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Chapter 1

Introduction

The hydrodynamic stability of fluid flow is an important subject in different fields,

such as aerodynamics, mechanics, astrophysics, oceanography, atmospheric sciences,

and biology. Stability can be defined as the ability of a dynamical system to be

immune to small disturbances (Betchov and Criminale, 1967). In general, a system

excited with infinitesimal perturbations is considered stable if the initial state of

equilibrium, in the short or long term, is reached again. On the contrary, a system

is unstable if, subject to small oscillations, it departs from any state of equilibrium.

The central issue of the stability analysis is to understand the underlying reasons for

the breakdown of laminar flow and its subsequent transition to turbulence. Although

many improvements have been made over a hundred years, this remains an open

question and a definitive means for prediction is still to be found.

The fundamental property of linearity has been often applied in literature to the

stability analysis of flows. Disturbances superposed on the laminar flow are assumed

to be small so that perturbation higher order terms are negligible, and this implies

a simplification of the governing equations. Moreover, from a physical point of

view, the assumption of small disturbances is supported by the fact that these

infinitesimal oscillations are always present in a dynamical system and cannot be

eliminated. Anyhow, as the disturbance velocity grow, non-linear effects become

important and the linear equations no longer accurately predict the perturbation

evolution. Although the linear theory has a limited region of validity, it turns

out to be useful to observe physical growth mechanisms and dominant disturbance

types. The linearized equations are important in identifying the onset and a possible

development of the instability, but not in considering its following evolution. Indeed,

when a perturbation sets in, after a possible initial transient growth, it shows an

exponential behaviour. However, the subsequent temporal evolution is modified
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1 – Introduction

by the non-linear dynamics. This interaction makes the perturbations assume a

behaviour which is no longer exponential.

The present work is developed within the linear theory framework and the laminar

flow here considered for the stability analysis is the two-dimensional wake past an

infinite circular cylinder. In general, the bluff-body wake is an important prototype

of free shear flow for the study as well as for the applications in environmental and

biological fluid dynamics.

First important contributions to the hydrodynamic stability are due to Helmholtz

(1868), Kelvin (1887a,b) and Rayleigh (1880, 1887, 1892, 1895, 1913, 1915). Inde-

pendently, Orr (1907a,b) and Sommerfeld (1908) framed the basis of the normal

mode theory. Although the stability has been widely recognized as an initial-value

problem, for several years the attention was mainly focused on the final fate of

disturbances imposed. It was considered sufficient to know whether or not a flow

is asymptotically stable or unstable. In this context, normal mode analysis turns

out to be a powerful and synthetic means to predict the perturbation asymptotic

behaviour.

Significant results for the two-dimensional wake stability are given, among others,

by Mattingly & Criminale (1972), Triantafyllou et al. (1986), Hultgren & Aggarwal

(1987), Huerre & Monkewitz (1990). In these works, and often in literature, sta-

bility analysis has been carried out according to criteria based on the study of the

dispersion relation in the surrounding of saddle points. Betchov & Criminale (1966)

first reported occurrence of singular points in the dispersion relation. Although

they were unable to explain how the flow could be influenced by singularities in

the eigenvalue relationship, they suggested that these particular points had some

special significance in the stability analysis. Afterwards, it was clear and largely

accepted that, as the saddle point occurs where group velocity vanishes, there is a

local increase of perturbation energy and this could lead to an absolutely unstable

configuration if the temporal growth rate is positive (see also Huerre & Monkewitz,

1990).

An important feature characterizing most of recent results in literature is the as-

sumption of local parallelism of the base flow (see Mattingly & Criminale 1972,

Triantafyllou et al. 1986, Hultgren & Aggarwal 1987, Huerre & Monkewitz 1990,

Monkewitz & Nguyen 1987). In the case of the bluff-body wake, at every longitu-

dinal station downstream the body, the wake profile is approximated by means of a

parallel flow with the same velocity profile. This is a restrictive assumption, as the

transversal dynamics of the system is largely neglected. Moreover, when using this

approach, absolute instability pockets are found in the near wake (see for instance

2



1 – Introduction

Monkewitz, 1988; Young & Zebib, 1989), where the streamlines are not parallel and

the near-parallel flow assumption is no longer valid.

The recognition of the two-dimensional wake as a slowly evolving flow in the longitu-

dinal direction suggests that non-parallel aspects can be inserted into the stability

analysis through a multiple scales approach. Two scales are usually considered:

a long scale for the mean flow variations, and a short scale where the perturba-

tions vary. This method, known as WKBJ (Wentzel-Kramers-Brillouin-Jeffreys)

asymptotic analysis (see Bender & Orszag, 1978), identifies a small parameter that

characterizes the non-parallel aspects, and which is usually defined as the inverse

of the Reynolds number. The introduction of multiple spatial and temporal scales

(Schmid & Henningson, 2001) allows non-parallel effects to be directly inserted into

the stability analysis (see Bouthier, 1973; Belan & Tordella, 2006; Tordella, Scar-

soglio & Belan, 2006; Tordella, Scarsoglio & Belan, 2008). In the context of locally

absolutely unstable flows and according to the slow evolution of spatially developing

flows, the concept of global instability has been introduced and often adopted (see

among others Huerre & Monkewitz 1990, Chomaz 2005). A global mode can be

defined as an extended wavepacket over a distance of the same order of magnitude

of the scale characterizing the streamwise non-uniformity of the base flow. In other

words, if local absolute instability pockets show up in a sufficiently large wake re-

gion (of the order of the base flow scale), the instability can be defined as global

(see results by Chomaz et al., 1988; Monkewitz et al., 1993; Pier, 2002).

Only lately the transient growth has become of great interest and its impor-

tance for the complete temporal evolution of the perturbed system has been widely

accepted. Recent shear flows studies have shown that instability can be due to tran-

sient growth of disturbances (see Butler & Farrell 1992; Criminale & Drazin 1990;

Criminale, Long & Zhu 1991) long before the growing exponential mode occurs. In

principle, this kind of behaviour could cause perturbation amplitude that violates

the assumption of linearity and promote rapid transition, phenomenon known as

bypass transition.

There can be early time growth even if the asymptotic perturbation amplitude

is damped and this fact has been confirmed in different ways. First, for three-

dimensional perturbations, as the Squire and Orr-Sommerfeld operators are not self-

adjoint, the eigenfunctions are mutually non-orthogonal and this can cause algebraic

growth in the early time (Sommerfeld, 1949). Second, for three-dimensional pertur-

bations, resonance between Orr-Sommerfeld equation set of solutions and those of

the Squire equation can occur. Resonance has been demonstrated to be possible for

channel flow (Gustavsson & Hultgren 1980; Gustavsson 1981; Benney & Gustavsson
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1981) but does not occur for the boundary layer. Resonance in the free shear flows

is yet to be determined. In the end, the use of the Laplace transform to solve an

arbitrary initial-value problem (Gustavsson 1979) showed that branch cuts as well

as poles must exist when the inversion back to the real space is to be made. This im-

plies the existence of a continuous spectrum and the transient behaviour associated

to it.

Many contributions, often directed to find the optimal initial conditions that maxi-

mize the energy growth at a finite time, have been made for early-period dynamics

for fully bounded flows (e.g. Criminale et al. 1991; Criminale et al. 1997; Gustavs-

son 1991; Bergstrom 1993; Schmid & Henningson 1994, Schmid 2007) and partially

bounded flows (Lasseigne et al. 1999; Hultgren & Gustavsson 1981; Criminale &

Drazin 2000). About free shear flows, the attention was first focused to obtain

closed-form solutions to the initial-value inviscid problem (Bun & Criminale 1994;

Criminale, Jackson & Lasseigne 1995) by considering piecewise linear parallel basic

flow profiles. This analysis was then extended to obtain explicit unsteady solutions

through multiple scales analysis for continuous parallel basic flow profiles (Blossey,

Criminale & Fisher 2007). Recently, the initial-value problem first proposed by

Criminale & Drazin (1990) has been applied to a growing wake (parameterized

through the longitudinal coordinate and the Reynolds number), to study the tem-

poral dynamics of small three-dimensional perturbations applied to a spatially de-

veloping flow (Scarsoglio, Tordella & Criminale 2007; Tordella, Scarsoglio & Belan,

2008).

In the present study, the interest was first focused on the asymptotic fate of

disturbances through a multiple scales normal mode analysis. Then, the stability

analysis is considered as an initial-value problem to capture both the early transient

as well as the asymptotic behaviour of any disturbance initially imposed. The com-

mon aspect to both these analyses is the base flow description. The two-dimensional

bluff-body wake is approximated through two-dimensional non-parallel asymptotic

Navier-Stokes expansions (Tordella & Belan, 2003). This linking aspect will allow

results coming from the two approaches to be compared.

The fundamental aspect of the normal mode approach is the assumption of an expo-

nential time dependence, which allows the transformation of the linear initial-value

problem into a corresponding eigenvalue problem. This hypothesis yields the tempo-

ral asymptotic behaviour, once the most unstable mode is established, but is lacking

information on the transient growth. On the contrary, the initial-value problem for-

mulation for the stability analysis proposed by Criminale & Drazin (1990) does not

provide any a priori evolution in time, and the governing equations are expressed
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in terms of partial differential equations. In like fashion, the temporal evolution

of disturbances initially imposed can be observed at any time. As a very prelimi-

nary comment, the normal mode analysis turns out to be a powerful and synthetic

approach to observe whether or not a flow is asymptotically stable or unstable. Any-

how, as there are no results concerning the completeness of the discrete spectrum in

unbounded flows, the continuum should be examined in order to consider the most

arbitrary initial conditions. In the initial-value problem formulation both the early

transient growth (associated to the continuous spectrum) as well as the asymptotic

behaviour are directly taken into account, and distinction between discrete and con-

tinuous spectra is no more needed. However, the latter approach is less concise than

the modal analysis, as different parameters have to be considered.

In chapter 2 the physical problem is presented in details. First, a general quali-

tative description of the wake behind a finite body is given. In particular, attention

is paid to the base flow evolution at different Reynolds number values, since this is

a fundamental parameter to study the two-dimensional wake. Then, properties and

hypotheses made to approximate the base flow profile are introduced. The physical

domain is divided into two regions. An inner flow region, behind the body and in-

cluding the wake, and an outer flow region, behind the body but outside the wake,

can be identified. For both the regions analytical asymptotic expansions according

to the Navier-Stokes model are adopted. The matching criteria and the general

structure of the expansions are described, and the detailed expressions of the inner

and the outer flows are then given. The base flow is approximated through the inner

expansions, according to the boundary layer approach. Velocity profiles at differing

downstream stations and for Reynolds number values in the range between 20 and

100 are shown.

In chapter 3 the linear stability analysis is presented and carried on through

the classical modal treatment. The essentials of the normal mode theory for 2D

disturbances are introduced for viscous incompressible steady parallel flows. Af-

ter the perturbed system is linearized with respect to small oscillations, a partial

differential equation is obtained to describe the spatio-temporal evolution of the

disturbance. The normal mode hypothesis is adopted so that an asymptotic expo-

nential behaviour in time is prescribed for any disturbance, once the most unstable

mode is established. Subsequently, the Orr-Sommerfeld equation is derived by intro-

ducing the stability characteristics of the eigenvalue problem. The physical meaning

of the saddle points of the dispersion relation is discussed, and the configurations

of convective and absolute instability are then presented. Some general aspects

and significant results on three-dimensional perturbations are considered. A brief
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overview on the concepts of discrete and continuous spectra is made.

Chapter 4 presents a modal non-parallel stability analysis of the intermediate

region of the two-dimensional wake using a WKBJ method on the base flow previ-

ously derived in Chapter 2. Two scales - related to the mean flow evolution - are

defined through the inverse of the Reynolds number. The multiscaling is carried out

to explicitly account for the effects associated to the lateral momentum dynamics.

At the first order, the disturbance is locally tuned to the property of the instability,

as can be seen by the zero order theory (near-parallel parametric Orr-Sommerfeld

treatment). This leads to a very synthetic analysis of the nonparallel correction

on the instability characteristics. The system is perturbed by disturbances with a

wavenumber that varies along the wake and which is locally equal to the wavenumber

of the dominant saddle point of the zero order dispersion relation, taken at different

Reynolds numbers. In this way, the Reynolds number is the only parameter. It

is shown that the corrections to the frequency, temporal and spatial growth rate

are remarkable in the first part of the intermediate wake. In particular, absolute

instability pockets appear in the region where the WKBJ method is consistent. A

comparison with global data from numerical and experimental stability studies is

offered. An asymptotic analysis of the far wake is then proposed.

In Chapter 5 an asymptotic representation for the entrainment in the two-

dimensional wake is presented. The representation is obtained from the asymptotic

Navier-Stokes solution introduced in Chapter 2. The entrainment is defined as the

longitudinal volume flow rate variation in the streamwise direction. The general

n-order expansion term for the flow rate and the entrainment is given. The en-

trainment turns out to be maximum at the beginning of the intermediate region

just downstream of the symmetric counter rotating attached eddies. Moving down-

stream, it decreases continuously to zero, which is the asymptotic value in the far

field. It increases with the Reynolds number, which is varying in the range between

20 and 100. The spatial evolution of the entrainment depends on the Reynolds num-

ber up to a distance of almost 20 body scales. Afterwards, the Reynolds dependence

becomes weak. In the Re range here considered, the entrainment can be considered

negligible at a normalized distance from the body in between 50–60, that is, a dis-

tance value of the same order of magnitude of Re. This result is in agreement with

the scaling adopted in Chapter 4.

Chapter 6 can be thought of as a general introduction to the initial-value problem

formulation for the stability analysis. For this reason, motivation and meaningful

results in literature - concerning most of the traditional tools adopted to solve an
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initial-value problem - are reported. First attempts were addressed to a deeper un-

derstanding of the early transient and its possible influence on the complete temporal

evolution of disturbances imposed. Then attention was focused, through the use of a

moving coordinate system and transformations from the physical to the phase space,

on finding exact unsteady solutions for perturbations. To this end, an innovative

spatio-temporal multiscale approach, where the perturbation wavenumber is defined

as the small parameter, is adopted. The three-dimensional formulation in terms of

perturbation vorticity and velocity - here presented and extended in the next two

chapters to the stability analysis of the two-dimensional wake - is mainly due to

Criminale & Drazin (1990).

In chapter 7, the approach previously described is carried out to study the tempo-

ral dynamics of small perturbations applied to the 2D growing wake. The base flow

is represented by the first order terms of the Navier-Stokes expansions solution de-

fined in Chapter 2. The longitudinal velocity component is only considered, so that

the initial-value problem is a near parallel analysis parameterized on the streamwise

variable. In this regard, this study is complementary to the zero order multiscale

near-parallel Orr-Sommerfeld analysis presented in Chapter 4. The viscous pertur-

bative equations are written in the vorticity and velocity formulation. A combined

Laplace-Fourier transform in the streamwise and spanwise directions is performed

in order to consider a perturbation characterized by real streamwise and spanwise

wavenumbers, and a uniform or damped longitudinal distribution. Various physical

inputs associated to the initial condition – obliquity of the disturbance, number

of oscillations of the shape function, relevant cross-stream distribution, length and

spatial growth factor – are examined for a few Reynolds numbers of the order of the

critical value for the onset of the first instability. The transients are observed at a

few stations along the wake in the region where the entrainment process is active.

The early transient evolution offers very different configurations. The more impor-

tant parameters affecting these scenarios are the angle of obliquity, the symmetry

of the perturbation and the spatial growth rate. The transient can last hundreds

of time scales. For disturbances aligned with the flow, it can be demonstrated that

the long-term behaviour is in good agreement with normal mode analysis results

discussed in Chapter 4.

Chapter 8 presents a multiscale approach to study the stability of long waves

through the initial-value problem formulation. The small parameter of the multi-

ple scales analysis is the perturbation polar wavenumber. This choice is physically

supported by the fact that, in some flow configurations, long waves can be destabi-

lizing (for example Blasius boundary layer and 3D cross flow boundary layer). In
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such instances, the perturbation wavenumber of the unstable wave is much less than

O(1). The multiscaling is applied to the stability analysis of the 2D wake, whose

base flow is weakly non-parallel and approximated through both the longitudinal as

well as the transversal components of the Navier-Stokes expansion solutions defined

in Chapter 2. In this way, the lateral wake dynamics, that determines the wake

spatial growth and the associated entrainment process, is explicitly taken into ac-

count and directly inserted into the initial-value problem. As far as small values of

wavenumber (of the order of 10−2 or less) are considered, the agreement between

multiscale at order O(1) and full linear problem is good for both the early transient

as well as the asymptotic fate of disturbances initially imposed.

In Chapter 9, concluding remarks as well as further developments and applica-

tions of the present work are offered. In particular, common aspects and differences

between the two stability approaches are pointed out while discussing results ob-

tained.
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Chapter 2

Physical problem: the bluff-body

wake

The two-dimensional bluff-body wake is an important prototype of free shear flow

for the study and applications in fluid mechanics. For this reason its hydrodynamics

stability has been long studied. Here, in particular, the two-dimensional wake be-

hind an infinite circular cylinder is considered. In this chapter some general aspects

concerning the description of the physical system will be introduced (§2.1). After-

wards, details on the analytical formulation of the base flow will be given (§2.2).

The matching criteria and the general structure of the (inner and outer) expansions

describing the mean velocity field are discussed (§2.2.1). The detailed expressions

of the inner and the outer flows are given in §2.2.2. Then, in §2.3, the boundary

layer model is assumed to approximate the bluff-body wake profile and the formal

expression of the inner flow is given.

2.1 Base flow evolution with the Reynolds num-

ber

Qualitative aspects of the base flow evolution past a finite body in an open domain

are considered. In particular, the interest is aimed on the transition from the steady

to the unsteady state. The following is an introductory description mainly based on

experimental observations.

The body generating the wake is a circular cylinder with diameter D. The free

stream speed U0 is the velocity that would occur without the body and that is

effectively observed far from it. The cylinder is considered infinitely high, so that

9



2 – Physical problem: the bluff-body wake

the influence of its extremities can be neglected, and the same behaviour is assumed

at any section normal to the cylinder axis.

For small Reynolds number values, the flow is symmetric upstream and downstream

the body. The two regions are quite specular. The streamlines are influenced by

the presence of the cylinder, even at many diameters far from it. The velocity is

remarkably different from U0. As soon as Re is increased, the symmetry disappears.

When upstream, the flow tends to go all over paths closer to the body. When down-

stream, paths farer from it are followed. When Re is greater than 4, as upstream the

streamlines are close to the body, downstream the flow departs from body before the

back point of symmetry is reached. This leads to the separation of the flow and the

onset of two attached vortices. In this region, the fluid is rotating according to the

circular and close streamlines and is not going downstream. As the Reynolds num-

ber still increases, the vortices become bigger until a critical value of Re is reached

(Re ∼ 40).

When Re > 40 the flow becomes unsteady, although the conditions imposed are

steady. The development of instability leads to a flow path, known as Kàrmàn

vortex street. From the confined region behind the body, two rows of vortices,

moving downstream with velocity lower than U0, are forming. The vortices of each

row are moving in the same direction, that is opposite to the one on the other row.

The vortex streets commonly appear behind obstacles and their principal cause is

the instability of the flow. The process for which a vortex street takes place is known

as vortex shedding. In fact, as Re > 100, a periodic separation from the cylinder of

the vortices, that are going to form the Kàrmàn vortex street, is observable. This

phenomenon is quite continuous as, when a vortex is moving away from the body,

another one is already replacing it.

