢; + coy. Since
the velocity field has to be zero in the free stream, ¢; = 0 and ¢ = 0. Thus 9,
and therefore Ty, are identically zero. This means that, in equation (8.28), there
is no temporal evolution for fo, and since transversal vorticity wy is initially zero,
there is no temporal evolution for the transversal vorticity, too. For a; = 0, initial
perturbations are always present, remaining unvaried at any time.

For a; # 0, all equations can be solved in a most general way. Solution of equations
for the generic order h > 0 is obtained by preventing secular terms in the dynamics.
This results in the resolution of evolutive equations, in terms of the slow scales
7 and T, which involve lower order quantities. When the base flow is parallel
(U = (U(y),0)), equations at order h explicitly depend on solutions at order h — 1
as well as h — 2 (see Criminale et al., 2003). Here, instead, it can be evinced
that the introduction of both the longitudinal as well as the transversal mean flow
components leads to equations at order h which explicitly depend on solutions at
order h —1, h—2, h—3 and h — 4.

Order O(1) (h = 0) is the most important approximation of the perturbative anal-
ysis and its formal expression is simplified with respect to the full problem. Note
that short and fast scale variables (y and ¢, respectively) only appear. Terms corre-
sponding to operators K and M are missing. The absence, in equation (8.29) of an
operator acting on the transversal velocity ¢, means that w, is always zero for any
time and any angle of obliquity. Three-dimensional aspects are all related to the
streamwise perturbation vorticity component w,. In the limit & — 0, the transversal
vorticity w, is negligible for the full problem solution, too. This can be explained
considering operator M in equation (8.18). For k — 0, this operator is going as well
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to zero. The production of perturbation transversal vorticity is all due to this term,
thus w, can be considered absent at any time. Moreover, a comparison of operators
G with G, and H with Hy, shows that order O(1) is better approximating the full
linear system when perturbations are purely transversal rather than longitudinal.
At order O(k) (h = 1), corrections related to the slow temporal evolution of I'y and
Wyo are inserted. Terms corresponding to operators G, H, K, L and M are now
all present, and acting on perturbation quantities at order h — 1. As in the full
problem with & — 0, contribute of operators K;_; and M}_; is formally present
if ¢ # 0, but is always negligible. Operators Gj,_; and Hj_; contain terms which
mainly correct solution at order O(1) in the longitudinal case. Therefore, at this
order, it is reasonable expecting a good approximation of the full problem for both
longitudinal as well as transversal perturbations. Long and short scales (Y and y,
respectively), as well as slow and fast scales (7 and ¢, respectively) show up.

8.2 Perturbation temporal dynamics

In the present work, attention is aimed to the resolution of multiscaling at order
O(1), and comparison with the full linear problem as & — 0. A summary of the
most significant transient behaviour and asymptotic fate of three-dimensional per-
turbations is presented. Results will be mainly focused on parameters such as the
obliquity, the symmetry, and the spatial damping rate of the disturbance. In par-
ticular, the latter parameter a; can vary its order of magnitude around the polar
wavenumber value.

8.2.1 Transient period of perturbations

To measure the perturbation temporal growth, the concepts of kinetic energy density

e(t; k,¢,04)

[ 2 12 ~12
e(tkga) = 3 (la]* + [o[" + [w[")dy =
—yy

1 1
2|k2 + 2ikcos(¢)a; — 2]

~

0D, , o
X (|8_y| + |k* + 2ikcos(p) oy — o ||0|* + |@y|*)dy,  (8.41)
~yy

and normalized amplification factor G(t; k,¢,c;)

B(t, k7¢7ai>
e(t =0;k,0,0;)