By comparing the oscillograms with velocity fluctuations at different downstream

stations, it can be seen that, for the same Re values, the irregularities become more

remarkable moving away from the cylinder. The presence of subsequent instabilities

leads to the break of the vortex street and the formation of a turbulent wake. In

this situation, the transition to a turbulent flow occurs.

Two types of secondary instabilities can be identified. The first arises when Re ∼ 200

and acts all over the vortex street. The second occurs when Re > 400 and takes

place downstream the separation points from the body. The latter is the principal

cause of transition when Re > 400, as it appears close to the body. In fact, there

is a wide range of Reynolds number values, from 400 to about 3·105, for which the

situation remains almost the same. The main instability forms the vortex street and

the secondary one acts like a disturbance, causing a turbulent wake.

10



2 – Physical problem: the bluff-body wake

When Re ∼ 3·105, important changes related to the boundary layer flow are ob-

served. Up to this value the flow is laminar, beyond it transition to turbulence

occurs. In the range 3·105 < Re < 3·106, transition happens in a quite compli-

cate way. The laminar flow close to the cylinder moves away from the wall as it

is entering into the two symmetrical vortices. The transition occurs quickly and

the turbulent flow is coming nearer to the wall again, close to where the laminar

separation happened. Beyond Re = 3·106, transition occurs in the boundary layer.

There is no more laminar separation and subsequent turbulent reconnection.

However, in both cases, the turbulent boundary layer separates. The flow is moving

away from the wall to form the wake before the back stagnation point is reached.

Actually, this phenomenon happens even before when the boundary layer remains

laminar. When Re > 3·105, the wake is narrower than for lower Re values. When

Re > 3·105 the flow entering into the wake is already turbulent and the transition

just behind the body is eliminated.

2.2 Base flow formulation

The analytical expressions of the velocity components of the base flow are here

presented in detail. The Reynolds number ranges from a value of 20 to a value of

100, that is the order of magnitude for the onset of the first instability.

The base flow is considered steady, incompressible and viscous, and described by

the continuity and Navier-Stokes equations

∂U

∂x
+

∂V

∂y
= 0, (2.1)

U
∂U

∂x
+ V

∂U

∂y
+

∂P

∂x
− 1

Re
∇2U = 0, (2.2)

U
∂V

∂x
+ V

∂V

∂y
+

∂P

∂y
− 1

Re
∇2V = 0, (2.3)

where x is the coordinate parallel to the free stream velocity and y is normal, while

(U(x,y),V (x,y)) and P (x,y) are the velocity components and pressure respectively.

The independent spatial variable x is defined from 0 to +∞, y from −∞ to +∞.

All physical quantities are normalized with respect to the free stream velocity U0,

the spatial scale of the flow D and the density.

The wake behind the cylinder is divided into two regions, inner and outer flows,

both satisfying the Navier-Stokes model. A full Navier-Stokes solution is, in fact,

a more acceptable outer flow model than a potential solution. At the same time,

11



2 – Physical problem: the bluff-body wake

the analysis is not adopting the rapid decay principle. This a priori assumption

often leaded to complicate analytical expressions (see Goldstein 1933, Stewartson

1957, Imai 1951, Chang 1961, Kida 1984), as logarithmic terms had to be included

to maintain the exponential nature of the lateral decay. The problem is complete

with the specification of the boundary conditions which exclude the near wake and

involve symmetry to the longitudinal coordinate and uniformity in the far field (see

Figure 1 for a sketch of the laminar wake).

outer region

inner region

NEAR 
WAKE

INTERMEDIATE
       WAKE

  FAR 
WAKE

x

d

D

y

KK

Figure 2.1. Sketch of the 2D laminar wake behind the cylinder.

The inner flow is required to be a thin layer described by the Navier-Stokes model,

to keep its momentum constant along the x direction, and to entrain external fluid.

The outer flow is considered as a Navier-Stokes flow which symmetrically wraps the

inner flow and satisfies U → U0, V → 0, P → P∞ for y → ±∞. The domain is

composed of the intermediate and far wake

d < x < ∞; −∞ < y < +∞

12



2 – Physical problem: the bluff-body wake

where d is the distance, which decreases with Re, from the center of the body

beyond which the thin shear layer hypothesis is valid. The intermediate flow region

is assumed to begin at x = d. The parameter d, namely a function of both Re and

the shape of the body, should not depend to any great extent on the details of the

actual shape. It usually varies from eight to four diameters for 20 < Re < 40 (Belan

and Tordella, 2002; Kovásznay, 1948).

As both the origin and the near wake are not included into the analysis, it is neces-

sary to introduce field information, that gives one of the accessory conditions along

the x coordinate (see Stewartson 1957), as follows

U(x∗,y; Re) = U∗(y; Re)

V (x∗,y; Re) = V∗(y; Re) (2.4)

P (x∗,y; Re) = P∗(y; Re)

These conditions are both the result of numerical simulations as well as laboratory

experiments in the intermediate field. The second condition along x is the uniformity

condition at infinity.

It is now opportune to point out some important features that characterize the

present approach with respect to the previous analyses in literature (Goldstein, 1933;

Stewartson, 1957; Imai, 1951; Chang, 1961; Kida, 1984).

On one hand, the introduction of the intermediate region allows the adoption of

the thin shear layer hypothesis for the inner flow. On the other hand, it supports

a differentiation of behaviour of the intermediate flow with respect to its infinite

asymptotic.

The adoption of boundary conditions (2.4) gives a higher degree of field information

than the use of integral quantities, such as the drag or the lift coefficients.

The Navier-Stokes model can easily approximate the order of the pressure varia-

tions, that turn out to be of the fourth order. The pressure variations were usually

overestimated at the second order in previous studies (Chang, 1961; Kida, 1984).

The use of the Navier-Stokes equations, without restrictive hypotheses and valid

throughout the domain, shows rapid decay and irrotationality at first and second

order for the inner and the outer flows, respectively. At the higher orders, which

mainly influence the intermediate region, the decay is algebraic for the inner flow

and, thus, the outer flow becomes weakly rotational.

13



2 – Physical problem: the bluff-body wake

2.2.1 Matching rules and structure of the expansion solu-

tion

The matching of the inner and outer solutions is not performed directly on the

pressure but on its gradient, which is the actual physical quantity involved into the

equations. In order to consider that the flow non-parallelism implies a streamwise

evolution of the field, it is imposed

lim
y→0

∂xPo = lim
y→∞

∂xPi , for x fixed. (2.5)

where the subscripts o and i indicate outer and inner variables, respectively. As the

wake dynamics mainly involves the convection and the diffusion of vorticity, it is

considered physically more significant to impose the second matching condition on

the vorticity rather than velocity

lim
y→0

Ωo = lim
y→∞

Ωi, for x fixed. (2.6)

In this way restrictive conditions of irrotationality are not imposed on the outer flow

and, at the same time, an irrotational configuration is not a priori excluded for the

outer region.

The entrainment – the transport of external fluid into the inner region – is taken

into account by imposing the matching between the inner and the outer transversal

velocities, that is

lim
y→0

Vo = lim
y→∞

Vi , for x fixed. (2.7)

The structure of the inner and outer expansion solutions is sought in the class of

inverse coordinate expansions that satisfies the boundary conditions at infinity and

allows a partial variable separation so that a sequence of linear systems of inhomo-

geneous differential equations for the two sets of variables (Ui,Vi,Pi), (Uo,Vo,Po) is

obtained. For the inner flow, the quasi-similar transformation is introduced

ξ = x, η = x−1/2y. (2.8)

The introduction of the expansion hypothesis

14



2 – Physical problem: the bluff-body wake

fi = fi0(η) + x−1/2fi1(η) + x−1fi2(η) + · · · (2.9)

for the inner variables satisfies the uniformity condition at infinity. At the same time,

the system ~In(fin,η,∂η,∂
2
η) = ~Jn(fi0,....,fi(n−1),η,∂η,∂

2
η ; Re), obtained by substituting

(2.8) and (2.9) into Eqs. (2.2)-(2.1), results to be linear at each order. Due to

the variable separation, the non-linear terms in (2.2) only include the products of

quantities of an order of less than n. These terms will eventually end up in the

inhomogeneous term.

The expansion hypothesis makes the second relation in (2.4) useless as, once Ui(x,y)

is known, Vi(x,y) is obtained by the continuity equation. This avoids the use of

experimental V profiles which often suffer from the inaccuracy related to the small-

ness of the transversal velocity values (V << U). The quasi-similarity is due to the

fact that every term in the expansion (2.9) is self-similar, while their sum is not (a

transformation is self-similar if it is invariant with respect to different scales).

For the outer flow the variable transformation is introduced

r = (x2 + y2)1/2, s = y/x (2.10)

together with the expansion hypothesis for the three variables (Uo,Vo,Po)

fo = fo0(s) + r−1/2fo1(s) + r−1fo2(s) + · · · (2.11)

which satisfies the uniformity conditions at infinity. If (2.10) and (2.11) are sub-

stituted into (2.2)-(2.1), both the non-linear and the diffusive terms include only

quantities of orders of less than n−1 at each order. This reduces the differential or-

der of the transformed equations by one and makes them linear. The inhomogeneous

linear ordinary differential system is of the third order of the form ~On(fon,s,∂s) =
~Pn(fo0,...,fo(n−1),s,∂s; Re).

As the system for the inner flow is of the fourth order, four constants of inte-

gration are introduced. Two of these can be determined by the symmetry of the

domain. For the outer flow, three constants of integration are needed. The latter

constants, together with the remaining two of the inner field, are determined through

the field boundary conditions (2.4) – which are actually two conditions on the vari-

ables U and P since the transversal velocity profile V , as previously mentioned, is

unnecessary – and the three matching conditions (2.5)-(2.7).
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2 – Physical problem: the bluff-body wake

2.2.2 Inner and outer expansions

The inner expansion is defined in the region

x > d(Re) , |y| <

∼ Y(x) ⇒ y

x
→ 0 as x →∞, y →∞ , (2.12)

where Y(x) represents the boundary between the inner and the outer regions (see

dashed curves in Fig. 2.1). According to (2.9), an inner expansion solution of the

Navier-Stokes equations is proposed, so that the velocity and the pressure expansions

are





Ui = φ0(η) + x−1/2φ1(η) + x−1φ2(η) + · · ·
Vi = χ0(η) + x−1/2χ1(η) + x−1χ2(η) + · · ·
Pi = π0(η) + x−1/2π1(η) + x−1π2(η) + · · ·

(2.13)

The continuity equation assures that χ0 ≡ 0. This is confirmed by the uniformity

condition at infinity, which also determines the other two coefficients at order zero:

φ0(η) = 1, π0(η) = P∞/ρU2
∞. From continuity it can also be verified that χ1(η) ≡ 0.

Thus the velocity component Vi = x−1χ2(η) + .. ≈ O(x−1). In general, coefficients

χn can be obtained directly from the continuity equation through the coefficients

φn−1.

By substituting the change of coordinate (2.8) and the expansion form (2.13) in

the Navier-Stokes equation in the x-direction, a general ordinary differential equation

for φn, n ≥ 1, is obtained:

Ln φn ≡ 1

Re
φ′′n +

η

2
φ′n +

n

2
φn = Mn (2.14)

where the inhomogeneous term Mn is sum of three parts:

Mn = Tn + Pg n + Sd n. (2.15)

The first one, Tn, comes from the non-linear term (U ·∇)U in the Navier-Stokes

equation in x-direction. It can be seen that T0 = T1 = 0, T2 = −1
2
φ2

1 and, for n ≥ 3,

Tn = −n

4

n−1∑
i=1

φiφn−i +
n−2∑
i=1

(
−η

2
φ′iφn−i + φ′iχn−i

)
. (2.16)
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2 – Physical problem: the bluff-body wake

The terms Pg n and Sd n correspond to the pressure gradient component ∂xP and

the streamwise diffusion term ∂2
xU/Re, respectively. In the simpler boundary layer

model both these terms are identically equal to zero at any order and, for this

reason, considered as high order Navier-Stokes corrections. It is found that Pg n = 0

for n = 1,2,3 and Sd 0 = Sd 1 = Sd 2 = 0, Sd 3 = (4Re)−1(3φ1 + 5ηφ′1 + η2φ′′1). For

n ≥ 4, both the terms Sd n and Pg n are non-zero and it is possible to write them as

functions of φ0,...φn−1, together with their derivatives at previous orders (for details

see Tordella & Belan 2003).

Thus, a hierarchy of ordinary differential systems can be expressed as





φ′0 = 0,Ln φn = Mn, n ≥ 1

χ′0 = 0, χ′n = η
2
φ′n−1 + n−1

2
φn−1, n ≥ 1

π′n = 0, n = 0,.,3;

π′n = Πn(φ0,...φn−1, χ0,...χn−1), n ≥ 4

(2.17)

where, as previously noted, φ0 = 1, χ0 = 0, π0 = p∞/(ρU2), π1 = π2 = π3 = 0.

The first equation can be solved directly for φn (Belan & Tordella, 2002), so that

φn(η) = Ane−
Re
4

η2

[
Cn 1F1

(
1− n

2
,
1

2
;
Re

4
η2

)
+ ReHrn−1(η)Fn(η)

]
(2.18)

where A is related to the drag coefficient CD (A = 1
4
(Re/π)1/2cD(Re), see Be-

lan & Tordella, 2002), 1F1 is the confluent hypergeometric function, Hrn−1(η) =

Hn−1(
1
2
Re1/2η), where Hn are Hermite polynomials, and

Fn(η) =

∫
e

Re
4

η2

Hr2
n−1(η)

Gn(η)dη; (2.19)

Gn(η) = A−n

∫
Mn(η)Hrn−1(η)dη . (2.20)

For n ≥ 3, these integrals can be numerically evaluated or approximated using

special functions. Once φn is known, the second equation in (2.17) gives

χn =
η

2
φn−1 +

n− 2

2
Φn−1 (2.21)

where Φn =
∫ η

0
φn(ζ)dζ. The πn are obtained by directly integrating the relevant

equation in (2.17).

17



2 – Physical problem: the bluff-body wake

The outer expansion is defined in the region behind the body and outside the

wake, that is

x > d(Re) , |y| >

∼ Y(x) ⇒ y

x
→ cost 6= 0 as x →∞, y →∞ ; (2.22)

According to (2.11), the expansions for the velocity and pressure outer fields are





Uo = U0(s) + r−1/2U1(s) + r−1U2(s) + · · ·
Vo = V0(s) + r−1/2V1(s) + r−1V2(s) + · · ·
Po = P0(s) + r−1/2P1(s) + r−1P2(s) + · · ·

(2.23)

By substituting into the Navier-Stokes and continuity equations, a hierarchy of

ordinary differential systems is obtained. The general system of order n can be

rewritten as follows





U ′
n = −n

2
s2
−(Un/s + Vn + Pn/s) + U∗

n

V ′
n = −n

2
s2
−Pn + V ∗

n

P ′
n = n

2
s2
−Vn + P ∗

n

(2.24)

where U∗
n, V ∗

n , P ∗
n are inhomogeneous terms and

s± = (1 + s2)±1/2 . (2.25)

2.3 Wake profile approximation through the in-

ner expansions: the boundary layer model

The inner and outer expansions are then used to form the composite expansion fcn

according to the rule fcn = fin+fon−(fon)in, where (fon)in is the common part of fin

and fon, and can be calculated as the inner expansion of the outer expansion, or vice

versa. In the context of the present stability analysis, the wake is studied through

the boundary layer model. This means that only the inner field of the previous

expansions is used. The reason of this choice is that, although for this simpler

model the pressure field is constant, the entrainment is very efficiently accounted

for by the outer limit of the V field which has non-zero values very close to those

18
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y 

x 

x=7 x=17 

U(x,y) U(x,y) U 

D 

inf

Figure 2.2. Longitudinal velocity profiles at Re = 60 and at stations x = 7 , x = 17.

issued by the Navier-Stokes model. Moreover, the boundary layer model allows the

general order term of the expansion to be analytically determined.

Before giving the detailed expression of the velocity field used to describe the

wake profile, some aspects of the obtained Navier-Stokes solutions have to be pointed

out.

First, it should be noted the analytical simplicity of the expansion solution, also due

to the matching which, based on criteria that involve the joining of the longitudinal

pressure gradient, vorticity and entrainment velocity, simplifies the system of equa-

tions at higher orders. This makes the solution suitable to accurately approximate

the wake profile in the stability analysis.

Second, the solutions have been obtained relaxing the exponential decay principle

for the inner layer, whose addition to the governing equations, on one hand, restricts
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Figure 2.3. Velocity profiles at the downstream stations x = 20, x = 80 and for
Re = 20,40,60,80 and 100. Longitudinal velocity U : (a) x = 20, (b) x = 80,
transversal velocity V : (c) x = 20, (d) x = 80.

their generality, while on the other makes the introduction of logarithmic terms in the

expansion necessary. The present approach however did not prevent the matching to

show the properties of rapid decay and irrotationality at the first and second orders

for the inner and the outer flows, respectively. At the higher orders, a fast algebraic

decay of the inner layer is obtained. The outer flow, up to the order r−2, linearly

convects momentum and, from the order r−5/2, nonlinearly convects and diffuses it.

Here we list in sequence the inner expansions for the streamwise and the transver-

sal velocity (U and V , respectively) up to the third order. In Fig. 2.2 the longitudinal

velocity profiles are shown for two differing downstream stations (x = 7 and x = 17)

at Re = 60. In Fig. 2.3 the velocity profiles (U,V ) at the downstream stations
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Figure 2.4. Velocity profiles for Re = 30,70 plotted at stations x = 10,20,40,60,80
and 100. Longitudinal velocity U : (a) Re = 30, (b) Re = 70, transversal velocity
V : (c) Re = 30, (d) Re = 70.

x = 20, x = 80 and for Re = 20,40,60,80 and 100 are plotted. In Fig. 2.4 the

velocity profiles (U,V ) for Re = 30,70 at the stations x = 10,20,40,60,80 and 100

are plotted. The explicit expressions are

U(x,y) = φ0(x,y) + φ1(x,y)x−1/2

+φ2(x,y)x−1 + φ3(x,y)x−3/2 (2.26)

V (x,y) = χ0(x,y) + χ1(x,y)x−1/2

+χ2(x,y)x−1 + χ3(x,y)x−3/2 (2.27)
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Zero order, n=0

φ0(x,y) = C0 (2.28)

χ0(x,y) = 0 (2.29)

with C0 = 1.

First order, n=1

φ1(x,y) = −AC1e
−Rey2/(4x) (2.30)

χ1(x,y) = 0 (2.31)

with C1 = 1.

Second order, n=2

φ2(x,y) = −1

2
A2e−Rey2/(4x)[C21F1(−1

2
,
1

2
;
Rey2

4x
)

+e−Rey2/(4x) +
1

2

y√
x

√
πReerf(

1

2

√
Re

x
y)] (2.32)

χ2(x,y) = −A

2

y√
x

e−Rey2/(4x) (2.33)

with C2 = −2.75833 + 0.21237 ·Re− 0.00353 ·Re2 + 0.00002 ·Re3.

Third order, n=3

φ3(x,y) = A3e−Rey2/(4x)(2−Re
y2

x
)[

1

2
C3 −ReF3(x,y)] (2.34)

χ3(x,y) = −A2

2
{C2[−1

2

1√
x

∫ y

0

[e−Reζ2/(4x)
1F1(−1

2
,
1

2
;
Reζ2

4x
)]dζ

−1

2

y√
x

e−Rey2/(4x)
1F1(−1

2
,
1

2
;
Rey2

4x
)]

−1

2

y√
x

e−Rey2/(2x) −
√

π

2Re
erf(

√
Re

2x
y)

+(
1

2

√
π

Re
−
√

πRe

4

y2

x
)e−Rey2/(4x)erf(

1

2

√
Re

x
y) (2.35)

with C3 = −2.26605 + 0.15752 ·Re− 0.00265 ·Re2 + 0.00001 ·Re3.
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Chapter 3

The combined spatio-temporal

normal mode stability theory

In this chapter the linear stability analysis is introduced and carried on through

the classical modal treatment. The essentials of the normal mode theory are pre-

sented for two-dimensional viscous incompressible steady parallel flows. After the

perturbed system is introduced and the resulting equations are linearized, a partial

differential equation is obtained to describe the spatio-temporal evolution of the

perturbation (see §3.2). The normal mode theory is presented and, subsequently,

the Orr-Sommerfeld equation is derived by introducing the stability characteristics

(§3.3). The dispersion relation is defined and the concepts of convective and abso-

lute instability are discussed in §3.4. Some general aspects and significant results

on three-dimensionality of the perturbations and on the discrete and continuous

spectra are given in §3.5 and in §3.6, respectively.

3.1 Introduction

Traditionally, investigations of disturbances in shear flows have been characterized

using classical linear stability analysis. This concept is well founded and is, in

principle, correctly recognized as an initial-value problem. However, instead of con-

sidering the complete temporal evolution of the perturbations and analyzing the

physical cause of a possible instability, the attention has been widely focused on

determining whether or not the flow is asymptotically unstable. If only the question

of stability is to be answered, the modal analysis turns out to be a powerful and
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3 – The combined spatio-temporal normal mode stability theory

synthetic means. First contributions have been given by Orr (1907a,b) and Som-

merfeld (1908) who separately derived the now-famous Orr-Sommerfeld equation.

More recently, significant results in literature for the bluff-body wake stability have

been offered by, among others, Mattingly & Criminale (1972), Triantafyllou et al.

(1986), Hultgren & Aggarwal (1987), Huerre & Monkewitz (1990).

The modal theory to study the stability of the flow is based on the perturbative

analysis. Once the base flow is known, small oscillations are imposed and their

asymptotic fate is considered. If they are damped the flow is stable, while if they are

amplified the flow is unstable. In the framework of the modal analysis, the solution

of the linearized perturbative equations turns into the resolution of an eigenvalue

problem, the Orr-Sommerfeld equation.

3.2 Perturbed flow and linearized disturbance equa-

tions

It is now assumed the base flow to be steady, parallel, incompressible and viscous.

It is described by the physical quantities




U = U(y)

V = 0

P = P (x,y).

(3.1)

The perturbed flow can be decomposed into a steady part and a fluctuating com-

ponent that oscillates about the base flow





u(x,y,t) = U(y) + ũ(x,y,t)

v(x,y,t) = ṽ(x,y,t)

p(x,y,t) = P (x,y) + p̃(x,y,t)

(3.2)

where the tilde superscripts indicate fluctuation components that are small with

respect to the corresponding mean system quantities (|ũ/U | ¿ 1 e |p̃/P | ¿ 1). By

writing the continuity and the Navier-Stokes equations for the perturbed flow and

then subtracting from these the corresponding ones for the base flow, one obtains

the following

∂xũ + ∂yṽ = 0 (3.3)

∂tũ + U∂xũ + U ′ṽ + ∂xp̃ + ũ∂xũ + ṽ∂yũ =
1

Re
∇2ũ (3.4)

24



3 – The combined spatio-temporal normal mode stability theory

∂tṽ + U∂xṽ + ∂yp̃ + ũ∂xṽ + ṽ∂yṽ =
1

Re
∇2ṽ, (3.5)

where U ′ = dU/dy.

The system of equations (3.3)-(3.5) is non-linear with respect to the disturbance

terms. The non-linear terms are products of the fluctuating velocities and their

derivatives. If the oscillation has frequency ω, these terms will have frequency

0 o 2ω. This interaction will either modify the base flow (mean-flow distortion)

and feedback to the fluctuating components or introduce higher harmonics. Such

difficulties are overcame if it is assumed that the products of the fluctuations and

their derivatives have small amplitudes. The terms ũ∂xũ, ṽ∂yũ, ũ∂xṽ and ṽ∂yṽ are

negligible in comparison with the other terms as a small disturbance multiplied by

a small disturbance results in a term of smaller order of magnitude and no longer

influences the equations to this order of approximation. The linear system is

∂xũ + ∂yṽ = 0 (3.6)

∂tũ + U∂xũ + U ′ṽ + ∂xp̃ =
1

Re
∇2ũ (3.7)

∂tṽ + U∂xṽ + ∂yp̃ =
1

Re
∇2ṽ. (3.8)

The perturbations applied to the system will evolve independently because the non-

linear terms, that would permit interaction, have been neglected. The same funda-

mental property of linearity occurs in other fields (acoustics, electromagnetism, ...),

but non-linear equations must often be retained to capture the essential physics.

Luckily, the solution of the linear system is sufficient to describe problems where

small oscillations influence the base flow. Moreover, it should be reminded that

the infinitesimal perturbations cannot be removed and are always present in any

physical system.

Due to the assumption of small disturbances, the solution of the original problem

can be approximated with the one of the linear system. However, as soon as the

perturbation energy grows, the non-linear equations are required to correctly capture

the perturbative evolution. For this reason, only the onset – and not the following

temporal evolution – of a possible instability is the aim of the linear stability theory.

By differentiating (3.7) with respect to y and (3.8) with respect to x and sub-

tracting the resulting equations to eliminate the pressure gradient terms, a system

composed by the continuity equation (3.6) and by the following third order equation

∂t(∂yũ− ∂xṽ) + U∂x(∂yũ− ∂xṽ) + U ′′ṽ =
1

Re
∇2(∂yũ− ∂xṽ). (3.9)
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is obtained. Defining the streamfunction ψ as ũ = ∂yψ, ṽ = −∂xψ, the continuity

equation (3.6) is automatically satisfied and the resulting single partial differential

equation for ψ is found to be

(∂t + U∂x)∇2ψ − U ′′∂xψ =
1

Re
∇4ψ, (3.10)

where ∇4 = ∇2 · ∇2. This fourth order partial differential equation for ψ can be

solved, in principle, subject to appropriate initial and boundary conditions. Equa-

tion (3.10) is sometimes referred to as the Orr-Sommerfeld equation in partial dif-

ferential equation form.

3.3 Normal mode hypothesis and Orr-Sommerfeld

equation

The linearity of the system is immediately exploited by seeking solutions in terms of

complex functions. In this way, a variable separation is introduced and a reduction

from a partial differential equation (3.10) to an ordinary differential equation is

allowed. Normal mode solutions of the form

ũ(x,y,t) =
1

2
(û + û∗) =

1

2
(u(y)ei(hx−σt) + u(y)∗e−i(h∗x−σ∗t)),

ṽ(x,y,t) =
1

2
(v̂ + v̂∗) =

1

2
(v(y)ei(hx−σt) + v(y)∗e−i(h∗x−σ∗t)), (3.11)

p̃(x,y,t) =
1

2
(p̂ + p̂∗) =

1

2
(p(y)ei(hx−σt) + p(y)∗e−i(h∗x−σ∗t)),

are to be found. The quantities û, v̂, p̂ indicate the complex normal mode, while

u(y), v(y), p(y) are functions of the y only and the ∗ quantities are the complex

conjugates. Therefore, the sum of the normal mode and its complex conjugate is the

real disturbance quantity. The perturbative quantities can be treated separately as

the system is linear. In principle, since the complex conjugate values can be obtained

from the quantities themselves, it is only necessary to solve for the complex quantities

û, v̂, p̂. To be solutions for the perturbations, the modal expansions (3.11) have to

satisfy the system (3.6)-(3.8). In this way the partial differential equations system

(independent variables x, y, t) reduces to a ordinary differential equations system

(independent variable y).
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Moreover, the amplitude and the phase of the oscillations can be expressed through

the use of complex functions, as the eigenvectors u(y), v(y), p(y). For any distur-

bance, in fact, the amplitude of the cosine and the amplitude of the sine components

are to be given. This is done through the real and the imaginary parts of the above

complex functions, respectively. With a single complex quantity, the two values

(phase and amplitude) characterizing the oscillation can be expressed.

In the above relations h = k + is is identified as the complex wavenumber in

x-direction, where k is the wavenumber of the perturbation (wavelength λ = 2π/k)

and s is the spatial growth rate. The complex frequency is σ = ω + ir, where ω

identifies the frequency of the perturbative wave and r is the temporal growth rate.

The wave velocity is defined as c = cr + ici = σ/h, while the phase velocity is

vp = ω/k.

In the more general spatio-temporal stability analysis, both h and σ are complex.

The amplitudes of the perturbative functions ũ, ṽ and p̃ are proportional to e−sx+rt.

For the temporal evolution, if r > 0 for one mode, the corresponding perturbation

exponentially grows until the non-linearities become relevant to the system. The

mode is unstable. If r = 0 the mode is marginally stable, while if r < 0 the mode is

stable. In general, as a small perturbation can excite all the modes, it is sufficient

that r > 0 for only one mode to have an unstable configuration for the flow. On the

contrary, it is necessary that r < 0 for all the modes to have a stable configuration.

Similar considerations can be made for the spatial evolution. If s < 0 for one mode

the flow is spatially unstable. On the contrary, if s ≥ 0 for all the modes the flow is

spatially stable.

To separately consider the temporal and the spatial stability it is sufficient to let

s = 0 and r = 0, respectively.

Let the streamfunction ψ be represented by a normal mode form

ψ(x,y,t) =
1

2
(ψ̂ + ψ̂∗) =

1

2
(φ(y)ei(hx−σt) + φ(y)∗e−i(h∗x−σ∗t)). (3.12)

By substituting (3.12) into the equation (3.10), the following equation holds

(U − c)(φ′′ − h2φ)− U ′′φ =
1

ihRe
(φ′′′′ − 2h2φ′′ + h4φ), (3.13)

known as the Orr-Sommerfeld equation. From the partial differential equation

(3.10), an ordinary differential equation of the fourth order is found. Proper bound-

ary conditions have to be given for the closure. For bounded flows, the boundary

conditions require that φ and φ′ vanish at the walls. For unbounded flows, φ and φ′

must vanish if |y| → ∞.
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If the fluid is taken as inviscid (Re →∞), a second order differential equation

(U − c)(φ′′ − h2φ)− U ′′φ = 0, (3.14)

was first derived by Rayleigh (1880) and known as Rayleigh equation. Although

often referred as the ”inviscid Orr-Sommerfeld” equation, the Rayleigh equation is

not a special case (Re →∞) of the Orr-Sommerfeld equation as it was derived more

than 25 years before it.

3.4 Dispersion relation: convective and absolute

instability

The Orr-Sommerfeld eigenvalue problem can be expressed as

[A(h,Re) + cB(h)]φ = 0, (3.15)

where A and B are square and, in general, complex matrices. In principle, a non-

trivial solution of the homogeneous system can be obtained by imposing that

det[A(h,Re) + cB(h)] = 0. (3.16)

However, the analytical solution of the problem is given only for very simple base

flow profiles (e.g. piecewise linear profiles). Numerical means are usually required

for more complicate velocity profiles.

From the general solution of the Orr-Sommerfeld equation at a fixed Re, the

dispersion relation between the wavenumber and the frequency can be obtained

D(h,σ; Re) = 0. (3.17)

and the explicit form holds

σ = σ(h; Re). (3.18)

The dispersion relation gives significant information about the stability character-

istics h and σ, as a discrete set of eigenvalues σn (with h and Re parameters) can

be found. Moreover, this expression is fundamental for a deeper stability analysis

involving the velocity group definition and the saddle point perturbative hypothesis.

First, the complex group velocity vg = ∂σ/∂h is defined as the velocity of a wave

packet evolving in time and space. Second, a saddle point of the dispersion relation

occurs when the velocity group vg vanishes, that is

∂σ(h; Re)

∂h
= 0. (3.19)
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In these regions of the phase space, the perturbation can grow in time as there is a

local increase of energy.

In this context, the instability is defined as convective if r < 0 for all the modes

and if, for at least one mode, s < 0 with group velocity vg equal to zero. If the

coordinate system is moving with the phase velocity of the wave the perturbation

is amplified, but it remains small at a fixed point as time passes. The disturbance

is convected away.

The instability is absolute if, for at least one mode, r > 0 and the group velocity vg

vanishes. The perturbation is locally growing in time.

The linear theory allows to describe the onset of instability as, when a per-

turbation establishes, its first behaviour is exponential. However, the subsequent

temporal evolution is modified by the non-linear dynamics. This interaction makes

the perturbations assume a behaviour which is no longer exponential. Therefore,

the linearized equations are useful to study the onset and a possible development of

the instability, and not to consider its following evolution.

3.5 Three-dimensionality and Squire’s theorem

Up to now, only two-dimensional disturbances have been analyzed. The normal

mode theory can be extended from two to three dimensions considering a perturba-

tion velocity field with a z-direction component, (ũ(x,y,z,t), ṽ(x,y,z,t), w̃(x,y,z,t)).

An additional complex wavenumber in the spanwise direction is then introduced in

the phase space. The three-dimensional Orr-Sommerfeld equation – expressed in

terms of the transversal velocity and no longer in terms of the streamfunction of the

perturbation – can be obtained similarly to the two-dimensional one.

Squire (1933) recognized that, through a simple transformation now known as Squire

transformation, the three-dimensional Orr-Sommerfeld equation can be reduced to

the same form as the two-dimensional Orr-Sommerfeld equation. First, this implies

that a three-dimensional problem can be transformed into a two-dimensional one.

Second, for parallel flows, only the two-dimensional problem has to be studied for

determining stability, as two-dimensional and three-dimensional quantities are linked

together through the Squire transformation. Third, the two-dimensional and three-

dimensional problems have the same formulation, except that the two-dimensional

problem has a lower value of the Reynolds number. Finally, the wave velocity c

remains unscaled for the three-dimensional and the two-dimensional problems. All

these remarks are summed up in the following theorem
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Theorem 3.5.1. Squire’s Theorem (1933): If an exact two-dimensional parallel

flow admits an unstable three-dimensional disturbance for a certain value of the

Reynolds number, it also admits a two-dimensional disturbance at a lower value of

the Reynolds number.

In other words the theorem could also be stated as, ”The minimum Reynolds number

for instability will be higher for an oblique three-dimensional wave than for a purely

two-dimensional one.” Or, ”To each unstable three-dimensional perturbation there

corresponds a two-dimensional one with a lower Reynolds number (and with a higher

longitudinal wavenumber).” Therefore, in the framework of the normal mode theory,

only two-dimensional perturbations will be considered.

Anyhow, it should be reminded that the Squire theorem only applies to parallel

flows. For more complicated flows, such as three-dimensional or curved mean flows,

three-dimensional perturbations have to be considered. Moreover, theorem (3.5.1)

does not exclude the possibility that, for sufficiently high Reynolds number values,

an unstable oblique wave can occur even if the corresponding two-dimensional one

(with the same longitudinal wavenumber k) is stable.

3.6 Discrete and continuous spectra

Finding the most unstable mode, for fixed values of the parameters (e.g. Re) of the

dispersion relation, is enough for the stability question to be answered. If instead

the complete temporal evolution is the aim of the analysis, then all the modes

must be known. The transient becomes critical and cannot be evaluated without

this information. Moreover, to consider the most general perturbation, the discrete

spectrum given by the relation dispersion has to be joined by the continuous one.

Even if in the following normal mode analysis (see §4) the main goal will be to

determine whether or not the flow is unstable, it is worth mentioning some significant

results on the discrete and continuous spectra.

The discrete spectrum is, in general, a (finite or infinite) set of discrete temporal

modes of the Orr-Sommerfeld equation. For profile on a bounded domain, DiPrima

& Habetler (1969) showed that this set is complete. Any initial disturbance can be

expanded in terms of normal modes and thus the complete solution can be expressed

in terms of them. For unbounded domains, general completeness theorems do not

exist. However, Miklavčič & Williams (1982) and Miklavčič (1983) proved rigorously

that if the mean flow decays exponentially to a constant in the freestream, then only

a finite number of eigenvalues exists for a fixed Re, while if the mean flow decays
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algebraically, then there exists an infinite discrete set of eigenvalues. In the first

case, a continuum must exist for a complete set to span the space solution, while in

the latter case no continuum exists.

Moreover, for unbounded flows, most of the numerical works to date (see Criminale

et al. 2003) suggest that there is only a finite number of discrete modes (in same cases

only one). Since a finite set of modes on the unbounded domain is not complete,

it cannot be used to describe an arbitrary perturbation. The continuous spectrum

must be considered. Grosch & Salwen (1978) and Salwen & Grosch (1981) showed

(not rigorously) that for unbounded flows the set consisting of the discrete modes

and the continuum is complete. According to this result, to complete the solution

the continuum part has to be included. This can be exploited considering the Orr-

Sommerfeld equation with bounded solutions at infinity. For the discrete set φ and

φ′ are required to vanish when y →∞, while for the continuous spectrum φ and φ′

are required to be bounded when y →∞.
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Chapter 4

Multiscale analysis of the wake

instability through a synthetic

perturbative hypothesis

In this chapter, the stability of the two-dimensional non-parallel wake (previously

derived, see §2.3) is analyzed using a multiscale method. After an introduction with

a brief state of the art (see §4.1), the base flow is expressed through the new slow

variables introduced by the multiscale (see §4.2.1). A spatio-temporal multiscaling

is then performed so that the non-parallel effects of the mean flow are directly

introduced into the modal stability analysis (§4.2.2). A synthetic hypothesis based

on the dominant saddle points of the local dispersion relation is considered to excite

the system (§4.2.3). Results, in particular the appearance of absolute instability

regions in the first pert of the intermediate wake, and a comparison with global

data from numerical and experimental stability studies are offered in §4.2.4. An

asymptotic analysis of the far wake is then proposed in §4.3. Concluding remarks

are given in §4.4.

4.1 Introduction

The two-dimensional bluff-body wake is a spatially developing flow where self-

sustained oscillations occur (see, among others, Mattingly & Criminale 1972, Zebib

1987, Triantafyllou et al. 1986, Huerre & Monkewitz 1990, Oertel 1990). The distur-

bances, modelled as viscous and incompressible, grow linearly and two-dimensionally

in a region of absolute instability that is downstream to the back stagnation point
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of the body generating the wake. This region is preceded and followed by a re-

gion of convective instability (Monkewitz 1988, Yang & Zebib 1989, Hannemann &

Oertel 1989, Pier 2002). The perturbation concentrates in the absolute instability

region and tunes to a frequency that corresponds to a global mode, usually selected

according to criteria based on the saddle points of the dispersion relation (see, for

instance, Chomaz et al. 1991, Monkewitz et al. 1993).