G(t; ko) = (8.42)
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are introduced (see §7.3) in the phase space for both multiscale O(1) quantities
(00,'0,&y0) and full problem solutions (0,I'.w,). The total kinetic energy can be
obtained by integrating the energy density over all £ and ¢.
Moreover, the temporal growth rate r is defined as

logle(t; a,

r(t: ayy) = gl <2t 7)|7 >0 (8.43)
to evaluate the perturbation temporal evolution of solutions obtained by multiscaling
at order O(1) and full problem. The temporal growth rate r is not defined for ¢ = 0.
This quantity, in fact, has a precise physical meaning asymptotically in time.
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Figure 8.1. Effects of the spatial growth rate a;. (a) The amplification factor
G and (b) the temporal growth rate r as function of time. Comparison between
multiscale O(1) (thick curves) and full problem (thin curves). Re = 50, k = 0.03,
no =1, ¢ =7/4, yo = 0, xg = 12, asymmetric initial condition, a; = 0.04,0.4.

As previously mentioned, significant transients of three-dimensional perturba-
tions are here presented to observe the agreement between solutions of multiscaling
at order O(1) and full problem. The results are all concerning the intermediate
asymptotic region of the wake, which is where the spatial evolution is mainly taking
place. The polar wavenumber & is around the order O(1072) or smaller.

In Fig. 8.1 an interesting phenomenon is observed, for a three-dimensional per-
turbation, by changing the value of ;. Spatially damped waves are temporally
amplified. The influence of the imaginary part of the longitudinal wavenumber is
remarkable, as by changing its order of magnitude from 0.04 to 0.4 the perturbation
is becoming more amplified in time. This confirms, as already observed in §7.3, that
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Figure 8.2. Comparison between multiscale O(1) (thick curves) and full prob-
lem (thin curves). Effect of the symmetry of the perturbation. (a) The am-
plification factor G and (b) the temporal growth rate r as function of time.
Re = 100, k = 0.02, np = 1, ¢ = 7/2, yo = 0, xop = 13.50, o; = 0.08,

symmetric and asymmetric initial conditions.

perturbations that are spatially confined are more amplified in time also in the limit
k — 0. The agreement between multiscale O(1) (thick curves) and full problem
(thin curves) is very good in the early transient as well as in the asymptotic state
for both values of «; considered.

Fig. 8.2 shows the influence of the perturbation symmetry on the early time
behaviour (a logarithmic scale is used on the ordinate of part (a) of the figure). It
can be noted that, as previously stated (see §7.3 and §7.4), the symmetric initial
condition leads - in the transient behaviour - to a faster temporal growth than the
asymmetric one, although both configurations are approaching the same asymptotic
unstable state. Indeed, the transient in the asymmetric case is lasting longer (¢ ~
10%) than in the symmetric case (¢ ~ 10!). The agreement between multiscale O(1)
and full problem turns out to be very good for asymmetric and symmetric conditions,
for both the early transient and the ultimate fate.

Fig. 8.3 displays the effect of differing orders of magnitude for the polar wavenum-
ber k. Three orders are considered, £ = 0.1,0.01,0.001. As expected, for smaller
values of the polar wavenumber the agreement between multiscale O(1) and full
problem is going better (multiscale O(1) solution practically coincides with that of
the full problem for & = 0.001). Order O(1072) or less, is the wavenumber value for
which the multiscale approach can be considered consistent. In comparing the full
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Figure 8.3. Effects of the polar wavenumber k. (a) The amplification factor G and
(b) the temporal growth rate r as function of time. Comparison between multiscale
O(1) (thick curves) and full problem (thin curves). Re = 100, n9 =1, ¢ =0, yo = 0,
xo = 27, a; = 0.2, symmetric initial condition, £ = 0.1,0.01,0.001.
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Figure 8.4. Comparison between multiscale O(1) (thin curves) in the limit for
a; — 0, and full problem (thick curves) with a; = 0. (a) The amplification factor G
and (b) the temporal growth rate r as function of time. Re = 50, ng =1, ¢ = 7/2,
Yo = 0, zg = 12, asymmetric initial condition, £ = 0.04, «; = 0.005,0.01,0.05
(multiscale O(1)), a; = 0 (full problem).

problem with k£ = 0.01 and the multiscale O(1), it can be noted that the multiscale
solution tends to overestimate the actual growth of the perturbation.
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In Fig. 8.4, the limit for a; — 0 is considered. Here, the thick curves represent
the full problem solution with a; = 0, while the thin curves are the multiscale O(1)
results with «; values going to zero. The right limit of multiscale O(1) solution for
a; — 0 is finite, and is closely reaching the full problem solution with a; = 0. As can
be observed, curves with smaller spatial growth rates are approaching the thick curve
from above. This behaviour holds in the early transient as well as the asymptotic
state (a logarithmic scale is used on the ordinate of part (a) of the figure).