In literature, the base flow is usually considered as locally parallel and the analysis

is decomposed into a sequence of equivalent problems. At every longitudinal station

downstream the body, the wake profile is approximated through a parallel flow with

the same average velocity profile (e.g. Mattingly & Criminale 1972, Triantafyllou

et al. 1986, Hultgren & Aggarwal 1987). This is a restrictive assumption, as the

transversal dynamics of the system is present neither in the base flow nor in the

perturbative equations. Instead, when the base flow evolution is slow compared to

the disturbance quantities, the structure of the equations suggests the non-parallel

aspects to be inserted through a perturbation approach based on the multiscale

analysis. Two scales are usually considered: a long scale for the mean flow variations,

and a short scale where the perturbations vary. At the first order, the multiscale

allows a differential equation to be written for the wave modulation, which gives the

corrections on the stability characteristics. If the multiscale is on the spatial variable,

the modulation equation is ordinary and the corrections are on the wavenumber

(Tordella & Belan 2005). If the multiscale is on both the spatial and the temporal

variables, a partial differential equation for the modulation is obtained (see Bouthier

1972).

4.2 Multiscale approach for the stability analysis

The recognition of the bluff-body intermediate and far wake as a system which slowly

evolves with respect to the unsteady fluctuating field leads to the introduction of

the slow spatial and temporal variables

x1 = εx, t1 = εt, (4.1)

where ε =
1

Re
, according to the thin shear layer assumption for the wake with

Re ∈ [30,100]. The multiple scales method – often referred to as WKBJ (Wentzel-

Kramers-Brillouin-Jeffreys) method – relies on the introduction of the small dimen-

sionless parameter ε, the inverse of the Reynolds number, which characterizes the
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non-parallelism of the base flow and allows its decomposition. Thus, in terms of

the base flow stream function Ψ, the hypothesis Ψ = Ψ(x1,y) is made. In this way,

the (intermediate and far) wake is actually a system which shows a slow streamwise

evolution (see §4.2.1).

The hypothesis is accompanied by the assumption that this evolution can influence

the stability characteristics through a spatio-temporal modulation of the perturba-

tive wave, which turns into a correction on the complex wavenumber and frequency.

The multiscale approach results in an expanded perturbative equation which, here,

will be truncated and solved up to the first order of accuracy with regards to ε (see

§4.2.2).

In the present study, the disturbance is considered as a variable wave which, at

every longitudinal station, corresponds to the most unstable mode. In other words,

the perturbative wave has a wavenumber equal to that of the dominant saddle

point of the local dispersion relation. This allows the slow streamwise variation to

be incorporated into the coefficients of the modulation equation, where the only

remaining parameter is the Reynolds number (see §4.2.3).

This results in the determination of the complex wave modulation and downstream

distribution (order 0 and order 1) of the stability characteristics values associated to

the dominant saddle point of each intermediate section. The longitudinal distribu-

tions of the frequency can be compared to global numerical and experimental values,

and information about the wake regions where the two data match is obtained (see

4.2.4).

4.2.1 Base flow

The inner solution of the asymptotic Navier-Stokes expansions up to O(x−3/2) is

assumed to be an approximation of the wake profile (see §2.3) and the adimensional

velocity components (U ,V ) can be written as

U = 1 + x−1/2φ1(η) + x−1φ2(η) + x−3/2φ3(η) (4.2)

V = x−1χ2(η) + x−3/2χ3(η). (4.3)

According to what previously mentioned, the base flow is a slowly evolving system

and is assumed to be expanded through the small parameter ε

Ψ(x1,y) = Ψ0(x1,y) + εΨ1(x1,y) + · · · (4.4)
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Since the quasi-similar transformation (2.8) becomes η = (Re x1)
−1/2y, the velocity

components of the base flow can now be expressed as

U(x1,y) = ∂yΨ = U0(x1,y) + εU1(x1,y) + · · · (4.5)

V (x1,y) = −∂xΨ = −ε∂x1Ψ = εV1(x1,y) + · · · (4.6)

By only considering the integer powers of ε up to the first order, Eqs. (4.2), (4.3)

can assume the multiscale structure (4.5), (4.6). For the longitudinal component U ,

it turns out that

U = 1 + Re−1/2x
−1/2
1 φ1(y/

√
Re x1) + Re−1x−1

1 φ2(y/
√

Re x1)

+Re−3/2x
−3/2
1 φ3(y/

√
Re x1)

=
[
1 + Re−1/2x

−1/2
1 φ1(η)

]
+ ε

[
x−1

1 φ2(η) + Re−1/2x
−3/2
1 φ3(η)

]
, (4.7)

so that

U0 = 1 + Re−1/2x
−1/2
1 φ1 (4.8)

U1 = x−1
1 φ2 + Re−1/2x

−3/2
1 φ3 . (4.9)

The transversal component V , at the same order of approximation, is given by

V = Re−1x−1
1 χ2(x1,y) + Re−3/2x

−3/2
1 χ3(x1,y)

= ε
[
x−1

1 χ2(η) + Re−1/2x
−3/2
1 χ3(η)

]
(4.10)

so that

V1 = x−1
1 χ2 + x

−3/2
1 Re−1/2χ3 (4.11)

4.2.2 Orr-Sommerfeld equation through the multiscaling

For the two-dimensional non-parallel wake the linearized perturbation equation

(3.10) becomes

∂t∇2ψ + (∂x∇2Ψ)ψy + Ψy∂x∇2ψ − (∂y∇2Ψ)ψx −Ψx∂y∇2ψ =
1

Re
∇4ψ , (4.12)
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with boundary conditions

lim
|y|→∞

ψ(x,y,t) = 0, (4.13)

lim
|y|→∞

∂yψ(x,y,t) = 0, (4.14)

and where Ψ(x,y) and ψ(x,y,t) are the stream functions for the base flow and the

perturbation, respectively. The following perturbation hypothesis is then introduced

(Nayfeh 1973; Saric & Nayfeh 1975)

ψ = ϕ(x,y,t; ε) eiθ(x,t; ε) = [ϕ0(x1,y,t1) + εϕ1(x1,y,t1) + · · · ] eiθ(x,t; ε). (4.15)

According to the Whitham (1974) theory,

∂xθ = h0 = k0 + is0 (4.16)

∂tθ = −σ0 = −(ω0 + ir0), (4.17)

where θ = h0x − σ0t. The quantities h0 = k0 + is0 and σ0 = ω0 + ir0, as defined

in §3.3, are the complex wavenumber and the complex frequency, respectively. k0

is the wavenumber and s0 is the spatial growth rate, while ω0 is the frequency and

r0 is the temporal growth rate of the perturbation. In terms of the slow variables

(x1,t1) and θ, the spatial and temporal derivatives transform as

∂x → h0∂θ + ε∂x1 , ∂t → −σ0∂θ + ε∂t1 . (4.18)

By applying this transformation to the linearized perturbation equation (4.12), a

hierarchy of ordinary differential equations, truncated at the first order in ε, is

obtained.

The zero order equation (ε0) is the homogeneous Orr-Sommerfeld equation,

where x1 and the Reynolds number Re are parameters,

Aϕ0 = σ0Bϕ0 (4.19)

ϕ0 → 0 as |y| → ∞ (4.20)

∂yϕ0 → 0 as |y| → ∞ . (4.21)
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with A =
{
(∂2

y − h2
0)

2 − ih0Re
[
U0(∂

2
y − h2

0)− U ′′
0

]}
, B = −iRe(∂2

y − h2
0). It is

useful to write ϕ0(x1,t1,y) = A(x1,t1)ζ0(x1,y), where A is the spatio-temporal mod-

ulation determined at the next order. Thus, the eigenvalue problem (4.19-4.21)

becomes

Aζ0 = σ0Bζ0 (4.22)

ζ0 → 0 as |y| → ∞ (4.23)

∂yζ0 → 0 as |y| → ∞ . (4.24)

By numerically solving the system (4.22)-(4.24), the eigenfunction ζ0 and a discrete

set of eigenvalues σ0n(x1; h0,Re) are obtained. By selecting the eigenvalue with

the largest imaginary part a first approximation of the dispersion relation σ0 =

σ0(x1; h0,Re) is found. According to the Briggs (1964) criterium, a further analysis

of this relation, discussed later in §4.2.3, gives the loci of the branching points.

The first-order theory (O(ε1)) gives the non-homogeneous Orr-Sommerfeld equa-

tion, which is parametric in x1 and Re

Aϕ1 = σ0Bϕ1 +Mϕ0 (4.25)

ϕ1 → 0 as |y| → ∞ (4.26)

∂yϕ1 → 0 as |y| → ∞ . (4.27)

where A and B are the operators defined above, and the linear differential operator

M defined as

M =
{ [

Re(2h0σ0 − 3h2
0U0 − U ′′

0 ) + 4ih3
0

]
∂x1 (4.28)

+(Re U0 − 4ih0)∂
3
x1yy +−Re V1(∂

3
y − h2

0∂y) + ReV ′′
1 ∂y (4.29)

+ih0Re
[
U1(∂

2
y − h2

0)− U ′′
1

]
+ Re(∂2

y − h2
0)∂t1

}
, (4.30)

is a function of the zero-order dispersion relation and eigenfunction as well as of

the base flow. It accounts for entrainment effects through the explicit presence of

velocity transversal component V1. Equation (4.25)-(4.27) can be now used to obtain

the modulation function A(x1,t1), which was left undetermined at the zero order,

and to obtain the first order corrections of the stability characteristics.

By means of ϕ0(x1,t1,y) = A(x1,t1)ζ0(x1,y), Mϕ0 is equal to MAζ0, and can be

rewritten as
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MAζ0 =
{

∂x1A
[
M1 + M2∂

2
y

]
+ ∂t1A

[
M7 + M8∂

2
y

]

+A
[
M1∂x1 + M2∂

3
x1yy + M3 + M4∂y + M5∂

2
y + M6∂

3
y

] }
ζ0

= M̂ζ0 (4.31)

where the coefficients Mj are

M1 = Re(2h0σ0 − 3h2
0U0 − U ′′

0 ) + 4ih3
0 (4.32)

M2 = ReU0 − 4ih0 (4.33)

M3 = −ih0Re(∂2
y + h2

0)U1 (4.34)

M4 = −Re(∂2
y + h2

0)V1 (4.35)

M5 = ih0ReU1 (4.36)

M6 = ReV1 (4.37)

M7 = −Re h2
0 (4.38)

M8 = Re . (4.39)

It should be noticed that, in the case of spatial multiscale, coefficients M7, M8 do

not exist and this leads to the simple ordinary differential equation dx1A(x1) =

ih1(x1)A(x1), where h1 depends on the Mj, j = 1,...,6 (see Tordella & Belan 2005).

To avoid secular terms in the solution of (4.25)-(4.27), the non-homogeneous term

in equation (4.25) should be orthogonal to each solution of the adjoint homogenous

problem. This problem can be written considering the hermitian conjugate equation

Ãζ̃0 = σ∗0B̃ζ̃0 ,

where ∗ indicates the complex conjugate quantity, and

Ã =
{
(∂2

y − h∗20 )2 − ih∗0Re
[
(∂2

y − h∗20 )u0 − ∂2
yu0

]}

B̃ = iRe(∂2
y − h∗20 ) .

The same equation can be rewritten in the complex conjugate form

A+ζ+
0 = σ0Bζ+

0
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where

A+ =
{
(∂2

y − h2
0)

2 − ih0Re
[
(∂2

y − h2
0)u0 − ∂2

yu0

]}
,

B = B̃∗ and ζ+
0 is the eigenfunction of the adjoint homogeneous problem. The

orthogonality condition is expressed as

(ζ̃0,M̂ζ0) ≡
∫ ∞

−∞
ζ+
0 M̂ζ0dy =

∫ ∞

−∞
ζ+
0 MAζ0dy = 0 . (4.40)

This leads to an evolution equation for the modulation A

(∂x1A)

∫ ∞

−∞
ζ+
0

[
M1 + M2∂

2
y

]
ζ0dy + (∂t1A)

∫ ∞

−∞
ζ+
0

[
M7 + M8∂

2
y

]
ζ0dy

+A

∫ ∞

−∞
ζ+
0

[
M1∂x1 + M2∂

3
x1yy + M3 + M4∂y + M5∂

2
y + M6∂

3
y

]
ζ0dy = 0 (4.41)

which is a partial differential equation for x1 and t1, and has complex and variable

coefficients. By substituting A(x1,t1) with ea(x1,t1) (see Bouthier 1972) and going

back to the original coordinates x and t, the equation (4.41) can be written as

∂ta + p(x)∂xa + εq(x) = 0 (4.42)

where coefficients

p(x) =

∫∞
−∞ ζ+

0

[
M1 + M2∂

2
y

]
ζ0 dy∫∞

−∞ ζ+
0

[
M7 + M8∂2

y

]
ζ0 dy

(4.43)

and

q(x) =

∫∞
−∞ ζ+

0

[
M1∂x1 + M2∂

3
x1yy + M3 + M4∂y + M5∂

2
y + M6∂

3
y

]
ζ0 dy∫∞

−∞ ζ+
0

[
M7 + M8∂2

y

]
ζ0 dy

(4.44)

are not singular.

The modulation equation (4.42) is numerically solved specifying proper initial

and boundary conditions. The considered spatial domain extends from a few body-

scales D downstream from the body to the far field (in the present computations
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xi < x < xf , where xi = 3 and xf = 60). Since the differential equation is of the

first order for the variable x, only one boundary condition has to be imposed. The

modulation equation is required to satisfy to asymptotic uniformity in the far field

x = xf , that is the Neumann condition

(∂xa)x=xf
= 0, ∀ t. (4.45)

A natural choice for the initial condition is

ax,t=0 = (const) (1 + i). (4.46)

The solution at the first order is ϕ1(x1,y,t1) = A(x1,t1)ζ1(x1,y) while for the complete

problem (order 0 + order 1) is

ψ = (ϕ0 + εϕ1)e
iθ = A(x1,t1)(ζ0 + εζ1)e

iθ = (ζ0 + εζ1)e
iθ+iθ1 . (4.47)

By defining a = iθ1 and the complete phase as Θ = θ + θ1, the solution (4.47) can

be written as

ψ = (ζ0 + εζ1)e
iΘ . (4.48)

The Whitham theory can be also applied to the complete phase, obtaining

∂xΘ = h = k + is (4.49)

∂tΘ = −σ = −(ω + ir), (4.50)

where h and σ are the complex wavenumber and the complex frequency of the

complete problem, respectively. Using relation (4.18), one has

h = ∂Θ/∂x = h0∂Θ/∂θ + ε∂Θ/∂x1 = h0 + ε∂θ1/∂x1 (4.51)

σ = −∂Θ/∂t = −σ0∂Θ/∂θ + ε∂Θ/∂t1 = −σ0 + ε∂θ1/∂t1. (4.52)

The first order corrections of the instability characteristics are thus obtained as

h1 = ∂θ1/∂x1 = k1 + is1, σ1 = −∂θ1/∂t1 = ω1 + ir1 . (4.53)
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Once a (or equivalently θ1) is numerically known, the corrections of the stability

characteristics h1 and σ1 are obtained by numerical differentiation of the same so-

lution a.

In particular, the solution is known on a discrete spatial domain x1,x2....xN , and

can be integrated forward in time in t0,t1,...tM . However, the temporal derivatives

are computed at the first temporal step t0, as the linear stability analysis can only

describe the onset of the instability and not its following temporal evolution, which

is influenced by the interaction of the growing non-linearities.

Moreover, it should be recalled that the first order analysis does not influence the

dispersion relation approximation and the subsequent saddle points research, which

are both determined at the zero order. The perturbation hypothesis based on the

saddle points sequence determines, at the first order, an a posteriori correction on

the stability characteristics previously approximated at the zero order.

4.2.3 Saddle point perturbative hypothesis

Coefficients p(x) and q(x) of the modulation equation (4.42) are functions of the

disturbance and of the base flow. The base flow is only present in p through the

zero-order longitudinal velocity U0, while the first order longitudinal and transversal

velocities U1 and V1 are present in q. The distributions of the real and imaginary

parts of coefficients p and εq are here computed by inserting in h0 and σ0 the

values of the dominant saddle point of the zero order dispersion relation taken at

each x position along the wake. For a visualization, see the multidimensional map

for frequency ω0(k0, s0) and temporal growth rate r0(k0,s0) in Fig 4.2, and the

two-dimensional level curves for frequency (dashed lines) and temporal growth rate

(solid lines) in Fig. 4.1, for Re = 35 and x = 4.

The distributions of coefficients p and εq (real and imaginary parts) are instead

shown in Fig. 4.3 for Re = 35, 50 and 100.

In so doing, the disturbance is locally tuned, through the modulation function,

to the property of the instability as can be seen from the zero-order theory (near-

parallel parametric Orr-Sommerfeld treatment). This leads to a synthetic analysis

of the non-parallel correction on the instability characteristics. In such a way, the

parametrization with respect to the longitudinal position in the wake (Belan and

Tordella 2006) (see Fig. 4.7) is not necessary since the evolution of the zero order

dispersion relation is directly inserted into the variable coefficients of the modulation

equation. The streamwise variation of the instability characteristics is deduced from
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Figure 4.1. Saddle point level curves for Re = 35, x = 4. ω0=cost (dashed
curves), r0=cost (solid curves).

the spatial and temporal derivatives of the modulation function. With this new ap-

proach, the system is considered as locally perturbed by waves with a wavenumber

that varies along the wake and which is equal to the wavenumber of the dominant

saddle point of the zero order dispersion relation, taken at different Reynolds num-

bers. Since the perturbation is no more parameterized with respect to a given wave

number, the Reynolds number remains the only parameter of the present stability

analysis. The branching points distribution along the longitudinal coordinate and

for Re = 35,50 and 100, is given in Table 4.1.

As the Orr-Sommerfeld problem (4.22-4.25) solution is necessarily computed on

a numerical bounded domain instead of on the theoretical unbounded one, the de-

termination of the saddle points is sensitive to the extension of the actual numerical
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domain and to the number and choice of the collocation points.

Moreover, problems arise when small values of k0 are reached because singularities

are present on the s0 axis in the complex wave number plane. This aspect already

becomes important at a few diameters behind the cylinder, since the wavenumber

rapidly decreases with the longitudinal coordinate x. See Fig. 4.4 (Re = 50, x = 7),

where the saddle point research is already affected by singularities present at k0 = 0.

For these reasons, by minimizing the relative error between the data and the

curves, truncated Laurent series have been used to extrapolate the saddle point
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x Re = 35 Re = 50 Re = 100
3.00 h0 = 0.9730 -i1.9040 h0 = 1.3850 -i2.2160 h0 = 2.9000 -i1.5960

σ0 = 1.0194 -i0.4861 σ0 = 1.2504 -i0.4567 σ0 = 1.5825 +i0.1513
4.10 h0 = 0.4167 -i1.7171 h0 = 0.6254 -i2.0754 h0 = 2.3544 -i2.2444

σ0 = 0.8388 -i0.6022 σ0 = 1.0430 -i0.6286 σ0 = 1.5138 -i0.1695
5.20 h0 = 0.2242 -i1.5156 h0 = 0.3505 -i1.8620 h0 = 1.6796 -i2.5098

σ0 = 0.6857 -i0.6486 σ0 = 0.8681 -i0.7067 σ0 = 1.3992 -i0.3818
6.30 h0 = 0.1381 -i1.3477 h0 = 0.2232 -i1.6712 h0 = 1.2244 -i2.4207

σ0 = 0.5769 -i0.6597 σ0 = 0.7366 -i0.7368 σ0 = 1.2755 -i0.5357
7.40 h0 = 0.0929 -i1.2123 h0 = 0.1547 -i1.5125 h0 = 0.9249 -i2.2238

σ0 = 0.4951 -i0.6545 σ0 = 0.6361 -i0.7433 σ0 = 1.1537 -i0.6304
9.60 h0 = 0.0500 -i1.0129 h0 = 0.0874 -i1.2736 h0 = 0.5789 -i1.8246

σ0 = 0.3810 -i0.6249 σ0 = 0.4951 -i0.7254 σ0 = 0.9426 -i0.7106
12.35 h0 = 0.0280 -i0.8474 h0 = 0.0516 -i1.0718 h0 = 0.3657 -i1.4590

σ0 = 0.2917 -i0.5794 σ0 = 0.3838 -i0.6842 σ0 = 0.7469 -i0.7209
16.20 h0 = 0.0154 -i0.6996 h0 = 0.0301 -i0.8895 h0 = 0.2235 -i1.1465

σ0 = 0.2172 -i0.5211 σ0 = 0.2889 -i0.6253 σ0 = 0.5645 -i0.6888
22.80 h0 = 0.0075 -i0.5537 h0 = 0.0159 -i0.7082 h0 = 0.1218 -i0.8782

σ0 = 0.1504 -i0.4457 σ0 = 0.2001 -i0.5447 σ0 = 0.3853 -i0.6225
32.15 h0 = 0.0038 -i0.4446 h0 = 0.0087 -i0.5717 h0 = 0.0675 -i0.7166

σ0 = 0.1058 -i0.3766 σ0 = 0.1370 -i0.4686 σ0 = 0.2563 -i0.5532
44.80 h0 = 0.0020 -i0.3671 h0 = 0.0051 -i0.4743 h0 = 0.0392 -i0.6271

σ0 = 0.0774 -i0.3204 σ0 = 0.0940 -i0.4056 σ0 = 0.1692 -i0.4951
59.65 h0 = 0.0012 -i0.3170 h0 = 0.0033 -i0.4112 h0 = 0.0251 -i0.5820

σ0 = 0.0608 -i0.2808 σ0 = 0.0672 -i0.3609 σ0 = 0.1157 -i0.4542

Table 4.1. Distribution of the saddle points along the longitudinal coordinate.

behavior from data at the lower x values. These data are more accurate, because

the values of k0 are not too small at these longitudinal stations. The extrapolat-

ing curves obtained are in agreement with the asymptotic analysis of the stability

characteristics, see §4.3, Fig. 4.9.

Assuming that k0 is non-negative, its extrapolating function is k0(x) =
∑

i c
k
i x
−i,i =

1,2, . . .. For the other stability characteristics (s0, ω0, r0), the extrapolating func-

tions are s0(x) =
∑

i c
s
ix
−i+1, ω0(x) =

∑
i c

ω
i x−i+1, r0(x) =

∑
i c

r
i x
−i+1,i = 1,2, . . ..

The Laurent series coefficients for the stability characteristics are given in tables

4.2 and 4.3, while in table 4.1 the longitudinal evolution of the extrapolating curves

for the stability characteristics is shown. The domain of validity is 3 < x < 60
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Re k0(x) =
∑

i c
k
i x
−i s0(x) =

∑
i c

s
ix
−i+1

35 ck
1 = 0.0205 ck

2 = 2.7405 cs
1 = -0.1610 cs

2 = -9.5190
ck
3 = 15.1650 ck

4 = 8.1000 cs
3 = 12.8700

50 ck
1 = 0.1100 ck

2 = 4.8450 cs
1 = -0.2140 cs

2 = -12.0660
ck
3 = 20.0700 ck

4 = 5.4000 cs
3 = 18.1800

100 ck
1 = 0.7175 ck

2 = 45.8525 cs
1 = -0.0005·103 cs

2 = -0.0007·103

ck
3 = 38.3850 ck

4 = -312.3000 cs
3 = -0.2271·103 cs

4 = 1.2726·103

cs
5 = -1.8436·103

Table 4.2. Complex wavenumber extrapolating curve of the downstream distribu-
tion of the dominant saddle points.

Re ω0(x) =
∑

i c
ω
i x−i+1 r0(x) =

∑
i c

r
i x
−i+1

cω
1 = 0.0187 cω

2 = 2.0880 cr
1 = -0.1403 cr

2 = -9.4102
35 cω

3 = 28.5906 cω
4 = -201.5260 cr

3 = 65.0415 cr
4 = -230.5392

cω
5 = 601.3316 cω

6 = -688.1536 cr
5 = 472.4563 cr

6 = -420.4417
cω
1 = -0.0114 cω

2 = 4.5533 cr
1 = -0.1999 cr

2 = -10.8650
50 cω

3 = 9.1532 cω
4 = -78.4682 cr

3 = 79.9060 cr
4 = -285.3133

cω
5 = 205.6623 cω

6 = -220.1156 cr
5 = 576.7085 cr

6 = -502.1086
cω
1 = 0.0000 cω

2 = 0.0081·103 cr
1 = -0.0003·103 cr

2 = -0.0092·103

100 cω
3 = 0.0531·103 cω

4 = -0.5530·103 cr
3 = 0.0405·103 cr

4 = 0.2403·103

cω
5 = 1.6819·103 cω

6 = -1.7701·103 cr
5 = -1.5176·103 cr

6 = 2.1540·103

Table 4.3. Complex frequency extrapolating curve of the downstream distribution
of the dominant saddle points.

and the Reynolds number values are Re = 35,50,100. In Fig. 4.5, some significant

data (symbols) computed in the early spatial domain and the relative extrapolating

curves for the stability characteristics are shown in the spatial range 3 < x < 30.

4.2.4 Results

The first-order correction of the instability characteristics is obtained through re-

lation (4.53), after the modulation equation (4.42) is solved with the associated

accessory conditions, (4.45) and (4.46).

It can be seen, in Fig. 4.6, that the correction of the characteristics values - at the

saddle points - increases with the Reynolds number. At the subcritical Reynolds

number, Re = 35, the lowest value here considered, the correction is negligible

throughout the intermediate and far domain.
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Figure 4.5. Instability characteristics at order zero: (a) wavenumber, (b) spa-
tial growth rate, (c) angular frequency (pulsation), (d) temporal growth rate;
Re = 35,50,100. Computed data (symbols) and extrapolating curves.

Another general feature, which is Reynolds number independent, is the vanishing

of the first-order correction as x → ∞. In the first part of the intermediate wake,

3 < x < 20, the multiscaling correction instead increases the values of all the four

characteristics. The perturbation wave has, here, shorter wavelength and temporal

period, and an increase of spatial and temporal growth rates is observed, see Fig.

4.6. While an increase of the temporal growth rate r means a wave configuration

that is more unstable in the absolute sense, an increase of the spatial growth rate s

results in a perturbation configuration that is convectively more stable.

The largest variations between the complete and the zero-order results are shown
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Figure 4.6. Instability characteristics: (a) wavenumber, (b) spatial growth rate,
(c) angular frequency (pulsation), (d) temporal growth rate; Re = 35,50,100.

by the pulsation ω and the temporal growth factor r, see Fig. 4.6(c,d). In fact, for

these quantities, corrections of the order of 50 ∼ 100% can be observed in the first 15

diameters downstream to the body. At Re = 100, the complete pulsation exhibits

a point of relative maximum for x ∼ 7. The temporal growth factor r becomes

positive, for both Re = 50 and 100, in the first part of the intermediate wake region.

Thus, at these Reynolds numbers, absolute instability pockets appear which extend

to x ∼ 7 and x ∼ 10, respectively. The instability turns out to be convective

throughout the spatial domain. In the meantime, the analysis leads to marginal

conditions of convective and absolute stability for the asymptotic wake (s,r → 0

as x → ∞, respectively) for all the Reynolds number considered (Re = 35,50,100).
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Figure 4.7. Comparison between the instability characteristics with the present
perturbation hypothesis (spatial sequence of saddle points) and the perturbation
with h0(x = 4.10)=cost at Re=50: (a) wave number, (b) spatial growth rate, (c)
pulsation, (d) temporal growth rate.

This latter result on marginal stability will be later confirmed by the asymptotic

analysis (see §4.3).

It should be noted that the first order corrections are really relevant, especially

for the complex frequency, in the near wake for increasing values of the Reynolds

number. The order of correction can easily reach 100% or more in this region, and

this means that here the non-parallelism effects are no longer negligible. Moreover,

corrections have to be much smaller than the original values to be acceptable. Thus,

instability characteristics values for longitudinal coordinates about x < 5 − 7 only
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offer a qualitative behaviour but are, in no way, valid for the stability analysis.

As previously said, indeed, the near wake region falls outside the domain of the

present analysis. Going downstream, the first order corrections become smaller

but still important, at least in the intermediate wake. In the far wake, they are

vanishing. Considering the spatial evolution of first order corrections with respect

to zero order values, an extension of the multiscale to second order corrections seems

unnecessary. The O(ε2) corrections would not affect results so much in the region

where parallel flow theory is valid, and they would be completely useless where first

order corrections are already too big.
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Figure 4.8. Comparison between the global pulsation data according to Pier
(2002), Zebib (1987), Williamson (1988) and present solution (accuracy ∆ω = 0.05).

Fig. 4.7 shows a comparison between the results of the present perturbation

hypothesis and those obtained considering the system disturbed by a wave with a

complex wave number which is kept constant downstream to the wake (Belan and

Tordella, 2006), and equal to the zero-order value shown at the saddle point in
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x = 4.10, see Fig. 4.7(a,b). One can see that the two perturbation hypothesis yield

the same results close to x = 4.10, but differ downstream, where, in latter case, the

perturbation is no longer locally tuned to the most unstable wave number, which

results in forcing the system to the chosen wave number in the positions of the wake

that are different from x = 4.10. A similar behavior is observed if the position of the

forcing point is moved along the wake. It can thus be concluded that the present

perturbation, being tuned to the natural sequence along the longitudinal coordinate

of the proper wave numbers, is an efficient tool to highlight the evolution of the

stability properties in the intermediate wake.

Data from the global results obtained by Pier (2002, DNS simulations), Williamson

(1988, laboratory observations), and Zebib (1987, numerical experiments) are in-

cluded in Fig. 4.8. In this figure the x positions pointed out represent the wake

sections where the longitudinal distribution of pulsation obtained with the present

method match the global pulsation obtained in these numerical and laboratory ex-

periments. These regions, for Re = 50 and 100, are very close to the ones where the

temporal growth rate r is observed to change its sign leading to absolutely unstable

configurations (see Fig. 4.6(d)). A linear interpolation on the frequency points de-

termined is proposed. The experimental data fall within an accuracy of ±5% around

the pulsation interpolating curve that grows with the Reynolds number.

4.3 Eigenfunction and eigenvalue asymptotic the-

ory

Based on the Orr-Sommerfeld problem properties at zero order, an asymptotic anal-

ysis of the stability characteristics k0, s0, ω0, r0 is here presented in the limit x →∞.

The present nonparallel stability analysis shows that the saddle point wave num-

bers k0 decay rapidly as x → ∞. Thus we can assume this decay as a hypothesis

of behavior of the solutions of equation (4.22). In the same equation, the base flow

longitudinal component U0 appears together with its second y derivative ∂2
yU0. The

relevant asymptotic forms are

U0 = 1 + x−1/2φ1(yx−1/2) = 1− A

e
Rey2

4x
√

x
∼ O(1) (4.54)

∂2
yU0 =

ARe

2e
Rey2

4x x
3
2

− ARe2y2

4e
Rey2

4x x
5
2

∼ O(x−3/2). (4.55)
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It can be seen that ∂2
yU0 is negligible in comparison to U0, therefore operator A,

which is present in (4.19) and (4.22), becomes

A =
{
(∂2

y − h2
0)

2 − ih0Re U0 (∂2
y − h2

0)
}

. (4.56)

Now the eigenvalue problem (4.22) with the relevant boundary conditions can be

rewritten in the form

{
∂2

y − h2
0 − ih0ReU0

}
f = −iReσ0f, (4.57)

f → 0 as |y| → ∞. (4.58)

where

f(x,y) = (∂2
y − h2

0)ϕ0(x,y). (4.59)

It is useful to rewrite the base flow in the form U0 = 1 + g(x,y), where g(x,y) =

−Ax−1/2e−
Re y2

4 x is the well-known asymptotic gaussian law for velocity defect in the

wakes. Parameter P = ih0Re and the generalized eigenvalue w = iReσ0−ih0Re−h2
0

are also introduced. The eigenvalue problem (4.57) finally becomes

(−∂2
y + P g

)
f = wf, (4.60)

with the same boundary conditions. In this equation, P = ih0Re ∼ −s0Re is a

real parameter according to the hypothesis k0 ∼ 0. One can observe that (4.60) is

the stationary Schrödinger equation. Moreover, if we assume s0 < 0, in agreement

with the numerical results described in §4.2.4, positive values are obtained for the P

parameter. Product Pg(x,y) at a given x is therefore a negative function throughout,

that vanishes as |y| → ∞. This makes the eigenvalue problem (4.60) become the

famous 1D ’potential well’ problem, which has been widely treated in theoretical

physics (see Messiah, 1960).

Some properties of this problem should be mentioned at this point: the operator

in (4.60) is now self-adjoint and thus the eigenvalues w are real. The eigenvalue

spectrum has a discrete part {w0,w1,w2...}, and all these eigenvalues satisfy the

inequality

gmin < wn < 0, (4.61)
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4 – Multiscale analysis of the wake instability through a synthetic perturbative hypothesis

where gmin = −Ax−1/2 is the axial value of g (wake center). There is also a contin-

uous spectrum in the range w > 0, but its physical meaning lies outside the aim of

the present analysis.

These properties lead to interesting consequences. First, since w is real

={w} = ={iReσ0 − ih0Re− h2
0} = −k0(Re + 2s0) + Reω0 = 0, (4.62)

so that k0 ∼ 0 implies

ω0 ∼ 0, (4.63)

that is, if the saddle point wave numbers k0 vanish rapidly, the pulsation ω0 should

also vanish rapidly. This result is in good agreement with the present numerical

computations, see figure 4.6.

Second, since k0 ∼ 0, the inequality (4.61) shows that

gmin < −r0Re + s0(Re + s0) < 0. (4.64)

However, in the limit x → ∞, gmin → 0. Thus, −r0Re + s0(Re + s0) ∼ 0 and a

relation between the asymptotic behavior of the temporal and spatial growth rates

can be found:

r0 ∼ s0 + s2
0/Re. (4.65)

Since finite values for an asymptotic uniform flow at infinity are unphysical,

because uniformity means absence of spatial and temporal scales, and since positive

infinite values for r0 are a priori excluded, it can be evinced that both r0,s0 → 0.

In the asymptotic limit, this result is in good agreement with the numerical

computations, as shown in Fig. 4.9 where the computations are compared with the

simple curves r0 = s0 + s2
0/Re (unitary proportionality constant).

Moreover, it should be noted that the only hypotheses made for the asymptotic

analysis are on the wavenumber k0, which is supposed to rapidly decay as x →∞,

and on the spatial growth rate s0, which is required to be negative throughout

the spatial domain. The two assumptions lead, in the far wake, to an asymptotic

behaviour for the complex frequency, which is in good agreement with the numerical

results of the zero order dispersion relation. Thus, the marginal conditions for

convective and absolute stability shown by the multiscale Orr-Sommerfeld results in

the far wake are confirmed by the present asymptotic analysis.
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Figure 4.9. Temporal growth rate, r0(x). Comparison between the asymptotic
behaviour r0 = s0(x) + s0(x)2/Re and present solution at order zero (extrapolated
curves, see Tables 4.2 and 4.3); Re = 35, 50, 100.

4.4 Concluding remarks

The spatially varying disturbance used here to represent the amplitude modulation

turns out to be a synthetic way of pointing out the behaviour of the convective

instability in the intermediate and far bluff-body wake. This disturbance is tuned

to the local proper wavenumbers along the wake and is associated to a classical

spatial and temporal WKBJ analysis carried out on the two-dimensional base flow

previously derived in §2.3. The multiscaling explicitly accounts for the non-parallel

effects associated to the lateral momentum dynamics, at a given Reynolds number.

The first-order corrections allow absolute instability pockets to be determined in

the first part of the intermediate wake. These pockets are present when the Reynolds
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4 – Multiscale analysis of the wake instability through a synthetic perturbative hypothesis

number Re is equal to 50 and 100, but are absent when Re is as low as 35. This

is in general agreement with the standard notion of a critical Reynolds number of

about 47 for the onset of the first observable instability.

The size of the correction increases with Re and is larger for the pulsation and

the temporal growth factor than for the spatial growth factor. It is negligible for

the wavenumber.

The pulsation variation with Re of the wake region where the temporal growth

factor is almost equal to zero is in good agreement with experimental global flow data

in literature. Another result of the present study is that the convective instability,

observable throughout the domain at both zero and complete orders, asymptotically

sets on a condition of marginal stability. All the four instability characteristics vanish

at infinity downstream the body generating the wake flow.

The far wake asymptotic behavior, shown by this WKBJ analysis and indepen-

dently obtained through an analysis based on the properties of the Orr-Sommerfeld

problem, is in good agreement with the numerical computations and highlights the

same marginal stability condition as x →∞.
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Chapter 5

Streamwise evolution of the

entrainment in the steady 2D

bluff-body wake

The analytical description of the two-dimensional bluff-body wake is not only a

powerful means to analyze the non-parallel effects on the stability, but it can also

be useful to consider phenomenons, associated to the lateral momentum transport,

as the entrainment of the external fluid into the wake region.

In this chapter an asymptotic representation for the entrainment in the 2D steady

wake is presented. After the entrainment process is introduced for laminar and

turbulent flows (see §5.1), a formal definition of entrainment will be deduced as

the longitudinal volume flow rate variation, through the analytical Navier-Stokes

expansion derived in §2.3. The first four orders of the expansion coefficients are

listed (see §5.2). The streamwise behaviour of the entrainment is presented in §5.3.

Two possible lateral integration limits are discussed: the displacement thickness and

the wake thickness, which is explicited through the introduction of a threshold ε.

The concluding remarks are given in §5.4.

5.1 Introduction

The dynamics of entrainment and mixing is of considerable interest in engineering

applications such as pollutant dispersal or combustion, but it is also relevant in geo-

physical and atmospherical situations. In all these cases, flows tend to be complex.

In most of them, entrainment is a time dependent multistage process both in the
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5 – Streamwise evolution of the entrainment in the steady 2D bluff-body wake

laminar or turbulent regime of motion.

The entrainment of an ambient fluid in a shear flow is a convective-diffusive

process, which is widespread in the physical domain when the Reynolds number is

greater than a few decades. It is a key aspect associated to the lateral dynamics

of spatially evolving flows. However, quantitative data concerning the entrainment

spatial evolution are not very frequent in literature and are difficult to determine

experimentally. In fact, it is not easy to obtain quantitative experimental observa-

tions either in the laboratory or in the numerical simulation context. In some cases,

as fluid entrainment by isolated vortex rings, theoretical studies (Maxworthy 1972)

are followed by experimental observations (Baird, Wairegi and Loo 1977; Müller and

Didden 1980; Dabiri and Gharib 2004).

It should be noted that, in literature, more attention has been focused on complex

unsteady and highly turbulent configurations than to their laminar counterparts.

In unsteady configurations, the entrainment process is related to repeated cycles of

viscous diffusion and circulatory transport. In turbulent flows, the external fluid is

first included by the highly stretched and twisted inner turbulent motion (large-scale

stirring) and is then mixed, at the molecular level, by the action of the small-scale

velocity fluctuations. To this end, see for instance the recent experimental works

on free jets by Grinstein 2001, or on a plane turbulent wake by Kopp, Giralt and

Keffer 2002.