8.2.2 Asymptotic comparison with the full linear problem

Computations to evaluate the long time asymptotics are made by integrating the
equations forward in time beyond the transient (Criminale et al. 1997; Lasseigne et
al. 1999) until the temporal growth rate r, defined in relation (8.43), asymptotes to
a constant value (dr = dt < €). The choice of the threshold € can offer a quantitative
support of when the transient can be considered extinguished.
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Figure 8.5. ng =1, y0 = 0, ¢ = 7/4, e ~ 107%. (a) Temporal growth rate and
(b) angular frequency. Comparison between multiscale O(1) (squares: symmetric
inputs, dots: asymmetric inputs) and full linear problem (circles: symmetric inputs,
triangles: asymmetric inputs). k = 0.01, z9 = 10, Re = 100.

The angular frequency (pulsation) f of the perturbation can be defined, for both
multiscale O(1) as well as full problem solutions, as the temporal derivative of the
phase ¢ of the complex wave, at a fixed transversal station

flt;ay) = W (8.44)
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where

~ _ f%(y = 17ta o,y
o(t;ay) = arg(d(y = Lt;a,y)) = tan™ (= ))

8.45
Ur(y = 1,t; Oé,")/) ( )

Since defined through the perturbation velocity field, it is reasonable expecting
constant values of frequency, once the asymptotic state is reached. In §7.4, in fact,
it was found that beyond the time for which dr = dt < € is becoming valid, both
temporal growth rate as well as frequency are reaching their asymptotic values.

Now, an asymptotic comparison between multiscale O(1) and full problem can be
made, see Fig. 8.5. The polar wavenumber k is fixed £ = 0.01, while the imaginary
part «; of the complex longitudinal wavenumber is assuming differing values in the
range [0,0.6]. Multiscale O(1) results (squares and dots) are in excellent agreement,
for symmetric and asymmetric initial inputs, with full problem data (circles and
triangles). Note that the agrement improves for increasing values of ;. A minimum
of the perturbation energy (in terms of r) is found around a; = 0.2 — 0.3 and a
similar behaviour is shown by the angular frequency f.

8.3 Concluding remarks

The three-dimensional stability analysis of long waves applied to the two-dimensional
viscous wake has been considered by means of a multiple scales approach. The
initial-value problem is based on the vorticity-velocity formulation first proposed
by Criminale & Drazin (1990). The governing equations are Laplace-Fourier trans-
formed in the plane normal to the base flow. A complex wavenumber in the stream-
wise direction has been introduced, by means of a spatial Laplace transform in
streamwise direction. The two-dimensional wake is described by the asymptotic
Navier-Stokes expansion solutions, which take into account the transversal non-
linear and diffusive dynamics of the physical system.

A regular perturbation scheme, where the polar wavenumber k is defined as small pa-
rameter, has been proposed. The introduction of a complex wavenumber in stream-
wise direction makes the equations solvable at any order in a general way, provided
that a; # 0. However, the right limit of multiscale O(1) solutions for a; — 0 is
finite, and approaches the full problem solution for a; = 0.

General properties of perturbative equations have been presented and discussed up
to order O(k), while order O(1) of the multiscaling is only solved. Different transient
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configurations have been observed by changing the most important parameters - an-
gle of obliquity, spatial damping rate and symmetry of the perturbation - affecting
the temporal evolution. Unstable configurations in time have always been observed
in the limit of long waves. In general, for k of the order of about O(1072), the
comparison between multiscale approach and full problem formulation turns out to
show a good agreement. Multiscale data have been compared with full problem re-
sults in the asymptotic temporal limit. As far as small wavenumbers are considered,
the agreement turns out to be excellent for both symmetric as well as asymmetric
initial conditions arbitrarily expressed in terms of elements of the trigonometrical
Schauder basis for the L? space.