In steady laminar flows, the stretching dynamics is generally absent or close to its

onset. In this case, the entrainment is mainly governed by the balance between the

longitudinal and lateral nonlinear convective transport and the lateral molecular

diffusion.

Here, the entrainment variations with the Reynolds number (Re ∈ [20,100]) and

the longitudinal coordinate will be discussed. It increases with the Reynolds number

but, after about 20 diameters downstream the body, the dependence becomes weak.

The entrainment will turn out to be maximum at the beginning of the intermediate

region and it will be vanishing in the far wake. In the Re range here considered, the

entrainment is negligible beyond about 50 − 60 diameters downstream the body, a

distance which is of the same order of magnitude of Re. This result is in agreement

with the multiscaling approach adopted in the wake stability analysis to represent

the slow system variation (see §4.2).

5.2 Volumetric flow rate and entrainment

Recalling the inner expansion in §2.2.2, the base flow velocity components are
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5 – Streamwise evolution of the entrainment in the steady 2D bluff-body wake

U(x,y) = φ0(x,y) + φ1(x,y)x−1/2 . . . =
N∑

n=0

φn(x,y)x−n/2 (5.1)

V (x,y) = χ0(x,y) + χ1(x,y)x−1/2 . . . =
N∑

n=0

χn(x,y)x−n/2 (5.2)

The normalized volumetric flow rate Q can be defined as

Q(x) =
1

2zwδ

∫ zw

−zw

∫ δ

0

U(x,y)dydz

=
1

2zwδ
(

∫ zw

−zw

∫ δ

0

φ0(x,y)dydz + x−1/2

∫ zw

−zw

∫ δ

0

φ1(x,y)dydz

+x−1

∫ zw

−zw

∫ δ

0

φ2(x,y)dydz + . . .)

= q0(x) + q1(x)x−1/2 + q2(x)x−1 + . . . =
N∑

n=0

qn(x)x−n/2 (5.3)

where δ = δ(x,Re) is a measure of the half inner wake thickness, zw is an arbitrary

spanwise length and

qn(x) =
1

2zwδ

∫ zw

−zw

∫ δ

0

φn(x,y)dydz =
1

δ

∫ δ

0

φn(x,y)dy. (5.4)

Since the wake is symmetric around the x coordinate, the adimensionalized longi-

tudinal velocity U is integrated in the transversal direction between 0 and δ.

The wake width δ is a function of x and Re and it can be defined in terms of

the displacement thickness of the boundary-layer theory (see Belan & Tordella 2002,

eq.(40))

δ(x,Re) =
2

1− u(x,y = 0; Re)

∫ ∞

0

(1− u(x,y; Re))dy (5.5)

If the wake width is approximated using the longitudinal velocity up to n = 1,

U(x,y) = φ0(x,y) + x−1/2φ1(x,y) = 1− Ax−1/2e−Rey2/(4x), one obtains

δ(x,Re) =
2

Ax−1/2

∫ ∞

0

(Ax−1/2e−Rey2/(4x))dy = 2

√
π

Re
x1/2, (5.6)

see Fig. 5.1. The approximated asymptotic behavior δ ∼ x1/2 can then be obtained.

The wake width can alternatively be defined by introducing the parameter ε, so

that
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Figure 5.1. Wake displacement thickness δ in (5.5)–(5.6) as a function of x
for Re = 20,40,60,80,100.

|1− U(x,yw; Re)| = ε, (5.7)

Thus, we can define the physical width yw as the half-wake thickness where condition

(5.7) is met, with 0 < ε ≤ 0.1. At the n = 1 order, the wake width is

yw(x; ε,Re) =
2√
Re

[xlog(
A

ε
√

x
)]1/2. (5.8)

See Fig. 5.2, where the dependence on ε of the wake width is shown in parts (a,

b) and where a comparison between definitions (5.5) and (5.7) is presented on the

volumetric flow rate in parts (c, d).

The entrainment is the physical quantity taking into account the volumetric flow

rate variation in the streamwise direction, and is defined as E(x) =
dQ(x)

dx
. Using

expansion (5.3), one obtains

E(x) =
dQ(x)

dx

=
N∑

n=0

[tn(x)− n− 2

2
qn−2(x)]x−n/2

=
N∑

n=0

en(x)x−n/2 (5.9)
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Figure 5.2. Wake width yw, in (5.7)–(5.8), as function of ε for Re = 20, Re = 60,
Re = 100 at x = 15 (part a) and x = 60 (part b). In parts (c, d) the volumetric flow
rate Q is shown as function of ε according to yw definition (5.7)–(5.8) (solid curves
with symbols) and δ definition (5.5)–(5.6) (dashed curves) for Re = 20, Re = 60,
Re = 100. Downstream stations x = 15 (c) and x = 60 (d).

where

tn(x) =
dqn(x)

dx
=

d

dx
(
1

δ

∫ δ

0

φn(x,y)dy) (5.10)

and where the sequence of the coefficients of the flow rate expansion (5.3) is enlarged

to include the elements q−2 = 0 and q−1 = 0.

The expression for coefficients φn(x,y) is

φ0(x,y) = 1, (5.11)
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which satisfies the boundary condition on U as x →∞, and

φn(x,y) = Ane−Rey2/(4x)[Cn1F1(
1− n

2
,
1

2
;
Rey2

4x
)

+ReHrn−1(x,y)Fn(x,y)], n ≥ 1, (5.12)

see §2 for details on the involved functions and the constants Cn (see also Belan &

Tordella, 2002; Tordella & Belan, 2003). Once φn are known, coefficients χn can be

obtained through the continuity equation, so that

χ0(x,y) = 0, (5.13)

which satisfies the boundary condition on V as x →∞, and

χn(x,y) =
1

2
√

x
[yφn−1(x,y) + (n− 2)

∫ y

0

φn−1(x,ζ)dζ], n ≥ 1. (5.14)

The entrainment E(x) can thus be directly related to the transversal velocity V

through coefficients χn, as

en(x) = tn(x)− n− 2

2
qn−2(x) (5.15)

with

tn(x) =

√
Re

π

d

dx
{
∫ δ

0

y−n

∫ y

0

[ζn−1 ∂

∂ζ
χn+1(x,ζ)]dζdy} (5.16)

and

qn(x) =

√
Re

π

∫ δ

0

y−n

∫ y

0

[ζn−1 ∂

∂ζ
χn+1(x,ζ)]dζdy. (5.17)

5.2.1 Expansion of the first four orders

Here we list in sequence the flow rate (5.3) and the entrainment (5.9) up to the third

order. The explicit expressions are

Q(x) = q0(x) + q1(x)x−1/2 + q2(x)x−1 + q3(x)x−3/2 (5.18)

E(x) = t0(x) + t1(x)x−1/2 + t2(x)x−1 + (t3(x)− 1

2
q1(x))x−3/2 (5.19)
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Zero order, n=0

q0(x) = 1 (5.20)

t0(x) = 0 (5.21)

First order, n=1

q1(x) = −A

δ

∫ δ

0

e−Rey2/(4x)dy = −A

2
erf(

√
π) (5.22)

t1(x) = −A
d

dx
(
1

δ

∫ δ

0

e−Rey2/(4x)dy) = 0 (5.23)

Second order, n=2

q2(x) = −A2

2δ

∫ δ

0

{e−Rey2/(4x)[C21F1(−1

2
,
1

2
;
Rey2

4x
)

+e−Rey2/(4x) +
1

2

y√
x

√
πReerf(

1

2

√
Re

x
y)]}dy (5.24)

t2(x) = −A2

2

d

dx
(
1

δ

∫ δ

0

{e−Rey2/(4x)[C21F1(−1

2
,
1

2
;
Rey2

4x
)

+e−Rey2/(4x) +
1

2

y√
x

√
πReerf(

1

2

√
Re

x
y)]}dy) (5.25)

Third order, n=3

q3(x) =
A3

δ

∫ δ

0

{e−Rey2/(4x)(2−Re
y2

x
)[

1

2
C3 −ReF3(x,y)]}dy (5.26)

t3(x) = A3 d

dx
(
1

δ

∫ δ

0

{e−Rey2/(4x)(2−Re
y2

x
)[

1

2
C3 −ReF3(x,y)]}dy) (5.27)

5.3 Streamwise evolution of the entrainment pro-

cess

The asymptotic behaviour of the expansion solutions (5.1)-(5.2) in the lateral far

field is important to determine the entrainment spatial evolution. At finite values of

x, the coefficient function φ for the streamwise velocity decays to zero as a Gaussian

law for n = 1 and as a power law of exponent −2 for n = 2 and of exponent −3 for
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n ≥ 3. The coefficient function χ for the transversal velocity goes to zero for n = 0,1

and to a constant value for n ≥ 2. This allows V to vanish as x−3/2 for x → ∞.

When x →∞ this solution coincides with the Gaussian representation given by the

Oseen approximation. It can be concluded that, at Reynolds numbers as low as

the first critical value and where the non-parallelism of the streamlines is not yet

negligible, the division of the field into two basic parts, an inner vortical boundary

layer flow and an outer potential flow, is spontaneously shown up to the first order

of accuracy (n = 1). At higher orders in the expansion solution, the vorticity is

first convected and then diffused in the outer field. This is the dynamical context

in which the entrainment process takes place.

Figure 5.3 shows the volumetric flow rate Q = Q(x,Re) and the entrainment

E = E(x,Re) obtained from expansions (5.3), (5.9). It can be observed that these

quantities significantly depend on the flow control parameter up to a distance of

nearly 20 body scales. In fact, at x = 5, by varying Re ∈ [20,100], Q varies from

0.62 to 0.24. An increase of Re by a factor 5 produces a decrease of Q by a factor

of about 2.5. However, this factor at x ∼ 22 reduces to 1.1, see Fig. 5.3(a). An

opposite situation is observed for the entrainment, which is the derivative of the

volumetric flow rate, see Fig. 5.3(b). An increase of Re from 20 to 100 produces,

at x = 5, an increase of E by a factor of about 3. By moving further downstream,

the decrease of Q and the increase of E with Re continue to reduce to just a few

percent at about x ∈ [50,60]. At this distance the volumetric flow rate is close

to 90% of the far field unitary value. Correspondingly, the entrainment process is

practically exhausted. It is interesting to observe that this distance happens to be of

the same order of magnitude of Re. This means that the multiple scales used in the

multiscaling stability analysis to represent the slow time and space wake evolution

- τ = εt and ξ = εx, where ε =
1

Re
(see §4.2) - are linked to the exhaust of the

entrainment process. The unitary values of the slow temporal and spatial scales are

reached where the entrainment vanishes.

It should be noted that the behaviour shown by the entrainment is qualitatively

close to the trend shown by the wavenumber and pulsation evolution of the dominant

saddle points of the zero order dispersion relation yielded by the nonparallel Orr-

Sommerfeld stability analysis (see §4.2.3-4.2.4 and for details Tordella, Scarsoglio

and Belan 2006, ; Belan and Tordella 2006). In relation to this observation, the

values of Q and E at Re = 50 and 100 for which the instability becomes absolute

are pointed out in Fig. 5.3 (triangle and circle symbols). It is interesting to note that

these highlighted positions (x ∼ 10) are close to the beginning of the intermediate

wake where the spatial evolution is intense, but inside the region where the thin
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Figure 5.3. Downstream distribution of the volumetric flow rate Q (a) and
entrainment E (b) for Re = 20,40,50,60,80 and 100. Integration carried out
using the δ wake width definition in (5.5)–(5.6). The triangle (Re = 50) and
the circle (Re = 100) are values related to the wake regions where absolute
instability occurs, according to a recent Orr-Sommerfeld spatio-temporal mul-
tiscale analysis (see §4.2.4 and for details Tordella, Scarsoglio and Belan 2006;
Belan and Tordella 2006).

shear layer hypothesis is valid. This aspect a posteriori makes the use of the WKBJ

method, for the stability analysis in slowly varying flows, self-consistent.

The choice of the lateral integral scales that can be used to determine integral

quantities such as the volumetric flow rate and the entrainment is here discussed.

An intuitive quantity in this regard is the wake width yw which, in order to be

defined, needs the introduction of an arbitrary threshold, see (5.8)-(5.7) and Fig.

5.2. Selecting a very small threshold ε would be meaningless because it would imply

a transversal length of integration going to infinity, which would not allow the finite

flow rate variations associated to the wake momentum defect to be estimated.

An alternative to the wake width yw is the displacement thickness δ, an integral

quantity often used in the boundary layer theory and which is directly associated

to the momentum defect in the wake, see (5.5)-(5.6). Figures 5.2 and 5.4 show

that the results obtained using the displacement thickness δ are very close to the

results obtained using a threshold equal to 0.01 (a position where the streamwise

component of the velocity reaches 99% of the free stream velocity). As known, the

displacement thickness is a very common definition used in boundary layer literature

and engineering applications.
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Figure 5.4. (a) Volumetric flow rate Q and (b) entrainment E as function of x
for Re = 40. Integration carried out using yw wake width definition in (5.7)–(5.8),
solid curves with ε = 10−6,10−4,10−2,10−1. The dashed curves represent Q and E
obtained using the displacement thickness δ, in (5.5)–(5.6).

5.4 Concluding remarks

The entrainment distribution in the intermediate and far laminar wake has been

analytically determined as an asymptotic expansion, using the Navier-Stokes ex-

pansion solutions for the inner field of the wake that successfully match an external

Navier-Stokes field (see §2). The general n-order term of the expansion is explicitly

obtained.

The entrainment is intense downstream the separation region, where the two-

symmetric standing eddies are situated. Here, the maximum of the distribution

is reached and the dependence on the Reynolds number is clear: the entrainment

trebles when Re is increased from 20 to 100. The subsequent downstream evolution

presents a continuous decrement of the entrainment which, in the case of a wake

flow, has to vanish in the far field. The decrease is almost concluded for all the

Re here considered at an average distance from the body of 50 − 60 diameters,

which is a value of the same order of magnitude as the control parameter Re. This

result means that the Reynolds number dependence becomes weak when moving

downstream and disappears in the far field. Moreover, it confirms the validity of

the multiscaling approach often adopted in wake stability analyses (see §4.2) and

carried out using the multiple spatial and temporal scales. The slow temporal and

spatial scales τ,ξ are usually taken equal to τ = εt and ξ = εx, where ε =
1

Re
.
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According to the present analysis, the physical scales τ ∼ 1, ξ ∼ 1 correspond to the

downstream region where the entrainment process is considered to be extinguished.
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Chapter 6

Transient dynamics and

asymptotic behaviour: the

initial-value problem

In this chapter, the three-dimensional initial-value problem concepts for the linear

stability study of a steady shear parallel flow are introduced. Although the stability

analysis has been widely recognized as an initial-value problem, the temporal dy-

namics of the perturbations has only recently become an important topic in stability

theory. The motivation, meaningful results in literature and the basis of the initial-

value problem formulation are given in §6.1 and §6.2. The next two sections will be

mainly dealing with a brief introduction to a traditional tool to solve an initial-value

problem, that is the Laplace transform (see §6.3), and with the goal, through a mov-

ing coordinate system and the Fourier transform, to find explicit unsteady solutions

for perturbations (see §6.4). The three-dimensional formulation here presented will

be then developed and extended to study the stability of the growing wake in §7. An

innovative spatio-temporal multiscale approach, where the small parameter will be

defined through the perturbation polar wavenumber, is presented in §6.5 and then

carried on for the weakly non-parallel wake stability in §8.

6.1 Introduction

Attention on the early transient behaviour of the perturbations has been widely

developing only in recent years, even if both Kelvin (1887 a, b) and Orr (1907 a,

b) had already recognized that the early transient contained important information.
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First, because of the many complexities in the mathematics formulation and the

lack of adequate computing in the early stages of the development, it was practi-

cally impossible to find either exact or approximate solutions. Second, traditional

studies did not indicate that the transient dynamics could have any influence on the

ultimate behaviour and it was simply ignored. Nowadays, it is becoming clear that

the purpose of modal formulation computations is of predicting the asymptotic fate,

and that in the early transient important events for the stability analysis can occur.

In fact, a transient growth can take place long before the exponential growth. In

principle, this behaviour could cause perturbation amplitude that violates the as-

sumption of linearity and promote rapid transition, phenomenon known as by-pass

transition.

It should be noted that the leading equations in stability analysis have different

properties than those that are common in initial-value and boundary-value problems.

In fact the principal one, the Orr-Sommerfeld equation, is of the fourth order and not

self-adjoint. The Orr-Sommerfeld equation does not have a set of known functions

that can be used to express arbitrary perturbations. There are means to form inner

products (see Drazin & Reid 1984) in this case, but only for the viscous channel

flow the discrete spectrum is complete (see DiPrima & Habetler 1969). In the

inviscid case, only the continuous spectrum exists (see Case 1960, 1961; Criminale,

Long & Zhu 1991). The boundary layer (Mack 1976) and the unbounded flows,

that exponentially decay to a constant in the free stream, have a finite number of

discrete modes. Anyhow, the presence of the continuous spectrum is a recognition

of the fact that there can be algebraic growth rather than just exponential.

Moreover, the attention mainly focused on the transient growth does not prevent

the present formulation from capturing the perturbation asymptotic fate. Through

the initial-value problem formulation, in fact, the complete temporal evolution of

arbitrary perturbations is known. Beyond the transient, the asymptotic temporal

limit can be reached and compared with the results given by the Orr-Sommerfeld

analysis (see §7.4).

On the one hand, the normal mode theory turns out to be a synthetic means, as the

Reynolds number is the only parameter, of answering to the question of whether or

not the flow is stable in the long time scale (see §3 and §4). On the other hand,

only ascertaining that there may be at least one positive eigenvalue is not sufficient

to conclude that the flow is unstable (see Grosch & Salwen, 1978 and Salwen &

Grosch, 1981), as the continuous spectrum must be examined.

The initial-value problem formulation developed in the following will be dealing with
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more parameters than the modal analysis (the most affecting ones are the symme-

try, the obliquity and the wavenumber of the perturbation) and can be thought of

as an extended alternative for evaluating the system response to arbitrary three-

dimensional disturbances. In fact, the direct calculation of the continuous spectrum

is no longer necessary as the transient behaviour, that is consequence of such a

spectrum, is unequivocally captured by the alternate scheme.

Moreover, based on this formulation, an optimization procedure - which will not

be developed here - can be determined without using a variational method. The

optimization scheme indicates the initial conditions that can lead to the largest

relative perturbation energy growth at a certain time (for details see results for

channel flows in Criminale et al., 1997).

6.2 The initial-value problem

The stability analysis will be considering arbitrary three-dimensional perturbations.

There are two principal reasons to generalize the formulation including oblique

waves. First, the Squire theorem is formulated within the modal stability analy-

sis and applies to the asymptotic fate of disturbances. Nothing can be concluded

on their early growth. Second, as noted in §3.5, the Squire theorem does not rule

out the possibility that, for high enough Reynolds number, an unstable oblique

oscillation can occur even though the purely two-dimensional one (with the same

longitudinal wavenumber) is damped. This point is referred to by Watson (1960) as

well as Betchov & Criminale (1967), but has not been exploited to date.

To this end, before carrying on with the fundamentals of the initial-value problem,

the Squire equation in partial differential equation form is introduced

(∂t + U∂x)ω̃y + U ′∂zṽ =
1

Re
∇2ω̃y, (6.1)

where ω̃y = ∂zũ − ∂xw̃ is the transversal component of the perturbation vorticity.