An extension to order O(k) of the multiscale analysis can be made, in order to better
describe the long term state of perturbations that are not purely transversal with
respect to the base flow plane. The present multiscale approach, here validated in
the case of the two-dimensional weakly non-parallel wake, can be applied to other
near-parallel shear flows, for example the three-dimensional boundary layer.
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Chapter 9

Conclusions

The hydrodynamic linear stability of the two-dimensional bluff-body wake has been
studied by means of the normal mode analysis and the initial-value problem.

The common aspect of the two perturbative approaches is the steady non-parallel
base flow, which is accurately described through asymptotic Navier-Stokes expan-
sions. The physical domain is divided into two region, namely inner and outer flow
regions. For both the regions, analytical asymptotic Navier-Stokes expansions are
adopted. Matching criteria, based on the matching of differential physical quanti-
ties (pressure gradient and vorticity) involved in the system dynamics, have been
discussed together with the structure of the expansions expressed in terms of in-
verse powers of the coordinates. According to the boundary layer model, the inner
expansions for the 2D velocity field is used to approximate the wake profile. In so
doing, the longitudinal as well as the transversal non-linear and diffusive dynamics
are directly taken into account.

The modal analysis has been first considered. The stability analysis of the in-
termediate and far region of the near-parallel two-dimensional wake is studied by
means of a multiscale approach. The disturbance is tuned to the local wavenumber
along the wake, selected by the zero order theory, and is associated to a classical
spatial and temporal WKBJ analysis. The multiscale approach, based on the intro-
duction of a small parameter equal to the inverse of the Reynolds number, explicitly
accounts for the non-parallel effects associated to the lateral momentum dynamics.
The correction due to the transversal dynamics increases with Re and is larger for
the pulsation and the temporal growth factor than for the spatial growth factor. It
is negligible for the wavenumber. Such corrections allow absolute instability pockets
to show up in the first part of the intermediate wake. These pockets are present
when the Reynolds number Re is equal to 50 and 100, but are absent when Re is
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as low as 35. This is in agreement with the general notion of a critical Reynolds
number of about 47 for the onset of the first instability.

Moreover, for Re = 50 and Re = 100, angular frequency results in agreement
with numerical and experimental global data in literature are found in the wake
region where the temporal growth rates are close to zero. Convective instability is
observable throughout the domain, and this configuration asymptotically sets on a
condition of marginal stability. All instability characteristics tend to vanish in the
far wake, a fact that is independently confirmed by the asymptotic analysis of the
Orr-Sommerfeld equation.

Through the use of the Navier-Stokes expansion solutions for the inner field of
the wake, an estimate of the entrainment streamwise distribution in the intermediate
and far wake has been analytically determined in terms of asymptotic expansions.
The entrainment has been defined as the longitudinal volume flow rate variation
in the streamwise direction. It turns out to be intense downstream the separation
region, where the two-symmetric standing eddies are situated. Here, the maximum
of the distribution is reached and the dependence on the Reynolds number is clear.
Then, the entrainment continuously decreases in the intermediate wake, and is al-
most vanished in the far field. In particular, the decrease can be considered almost
concluded for all the Re here taken into account at an average distance from the
body of 50 - 60 diameters, which is a value of the same order of magnitude as the
control parameter Re. This result confirms the validity of the spatio-temporal mul-
tiscaling approach, based on the inverse of the Reynolds number, and often adopted
in wake stability analysis. In fact, unitary values of the slow temporal and spa-
tial scales - defined as £ = z/Re and 7 = t/Re, respectively - are reached in the
downstream region where the entrainment process can be considered extinguished.

Then, the linear stability analysis of the two-dimensional laminar wake has been
studied as an initial-value problem. The wake is first represented through the longi-
tudinal component of the Navier-Stokes expansions only. Thus, base flow is param-
eterized with respect to the Reynolds number and the longitudinal coordinate, and
is growing in thickness and flow rate along the streamwise coordinate.

The vorticity-velocity formulation is due to Criminale & Drazin (1990), who first
proposed it. The perturbative equations are Laplace-Fourier transformed in the x
and z directions, respectively. In this case, differently to what usually done, a com-
plex longitudinal wavenumber has been introduced, by means of a spatial Laplace
transform in the streamwise direction. The introduction of the imaginary part of the
longitudinal wavenumber (the spatial damping rate) was done to explicitly include
also in the structure of the perturbation a degree of freedom related to the spatial
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evolution of the system.

Many parameters - such as the angle of obliquity, the symmetry, the length, the spa-
tial damping rate, the number of oscillations of the distribution in the y direction of
the perturbation - have been introduced, and their influence has been observed in
different transient configurations. Counter-intuitive behaviours - like initial damp-
ing followed by a fast growth for perturbations aligned with the basic flow, initial
transient growths that smoothly level off and are followed either by an ultimate
damping or by a slow amplification for oblique waves - as well as more expected
monotone trends have been found. The most important parameters affecting the
temporal evolution are the angle of obliquity, the symmetry of the perturbation and
the spatial damping rate. While the symmetry of the disturbance is remarkably in-
fluencing the transient behaviour leaving inalterate the asymptotic fate, a variation
of the obliquity and the spatial damping rate can significantly change both the early
trend as well as the final stability configuration. Instead, the effect of the number
of oscillations and the distribution in y direction is only to extend or shorten the
length of the transient, while the ultimate state is not different.

For disturbances aligned with the flow, the asymptotic behaviour turned out to be
in good agreement with the zero order results of spatio-temporal multiscale modal
analyses. The agreement is obtained not using as initial condition the most unstable
wave given by the Orr-Sommerfeld dispersion relation at any section of the wake,
but arbitrary initial conditions in terms of elements of the trigonometrical Schauder
basis for the L? space.

The three-dimensional stability of the near-parallel two-dimensional wake has
been then analyzed as an initial-value problem by means of a multiscale approach,
based on the slow and long scales associated to small wavenumbers. The two-
dimensional wake is now described with both the longitudinal and the transversal
asymptotic Navier-Stokes expansions, which take into account the transversal non-
linear and diffusive dynamics of the physical system. The initial-value problem
extends the formulation previously presented for the parameterized growing wake
to the case of a weakly non-parallel base flow. Similarly to what assumed before, in
the perturbation decomposition a complex wavenumber in the streamwise direction
has been introduced.

A regular perturbation scheme, where the polar wavenumber k is defined as the
small parameter, has been considered. The stability analysis in the limit & — 0
is studied because in some flow configurations (for example Blasius boundary layer
and three-dimensional boundary layer) long waves turned out to be destabilizing.
In these cases, instability occurs for wavenumbers that are much less than O(1).
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The introduction of a complex wavenumber in the streamwise direction made the
equations solvable at any order in a general way, for o; # 0. Moreover, it has been
observed that the right limit of multiscale O(1) solutions for «; — 0 is finite, and
tends to the full problem solution with a; = 0.

Solutions up to order O(1) have only been considered, and different transient con-
figurations have been observed to validate the multiscaling. The parameters that
mostly affect the transient - the angle of obliquity, the symmetry and the spatial
damping rate of disturbance - have been changed. Interesting early growths have
been shown. Amplified configurations in time have always been observed in the limit
of long waves.

In general, for small polar wavenumber k of the order of about O(1072), the com-
parison between the multiscale approach and the full problem formulation showed
a good agreement. Multiscale data have been compared with full problem results
in the asymptotic temporal limit. As far as small wavenumbers are considered, the
agreement is excellent for both symmetric as well as asymmetric initial conditions
arbitrarily expressed in terms of elements of the trigonometrical Schauder basis for
the L? space. This result confirms the validity of multiscale approach for long waves,
even at the lowest order of expansion.