This second order not self-adjoint equation can be obtained - by considering a gen-

eral three-dimensional disturbance velocity field (ũ(x,y,z,t),ṽ(x,y,z,t),w̃(x,y,z,t)) -

through the same linearity assumption as in §3.2 and is necessary for the stabil-

ity analysis of three-dimensional perturbations. Moreover, the partial differential

Orr-Sommerfeld equation (3.10) can be alternatively expressed as

(∂t + U∂x)∇2ṽ − U ′′∂xṽ =
1

Re
∇4ṽ, (6.2)

in terms of the perturbation transversal velocity ṽ.

69



6 – Transient dynamics and asymptotic behaviour: the initial-value problem

From the mathematical complexities of the Orr-Sommerfeld equation - which

does not have a detailed set of known functional solutions and whose operator is of

the fourth order and not self-adjoint - and the Squire equation, it can be concluded

that there are algebraic as well as exponential solutions in time. There are two

main reasons for this. First, the eigenfunctions of the Orr-Sommerfeld and the Squire

equations are mutually non-orthogonal as the operators are not self-adjoint, and this

can cause algebraic growth for early time (see Sommerfeld 1949). Second, a possible

resonance between the Orr-Sommerfeld and Squire solutions can lead to algebraic

dependence. In the Squire equation, the inhomogeneous term is proportional to the

normal velocity component and is usually referred to as the lift-up term (Landhal

1980). This equation can be resonant if there is a matching of the frequencies of the

respective modes of the normal velocity with the dependent variable of the equation.

Resonance has been demonstrated to be possible for channel flow (Gustavsson &

Hultgren 1980; Gustavsson 1981; Benney & Gustavsson 1981) but does not occur

for the boundary layer. Resonance in the free shear flows is yet to be determined.

Moreover, the use of the Laplace transform to solve an arbitrary initial-value problem

(see Gustavsson 1979) showed that branch cuts as well as poles must exist when the

inversion back to the real space is to be made. This implies the existence of a

continuous spectrum and the transient behaviour associated.

Regardless the underlying source that is the cause, the algebraic growth trans-

lates into a linear time dependence. The perturbations can increase algebraically to

quite large amplitudes and eventually decay, for viscous dissipation, after a maxi-

mum is reached in finite time. Then, any exponential growth will prevail beyond

this point as time passes. For some problems, however, the transient growth can

be unbounded and the assumption of linearity is overcome long before the domi-

nance of any exponential growth. If, instead, there is no growing mode, the flow is

considered stable even if the initial growth reaches an amplitude that violates the

linearity assumption. These concepts will be put in the proper stability context as

the formulation is presented.

The equations (6.1)-(6.2) represent the point of departure for the initial-value

problem formulation. A two-dimensional Fourier decomposition in the x − z plane

is performed for every dependent variable, so that in the (α,γ) phase space the

equations become

(∂t + iαU)4v̂ − iαU ′′v̂ =
1

Re
44v̂ (6.3)

(∂t + iαU)ω̂y + iγU ′v̂ =
1

Re
4ω̂y (6.4)
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and can be used in a very general way to understand the initial-value problem. The

angle of obliquity is φ = tan−1(γ/α) and the polar wavenumber is k =
√

α2 + γ2.

The Fourier transform assures that all the dependent variables are bounded in the x

and z coordinates, which both range from −∞ to +∞. The remaining variable y ∈
(−∞, +∞) also requires boundary conditions for the velocity to be met. However,

the initial conditions are not necessarily given in terms of velocity. In fact, vorticity

is the actual physical quantity describing the perturbation dynamics, and this can

be seen through the kinematics relation

∇2ṽ =
∂ω̃z

∂x
− ∂ω̃x

∂z
, (6.5)

which in the phase space becomes

4v̂ = iαω̂z − iγω̂x = ikω̂φ, (6.6)

where ω̂φ is the perturbation vorticity component in the φ direction. The equations

(6.3), (6.4) and (6.6) are now clearly describing the disturbance dynamics in terms

of vorticity, and this further substantiates the choice of initial conditions in terms

of vorticity rather than velocity.

An important result for a correct formulation was given by Grosch & Salwen

(1978) and Salwen & Grosch (1981). They showed that any solution to (6.3), to-

gether with an initial condition, can be expressed as

v̂(α,γ,y,t) =
N∑

j=1

Aje
iωjtv̄j(y) + Vc(y,t) , (6.7)

where N is the number of discrete modes and is finite, Aj are the amplitude fac-

tors, ωj are the frequencies, v̄j(y) are the eigenfunctions, and Vc(y,t) represents the

continuum spectrum. Once an initial condition is prescribed, the amplitude factors

and the continuum spectrum can be found requiring the orthogonality between the

eigenfunctions and the adjoint eigenfunctions. As the system has to be numerically

solved, there are some difficulties in determining the eigenfunctions. This proce-

dure, although formally correct, is of limited use as cannot be easily applied. Thus,

alternative methods for analysis will be presented in the following. However, sig-

nificant results are to be noted. For the Blasius boundary layer, Salwen & Grosch

(1981) showed that, in the case φ = π/2, only the continuous spectrum exists, and

therefore transient growth is possible. The early growth is completely due to three-

dimensionality of perturbations. In fact, resonance is not possible for the boundary

layer (Benney & Gustavsson 1981) and, for φ = π/2, there is no contributions from
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non-orthogonality of the Orr-Sommerfeld and the Squire operators. This result

represents a further demonstration of the influence - on the transient growth - of

three-dimensionality, which can be the cause of the perturbation algebraic growth.

6.3 Laplace transforms

A traditional tool to solve an initial-value problem is the Laplace transform in time.

Significant contributions in the study of shear flows are due to Case (1960, 1961),

Gustavsson (1979) and Hultgren & Gustavsson (1981). The Laplace transforms

v̄(y,s) =

∫ ∞

0

v̂(y,t)e−st and ω̄y(y,s) =

∫ ∞

0

ω̂y(y,t)e−st, (6.8)

can be directly applied to equations (6.3) and (6.4), so that they become

(s + iαU)4v̄ − iαU ′′v̄ − 1

Re
44v̄ = [4v̂]t=0, (6.9)

(s + iαU)ω̄y + iγU ′v̄ − 1

Re
4ω̄y = ω̂y(y,0). (6.10)

The two leading partial differential equations are now ordinary ones, both with inho-

mogeneous terms. It should be noted that the specific initial conditions are directly

inserted into the equations and deeply influence the stability analysis. Unluckily,

only general properties can actually be found with this approach, as the ordinary

differential equations (6.9) and (6.10) are the same as the modal theory ones.

The stability analysis of the Blasius boundary layer was studied by Gustavsson

(1979) by means of the Laplace transform. In the evaluation of singularities in the

complex plane, he found out that branch cuts as well as poles are to be considered

when inverting the transform to the real time. The branch cut is the same as a

singularity (condition where the coefficient of the highest derivative vanishes). The

presence of these singularities implies that a continuum must exist. In this sense,

important results - confirming the presence of branch cuts in the complex space

when making the inversion of the Laplace transform to the real time - are also given

by Case (1960, 1961) for inviscid Poiseuille flow and general inviscid problems for

incompressible flows.

The use of Laplace transform is not remarkably different from the modal analysis.

In literature, it turned out to be useful to prove that the transient growth must exist

but, as the specific initial conditions strongly determine the subsequent dynamics,

other strategies for the initial-value problem formulation are to be examined.

72



6 – Transient dynamics and asymptotic behaviour: the initial-value problem

6.4 Moving coordinates and piecewise linear pro-

files: the exact solutions case

Kelvin (1887 a, b) and Orr (1907 a, b) first tried to find analytical unsteady solutions

for perturbations. Beside the class of exact solutions given by Craik & Criminale

(1986), more recent works (among others Criminale & Drazin 1990, 2000; Criminale,

Long & Zhu 1991; Bun & Criminale 1994; Criminale, Jackson & Lasseigne 1995)

with equivalent bases are aimed to explicitly solve initial-value problems.

According to this approach, the fundamental mechanism is that the disturbance

vorticity is advected by the base flow, while the mean vorticity is, in turn, advected

by the disturbance. For viscous problems, the perturbation vorticity can also be

diffused. If the mean flow is piecewise linear, then the base vorticity is piecewise

constant. In the case of particular travelling waves, this condition ensures that

the solutions of the full Navier-Stokes perturbative equations are exact (Craik &

Criminale 1986). In a more general fashion, Criminale & Drazin (1990) showed that

a set of basic solutions can be found for the linear perturbation problem. These

solutions are of closed form and contain both the discrete as well as the continuous

spectra allowing for arbitrary perturbations, so that the early transient and the

asymptotic behavior are captured. Moreover, the inviscid formulation is no longer

dealing with the critical layer concept and the perturbation scheme is, in general,

regular rather than singular.

The continuity and Navier-Stokes equations for perturbations applied to a steady

and incompressible flow can be expressed as

∇ · ũ = 0 (6.11)

∂ũ

∂t
+ U · ∇ũ + ũ · ∇ũ + ũ · ∇U = −∇p̃ +

1

Re
∇2ũ (6.12)

where the underbar denotes a vector quantity. Craik & Criminale (1986) assumed

that the perturbation velocity can be written in the form

ũ(x,t) = f(x,t)û(t), (6.13)

so that∇·ũ = û·∇f = 0. In this way, for reasonable functions f and û, the non-linear

terms in the Navier-Stokes equations vanish identically as ũ · ∇ũ = fû · ∇(fû) =

fû·∇f⊗û = 0, where ⊗ indicates the tensor product∇f⊗û = ∇fûT . In this special

case, the perturbation system turns out to be linear without requiring disturbances

to be small with respect to the mean flow.
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In general, the hypothesis of travelling wavelike fluctuations (6.13) is not adopted,

since it is too specific as initial condition. Thus, the solution of linearized perturba-

tive equations is consistent if oscillations are small with respect to the mean flow.

Various works are aimed to obtain explicit solutions for small initial perturbations

and reference can be made to Criminale & Drazin (1990). The fundamentals of the

method are, on the one hand, a coordinate transformation that changes the partial

differential equations to ones where the coefficients are at most functions of time

and, on the other hand, the use of piecewise linear functions to model the mean

profiles.

Here, the problem of the inviscid mixing layer (Bun & Criminale 1994) is illus-

trated as a guideline for the initial-value problem formulation. The mean flow is

U = (σy,0,0) and the moving coordinate transformation is defined as

ξ = x− σyt, (6.14)

which can be used when the mean profile can be expressed as Ui = σij(t)xj + U0
i (t).

After the Fourier transform is performed in ξ and z directions for the perturbation

quantities, the Rayleigh and Squire equations in the phase space are, respectively

∂

∂t
4v̂ = 0, (6.15)

∂w̃

∂t
= σsinφv̂, (6.16)

where

4v̂ =
∂2v̂

∂y2
+ 2iασt

∂v̂

∂y
− (k2 + α2σ2t2)v̂, (6.17)

and, by definition, ω̂y = −iγû + iαŵ and kw̃ = −γû + αŵ. The transformation

(6.14) can be thought of as a moving set of coordinate that is changing position

with the mean flow velocity. Due to (6.14), there is neither advection or production

of perturbation vorticity throughout the spatial domain. At the same time, for the

piecewise linear profile assumption the advection of the mean vorticity is only present

in equation (6.16). Far field conditions are satisfied by the boundedness of the

dependent variables in the phase space. In y direction, boundedness is automatically

met in view of the form the equations take, while matching conditions are needed

where the mean velocity changes from one linear variation to another. Equations

(6.15) and (6.16) are written in terms of the velocity components, but are equations

for vorticity, as the following relations ω̂y = ikw̃ and ω̂φ = − i
k
4v̂ hold, where ω̂φ

(see §6.2) is the vorticity component in φ direction.
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The simplified form of equations (6.15) and (6.16), obtained through the moving

coordinate transformation (6.14) and the use of a piecewise linear profile, allows

exact solutions to be obtained. In general, a vector field can be decomposed into

its solenoidal, rotational and harmonic parts. As the velocity is divergence free,

only the harmonic and the rotational parts remain. In the case of a three section

piecewise linear mean profile, the vorticity is initially imposed in the inner shear

region, while no initial value is given in the non-shear regions, thus the outer flow

is irrotational. The general solution has to remain bounded when y → ±∞, and is

expressed as

v̂ =





A(t)eky y ≤ −y0

B(t)eky−iασty + C(t)e−ky−iασty + v̂R −y0 < y < y0

D(t)e−ky y ≥ y0

where the coefficients are only function of time and v̂R indicates a particular rota-

tional component. The solution is obtained requiring the continuity of v̂ and the

pressure p̂ - which can be expressed through the momentum equations in terms of

v̂ - at the two locations y = −y0 and y = y0 where the base flow changes. Among

other results, Bun & Criminale (1994) found that the algebraic growth can lead to

non-linearity before an exponential mode occurs.

In a similar way the piecewise jet and wake (Criminale, Jackson & Lasseigne

1995) and the Couette flow (Criminale, Long & Zhu 1991) are studied in the invis-

cid limit. The results show that the rapid algebraic growth can evolve and three-

dimensionality is not to be neglected. The boundary layer is instead analyze in the

viscous case (Criminale & Drazin 2000) and the solutions, although complicate, are

expressed in explicit form through the method of matched asymptotic expansions.

The main results substantiate, once again, that linear disturbances can grow so

much in the transient as to promote non-linear growth.

6.5 Multiple scales analysis

The approach described above is mainly focused on the determination of explicit

solutions for the initial-value problem, regardless the fact that the mean flow has

discontinuous derivatives. How a continuous mean flow influences the perturbation

dynamics is a question that is still to be answered. To this end, an analytical

means of solving initial-value problems with continuous and parallel mean profiles

is presented. The problem is again described in terms of vorticity and a moving

coordinate transformation simplifies the governing equations in the phase space.
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Moreover, the perturbation scheme results to be regular rather than singular. The

essentials of the method are illustrated for the case of the Blasius boundary layer

(see Lasseigne, Jackson, Joslin & Criminale, 1999).

In the Fourier space, the Orr-Sommerfeld and Squire equations (6.3)-(6.4) are joined

by the following equation

∇2v̂ =
∂2v̂

∂y2
− k2v̂ = Γ̂. (6.18)

Now, for Γ̂,v̂,ω̂y, a transformation of the kind

Γ̂ = eikcos(φ)te−εk2tΓ (6.19)

holds, where ε = 1/Re. This is a special case of the more general moving coordinate

transformation (see §6.4), as all quantities are shifted with the value of the free

stream velocity. The governing equations become

∇2v = Γ (6.20)

∂Γ

∂t
− ε

∂2Γ

∂y2
= ikcos(φ)(U − 1)Γ− ikcos(φ)U ′′v (6.21)

∂ωy

∂t
− ε

∂2ωy

∂y2
= ikcos(φ)(U − 1)ωy − iksin(φ)U ′v (6.22)

When y →∞, the right hand sides of equations (6.21) and (6.22) vanish, as U → 1,

U ′ → 0 and U ′′ → 0. The two equations reduce to the heat diffusion equations in

the free stream and are easily solvable. When φ = π/2, the system can be explicitly

solved throughout the domain.

In some flow configurations, long waves can be destabilizing (e.g. Blasius bound-

ary layer and 3D cross-flow boundary layer). Results on the stability of 2D and 3D

boundary layers (see, among others, Mack, 1976; Schlichting 1968; Reshotko, 1976;

Reed & Saric, 1989; Saric, Reed & White, 2003) confirm this fact and show that

the perturbation wavenumber k is much less than O(1) when instability occurs. In

fact, large wavenumber values would imply short scales that can be easily damped.

Moreover, Lasseigne et al. (1999) noted that with the more general moving coordi-

nate transformation - which is changing position with the mean flow velocity - the

terms t, kt, k2t2 are present in the Laplace operator. All these points suggest that

multiple times and multiple scales can be identified, and k is the ideal parameter to

carry on a regular perturbation scheme. Specifically, two spatial and three temporal
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scales can be identified. Spatially, the scales are y and Y = ky. Temporally, they are

t, τ = kt and T = k2t. In the inviscid limit, the third temporal scale T is no longer

needed, as it is the asymptotic limit in time for the viscous problem, see (6.19).

The dependent variables Γ(y,Y,t,τ,T ; k,φ), v(y,Y,t,τ,T ; k,φ), ωy(y,Y,t,τ,T ; k,φ) should

be now expanded as follows

Γ = Γ0 + kΓ1 + k2Γ2 + · · · ,

v = v0 + kv1 + k2v2 + · · · ,

ωy = ωy0 + kωy1 + k2ωy2 + · · · , (6.23)

with k ¿ 1. Initial conditions at order O(1) are defined as in the full problem,

and at next orders (O(k), O(k2), · · · ) are equal to zero. Boundary conditions re-

main as stated in the full problem. It is necessary that the series expansions begin

as indicated, so that all variables are at the same order of magnitude. This point

can be noted from relations for ω̂y and ω̂φ, and the constraint of incompressibility

that requires the velocity to be divergence free. After the expansions (6.23) are

substituted into equations (6.20)-(6.22) with appropriate initial conditions, the vor-

ticity equations become a series of forced heat equations, while the equation for

the transversal velocity results in a series of equations forced at the outset. At any

order, the resulting equations can be explicitly solved. For the Blasius boundary

layer (see Lasseigne et al. 1999), a comparison between this method and the direct

numerical integration of the linear partial differential equations is presented. The

agreement is good, even to low orders of expansions.
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Chapter 7

Temporal behaviour of small

three-dimensional perturbations

applied to the growing wake

The linear stability of the two-dimensional wake - whose profile is derived in §2.3

- is studied as a three-dimensional initial-value problem through the formulation

presented in the previous chapter. Two main innovative features are introduced

here. First, the mean flow - which is parameterized with respect to the Reynolds

number and the longitudinal coordinate - is approximated through the longitudinal

component of the inner Navier-Stokes expansion (see §2.3), to include the slow spa-

tial evolution of the system in the stability analysis. Then, a complex wavenumber

in streamwise direction is considered when the transformation to the phase space

is performed. The leading equations are no more explicitly solvable, but numerical

means are required. However, most of the general features described in Chapter 6

still hold and can be extended here.

In synthesis, Laplace and Fourier decompositions are performed in streamwise and

spanwise directions, respectively. The perturbation is characterized by real stream-

wise and spanwise wavenumbers, and a uniform or damped spatial distribution along

the longitudinal direction. Amplified streamwise distributions are not considered

since the perturbation kinetic energy is required to be finite. The resulting equa-

tions in the phase space are numerically solved after appropriate initial and boundary

conditions are imposed. In §7.3, an exploration of different transient configurations

will be shown with particular attention to those parameters - such as the angle of

obliquity, the length, the symmetry and the spatial damping rate - which most af-

fect the early growth and the asymptotic fate. In §7.4 the perturbation asymptotic
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states are reproduced and, in the longitudinal case, it can be demonstrated that

the agreement with modal analysis turns out to be good for both symmetric and

asymmetric initial conditions. Concluding remarks are discussed in §7.5.