Some concluding comments are in order here, while comparing the two stability
approaches. In general, for three-dimensional perturbations, both the methods use
a combined Laplace-Fourier decomposition for the independent variables x and z,
respectively. Then, two different strategies are used to solve the resulting partial
differential equations in y and t.

In terms of the underlying mathematical complexities, the normal mode hypothesis
strongly simplifies the linearized system, that is transformed into an eigenvalue prob-
lem. Indeed, the temporal dependence is specified through an exponential asymp-
totic behaviour, and the perturbative equations become ordinary differential equa-
tions in y. Moreover, in the combined spatio-temporal modal analysis applied to
a near-parallel flow a few parameters are present - namely the Reynolds number
and the longitudinal coordinate - and can be easily handled. Here, the perturba-
tive hypothesis based on the sequence of saddle points is proposed. This approach
is original and synthetic since the most destabilizing wavenumber is considered at
every longitudinal station. Thus, the only parameter remaining is the Reynolds
number.

In the initial-value problem, instead, no temporal evolution is prescribed for the per-
turbations. In this way, partial differential equations - in y and t - are to be solved.
Since perturbations are arbitrarily chosen in terms of elements of the trigonometrical
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Schauder basis for the L? space and do not have a prescribed temporal evolution,
many more parameters have to be dealt with, for example the angle of obliquity,
the symmetry, the length, the spatial damping rate and the number of oscillations
of the distribution in the y direction of the perturbation. The initial-value prob-
lem turns out to be less concise than the modal analysis because of the increased
number of parameters. Some of these are arbitrarily changed according to what
suggested by results found in the modal analysis. This procedure, however, is not
so easy and can be improved, since it does not completely exploit all the potential
information offered by the initial-value problem. In fact, modal results cannot give
information on significant early growth, as they only consider the ultimate state
of perturbations. On the contrary, initial-value problem results often showed rapid
transient amplifications. Moreover, phenomenons like lift-up and by-pass transition
can, in principle, be captured within this framework. To better address the effort of
describing the transient behaviour, an optimization scheme can be adopted. Opti-
mal initial conditions are those for which the maximum energy growth occurs at a
certain time £. Note that variational methods are not necessary for the optimization
procedure, but the use of Lagrange multipliers is sufficient to maximize the energy,
because the present formulation considers the temporal evolution of vorticity and
velocity without using eigenfunction expansions.

The initial-value problem can be applied to the stability analysis of other mean
shear flows. In particular, the linear stability of the near-parallel three-dimensional
boundary layer can be studied by means of the multiscale approach based on small
wavenumbers. For this physical problem, indeed, results in literature confirm that
perturbative waves are long when instability occurs. The optimization scheme briefly
described above can be adopted to observe which disturbance configurations are the
most dangerous in terms of transient growth. The complete temporal evolution
of optimal initial conditions could be helpful in predicting the breakdown of the
laminar regime for flow configurations in presence of swept wings, rotating disks
or axisymmetric bodies, since it is widely recognized that in low disturbance fields
such as flight, boundary layer transition to turbulence generally occurs through the
uninterrupted growth of linear instabilities.

Moreover, the present formulation applied to a free shear flow can be extended to
include the non linear non-modal interaction between disturbances initially imposed.
In turbulent mixings, if the mixing scales differ, and the largest scale also has the
highest energy content, then the energy exchange is deeper than that which would
occur if the scales were equal. If, instead, the largest scale has the lowest energy, the
energy exchange is reduced and delayed with respect to the configuration with equal
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scales. Here, the non-linear interaction between initial disturbances with different
amplitude, length and obliquity can be considered to verify the analogy between
unsteady dynamics and turbulent dynamics. If the analogy is correct, the reciprocal
influence between a long wave with low energy and a short wave with high energy
should lead to a lower early energy growth and a transient lasting longer than if two
initial waves with the same scales were considered.
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