7.1 Introduction

The two-dimensional wake stability has been widely studied by means of normal

mode analysis (see §4.1). However, as previously stated, in this way only the asymp-

totic fate can be determined, regardless the transient behaviour and the underlying

physical cause of any instability. Recent shear flows studies (Butler & Farrell 1992;

Criminale & Drazin 1990; Criminale et al. 1991) have been showing the impor-

tance of the early time dynamics, which can in principle lead to non-linear growth

long before an exponential mode occurs. The recognition of the existence of an

algebraic growth, due - among other things - to the non-orthogonality of the eigen-

functions (Sommerfeld 1949) and a possible resonance between Orr-Sommerfeld and

Squire solutions (Benney & Gustavsson 1981), recently promoted many contribu-

tions directed to study the early-period dynamics. For fully bounded flows works

by Criminale et al. 1991, Criminale et al. 1997, Gustavsson 1991, Bergstrom 1993,

Schmid & Henningson 1994, Schmid 2007, and for partially bounded flows works by

Lasseigne et al. 1999, Hultgren & Gustavsson 1981, Criminale & Drazin 2000, can

be cited. As for free shear flows, the attention was first aimed to obtain closed-form

solutions to the initial-value inviscid problem (Bun & Criminale 1994; Criminale et

al. 1995) by considering piecewise linear parallel basic flow profiles. Recently, by

means of multiscale approach, explicit solutions have been obtained for continuous

parallel base flow profiles (Blossey, Criminale & Fisher 2007).

The initial-value problem is here extended to include, in the stability analysis, a

more accurate description of the mean flow. In particular, the longitudinal com-

ponent of the Navier-Stokes expansion solutions described in §2.3 is considered, so

that the problem is parameterized on x0 - the longitudinal coordinate - and the

Reynolds number Re. The formulation will be carried on similarly to what first

proposed by Criminale & Drazin (1990). Early transient and asymptotic behaviour

are examined for the base flow configurations corresponding to Reynolds numbers

(Re = 50,100) of the order of the critical value for the onset of the first instability,

and for longitudinal sections x0 inside the intermediate region of the flow where

the entrainment process is working (see §5.3). Different physical inputs - linked to

the shape, the obliquity, the length and the symmetry of the perturbation - which

most influence the subsequent temporal evolution are presented. In the initial-value

79



7 – Temporal behaviour of small three-dimensional perturbations applied to the growing wake

problem formulation, the introduction of a complex wavenumber in the streamwise

direction is an innovative feature suggested by the combined spatio-temporal modal

stability analysis. The imaginary part of the complex longitudinal wavenumber,

which determines the longitudinal evolution of the perturbing wave, plays an im-

portant role in the whole temporal evolution of the perturbation. In fact, varying

the order of magnitude of this parameter leads to actually different temporal trends.

A longitudinal asymptotic comparison with modal results - carried out considering

arbitrary initial conditions and not waves related to the most unstable mode - is

made. It can be demonstrated that the agreement is good for both the frequency as

well as the temporal growth rate.

7.2 The initial-value problem

7.2.1 Formulation

The first orders (n = 0,1,2) of the inner longitudinal component velocity field are

taken as a first approximation of the base flow. The analytical expression is reported

below for convenience

U(y; x0,Re) = 1− aC1x
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x0 +

√
πRe

2

y√
x0

erf

(√
Re

2

y√
x0

)


(7.1)

By changing the longitudinal coordinate x0, which plays the role of parameter to-

gether with the Reynolds number, the base flow profile (7.1) will locally approximate

the behaviour of the actual wake generated by the body. The wake sections taken

into account are in the interval 3 ≤ xo ≤ 50. Base flow configurations corresponding

to a Re of 50,100 are considered. In figure 7.1 a representation of the wake profile

at differing longitudinal stations is shown.

The continuity and Navier-Stokes equations - describing the system perturbed

with small disturbances - are linearized and expressed as

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
= 0 (7.2)
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Figure 7.1. Wake profile U(y; x0,Re) at different longitudinal stations x0 and for
different Reynolds numbers.

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽ

∂U

∂y
+

∂p̃

∂x
=

1

Re
∇2ũ (7.3)

∂ṽ

∂t
+ U

∂ṽ

∂x
+

∂p̃

∂y
=

1

Re
∇2ṽ (7.4)

∂w̃

∂t
+ U

∂w̃

∂x
+

∂p̃

∂z
=

1

Re
∇2w̃ (7.5)

where (ũ(x,y,z,t), ṽ(x,y,z,t), w̃(x,y,z,t)) and p̃(x,y,z,t) are the perturbation velocity

and pressure respectively. introduced. The independent spatial variables z and y are

defined from −∞ to +∞, x from 0 to +∞. All physical quantities are normalized

with respect to the free stream velocity, the spatial scale of the flow D and the

density. By combining equations (7.3)-(7.5) to eliminate the pressure terms, the

linearized equations describing the perturbation dynamics become
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(
∂

∂t
+ U

∂

∂x
)∇2ṽ − ∂ṽ

∂x

d2U

dy2
=

1

Re
∇4ṽ (7.6)

(
∂

∂t
+ U

∂

∂x
)ω̃y +

∂ṽ

∂z

dU

dy
=

1

Re
∇2ω̃y (7.7)

where ω̃y is the transversal component of the perturbation vorticity. The physical

quantity Γ̃ is defined as

∇2ṽ = Γ̃ (7.8)

In so doing, the three coupled equations (7.6), (7.7) and (7.8) describe the perturbed

system. Equations (7.6) and (7.7) are the Orr-Sommerfeld and Squire equations

respectively, known from the classical linear stability analysis for three-dimensional

disturbances and written in partial differential equation form. From kinematics, the

relation

Γ̃ =
∂ω̃z

∂x
− ∂ω̃x

∂z
(7.9)

physically links together the perturbation vorticity in the x and z directions (ω̃x and

ω̃z, respectively) and the perturbation velocity field. If equations (7.6) and (7.8) are

combined together, the following equation is valid

∂Γ̃

∂t
+ U

∂Γ̃

∂x
− ∂ṽ

∂x

d2U

dy2
=

1

Re
∇2Γ̃ (7.10)

which, together with (7.7) and (7.8), fully describes the perturbed system in terms of

vorticity. This formulation is not that common in linear stability analysis, although

the dynamics description is physically more appropriate in terms of vorticity than

velocity. For piecewise linear profiles it turned out to be useful in obtaining analytical

solutions (see §6.4). For continuous profiles, the governing perturbative equations

cannot be analytically solved in general, but they assume a reduced form in the free

stream (Blossey et al. 2007). Equations (7.7), (7.8) and (7.10) show that the only

cause of any perturbation vorticity production is the interaction between the mean

vorticity in z-direction (Ωz = −dU/dy) and the perturbation strain rates in x and

z directions ( ∂ev
∂x

and ∂ev
∂z

, respectively).

7.2.2 Laplace-Fourier transforms

The perturbations are Laplace and Fourier decomposed in the x and z directions,

respectively. A complex wavenumber α = αr + iαi along the x coordinate, as well
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as, a real wavenumber γ along the z coordinate are introduced. In order to have

a finite perturbation kinetic energy, the imaginary part αi of the complex longitu-

dinal wavenumber can only assume non-negative values. In so doing, perturbative

waves can spatially decay (αi > 0) or remain constant in amplitude (αi = 0). The

perturbation quantities (ṽ,Γ̃,ω̃y) involved in the system dynamics are now indicated

as (v̂,Γ̂,ω̂y), where

ĝ(y,t; α,γ) =

∫ +∞

−∞

∫ +∞

0

g̃(x,y,z,t)e−iαx−iγzdxdz (7.11)

indicates the Laplace-Fourier transform of a general dependent variable in the α−γ

phase space and in the remaining independent variables y and t. The governing

partial differential equations are

∂2v̂

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)v̂ = Γ̂ (7.12)

∂Γ̂

∂t
= − (ikcos(φ)− αi)U Γ̂ + (ikcos(φ)− αi)

d2U

dy2
v̂

+
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)Γ̂] (7.13)

∂ω̂y

∂t
= − (ikcos(φ)− αi)Uω̂y − iksin(φ)

dU

dy
v̂

+
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)ω̂y] (7.14)

where φ = tan−1(γ/αr) is the perturbation angle of obliquity with respect to the

x-y physical plane, k =
√

α2
r + γ2 is the polar wavenumber and αr = kcos(φ),

γ = ksin(φ) are the wavenumbers in x and z directions respectively. The imaginary

part αi of the complex longitudinal wavenumber is a spatial damping rate in stream-

wise direction. In figure 7.2 the three-dimensional perturbative geometry scheme is

shown.

From equations (7.12)-(7.14), it can be noted that there can’t be either advection

or production of vorticity in the free stream. Vorticity can only be diffused as just

the diffusive terms remain when y → ∞. Perturbation vorticity vanishes in the

free stream, regardless if it is initially inserted there (if inserted, vorticity is finally

dissipated in time when y → ∞). This means that the velocity field is harmonic if

y →∞.
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Figure 7.2. Perturbation geometry scheme.

The introduction, through the Laplace decomposition in x-direction, of a complex

wavenumber α is an innovative feature, as it permits to carry out a combined spatio-

temporal linear stability analysis that is a quite standard procedure for normal mode

theory, but is not that common for initial-value problems. Both transient behaviour

and asymptotic fate of the disturbances will be discussed in the following considering

the resulting influence of this new characteristic.

7.2.3 Initial and boundary conditions

Governing equations (7.12), (7.13) and (7.14) need proper initial and boundary

conditions to be solved. Among all solutions, those whose perturbation velocity

field is zero in the free stream are sought. Periodic initial conditions for

Γ̂ =
∂2v̂

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)v̂ (7.15)

can be shaped in terms of set of functions in the L2 Hilbert space, as
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v̂(0,y) = e−(y−y0)2cos(n0(y − y0)), case A

and

v̂(0,y) = e−(y−y0)2sin(n0(y − y0)), case B

for the symmetric and the asymmetric perturbations, respectively. Parameter n0

is an oscillatory parameter for the shape function, while y0 is a parameter which

controls the distribution of the perturbation along y (by moving away or bringing

nearer the perturbation maxima from the axis of the wake). In Fig. 7.3, the above

initial conditions are shown, in terms of v̂(0,y), for different values of n0.
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Figure 7.3. (a) Symmetric and (b) asymmetric initial conditions with
y0 = 0 and n0 = 1,5.

The transversal vorticity ω̂y is chosen initially equal to zero throughout the y domain,

to directly observe which is the net contribution of three-dimensionality on the

transversal vorticity temporal evolution. Otherwise, non-zero initial conditions for

the transversal vorticity

ω̂y = i(γû− αŵ), (7.16)

can be shaped in terms of set of functions in the L2 Hilbert space, and one of the

following conditions can be adopted

CASE I : v̂(0,y) = e−(y−y0)2sin(n0(y − y0)), û(0,y) = e−(y−y0)2sin(n0(y − y0)),

ŵ(0,y) = e−(y−y0)2sin(n0(y − y0));
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CASE II : v̂(0,y) = e−(y−y0)2cos(n0(y − y0)), û(0,y) = e−(y−y0)2sin(n0(y − y0)),

ŵ(0,y) = e−(y−y0)2sin(n0(y − y0));

CASE III : v̂(0,y) = e−(y−y0)2sin(n0(y − y0)), û(0,y) = e−(y−y0)2cos(n0(y − y0)),

ŵ(0,y) = e−(y−y0)2cos(n0(y − y0));

CASE IV : v̂(0,y) = e−(y−y0)2cos(n0(y − y0)), û(0,y) = e−(y−y0)2cos(n0(y − y0)),

ŵ(0,y) = e−(y−y0)2cos(n0(y − y0));

Results will later show how the initial introduction of normal vorticity can influence

the evolution of disturbances.

The trigonometrical system is a Schauder basis in each space Lp[0,1], for 1 < p < ∞.

More specifically, the system (1,sin(n0y),cos(n0y), . . . ), where n0 = 1,2, . . . , is a

Schauder basis for the space of square-integrable periodic functions with period 2π.

This means that any element of the space L2, where the dependent variables are

defined, can be written as an infinite linear combination of the elements of the basis.

Once initial and boundary conditions are properly set, the partial differential

equations (7.12)-(7.14) are numerically solved by method of lines on a spatial finite

domain [−yf , + yf ]. The value yf is chosen so that the numerical solutions are

insensitive to further extensions of the computational domain size. Here, yf is of

the order of magnitude 101. The spatial derivatives are centre differenced and the

resulting system is then integrated in time by an adaptative multi-step method

(variable order Adams-Bashforth-Moulton PECE solver).

7.3 Transient dynamics of the perturbations

In general, one of the salient aspects of the initial-value problem is to observe the

early transient evolution of various initial conditions. To this end, a measure of

the perturbation growth can be defined in the phase space through the disturbance

kinetic energy density

e(t; α,γ) =
1

2

∫ +yf

−yf

(|û|2 + |v̂|2 + |ŵ|2)dy

=
1

2

1

|α2 + γ2|
∫ +yf

−yf

(|∂v̂

∂y
|2 + |α2 + γ2||v̂|2 + |ω̂y|2)dy, (7.17)

The total kinetic energy can be obtained by integrating the energy density over all

α and γ. The normalized amplification factor G(t) can be introduced
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G(t; α,γ) =
e(t; α,γ)

e(t = 0; α,γ)
. (7.18)

This quantity can effectively measure the growth of a disturbance of wavenumbers

(α,γ) at the time t, for a given initial condition at t = 0 (Criminale et al. 1997;

Lasseigne et al. 1999). The temporal growth rate r is defined as

r(t; α,γ) =
log|e(t; α,γ)|

2t
, t > 0 (7.19)

and is introduced to evaluate both the early transient as well as the asymptotic

behaviour of the perturbation. It can be noted that r is not defined for t = 0. This

quantity has a precise physical meaning asymptotically in time.

In the following, a summary of significant transients for three-dimensional per-

turbations is presented. The results are all concerning the intermediate asymptotic

region of the wake, which is where the spatial evolution is mainly taking place.

This region can be considered of an extension equal to the distance from the body

where the entrainment process is becoming negligibly small. For laminar steady 2D

wakes this length turns out to be of the order of Re (see §5.3). In particular, the

polar wavenumber k changes in a range of values reaching at maximum the order of

magnitude O(1), according to what suggested by recent modal analyses (Tordella,

Scarsoglio & Belan, 2006; Belan & Tordella, 2006). The order of magnitude of the

spatial damping rate αi can vary around the polar wavenumber value.

First, a configuration with initial non-zero normal vorticity is considered. Figure

7.4 displays that initial vorticity ω̂y does not actually influence the perturbation

evolution. Amplification factors in cases (II) and (IV) almost coincide with the one

of the case with symmetric transversal velocity and zero initial vorticity (case A).

A similar behaviour is shown by the amplification factors of cases (I) and (III),

which are very close to the one of the case with asymmetric transversal velocity and

zero initial vorticity (case B). Analogous agreements can be obtained with different

values of parameters. This means that the contribution of the transversal vorticity

to the global energy growth G is basically all due to the three-dimensionality of the

imposed disturbance. This fact is true in the case where the disturbance is weakly

inclined with respect to the base flow plane (φ = π/8), and is even more evident

for larger values of the obliquity angle. The transversal vorticity is immediately

generated when φ 6= 0, regardless the choice of the initial conditions. According to

this result, normal vorticity will be initially taken equal to zero in the following.

Figure 7.5 yields differing examples of early transient periods and the corresponding

temporal growth rates r when the obliquity angle φ is varied. A growing wave
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Figure 7.4. The amplification factor G as function of time. Re = 100,
k = 0.3, αi = 0.1, β0 = 1, y0 = 0, φ = π/8, x0 = 8.50, differing initial
conditions (cases A, B, I, II, III, IV).

becomes damped when the obliquity angle is larger than 3/8π. For transversal

waves with φ > 3/8π, a low maximum of energy (G ∼ 7) is reached before the

perturbations are asymptotically damped.

Figure 7.6 shows that, for an unstable configuration occurring for a purely three-

dimensional disturbance, the amplification is only delayed in time for higher values

of n0 (a logarithmic scale is used on the ordinate in Fig. 7.6a). This means that, in

the temporal asymptotic limit, the effect of a perturbation oscillating many times

across the basic flow is as destabilizing as the effect of a single spatially fluctuating

wave. On the contrary, transients are actually affected by the spatial frequency of

oscillations. By increasing n0, the temporal trend of G is no more monotone but

initial decreases of energy - lasting up to 15 time scales - are present before the

asymptotic unstable states are reached.

Other examples of early transient periods and corresponding temporal growth rates
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Figure 7.5. Effect of the obliquity angle (φ). (a) The amplification factor G and
(b) the temporal growth rate r as function of time. Re = 100, k = 1.5, αi = 0.01,
n0 = 1, y0 = 0, x0 = 14, symmetric initial condition, φ = 0,π/8,π/4,(3/8)π,π/2.
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Figure 7.6. Effect of the shape function oscillatory parameter (n0). (a) The
amplification factor G and (b) the temporal growth rate r as function of time.
Re = 50, k = 0.9, αi = 0.15, φ = π/2, y0 = 0, x0 = 14.00, asymmetric initial
condition, n0 = 1,3,5,7.

r are shown in Figures 7.7 to 7.11. Fig. 7.7 displays that almost purely three-

dimensional perturbations are all asymptotically stable when varying their wavenum-

bers k. But before the asymptotic states, they all show maxima of energy in the

transients. Increasing k, the growth rate of the transient seems to tend to a limiting
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value (see solid line in the figure 7.7a). The maximum growth is obtained for k ∼ 1

and reaches a value G ∼ 6.
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Figure 7.7. Effect of the wavenumber k. (a) The amplification factor G and (b)
the temporal growth rate r as function of time. Re = 100, αi = 0.01, n0 = 1,
φ = 3/8π, y0 = 0, x0 = 6.50, asymmetric initial condition, k = 0.5,1,1.5,2,2.5.

In Fig. 7.8 an interesting phenomenon is observed for a purely three-dimensional

wave. It can be seen that, by increasing the order of magnitude of αi, perturbations

that are more rapidly damped in space lead to a faster growth in time (a logarithmic

scale is used on the ordinate in Fig. 7.8a). Moreover, uniform (αi = 0) and slowly

damped perturbations in streamwise direction are asymptotically damped in time,

while for increasing values of the spatial damping rate the disturbances are deeply

amplified in time.

In Figure 7.9, the influence of y0 (the position where the concentration of the pertur-

bation energy is maximum) on the perturbation evolution is considered. In asymp-

totically stable cases (a)–(b), the damping is more rapid and the maxima of energy

disappear for larger y0 values. In asymptotically unstable cases (c)–(d), an increase

of y0 leads to a delay of the perturbation amplification, and minima of energy are

present before the asymptotic growths are reached (note that in part (c) of Fig.

7.9 a logarithmic scale was used on the ordinate). This means that if most of the

perturbation energy is outside the base flow region, for an unstable configuration

the growth is delayed in time, while for a stable configuration the decrease of energy

is accelerated and the asymptotic state is reached earlier.

Figure 7.10 takes into account the influence, on the early time behaviour, of the

perturbation symmetry and of the wake region considered in the analysis, which is
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Figure 7.8. Effects linked to the presence of the imaginary part in the wavenumber
α. (a) The amplification factor G and (b) the temporal growth rate r as function
of time. Re = 50, k = 1.2, n0 = 1, φ = π/2, y0 = 0, x0 = 14.50, symmetric initial
condition, αi = 0,0.01,0.05,0.1.

represented by the parameter x0. All the configurations considered are asymptoti-

cally amplified, but the transients are different. The asymmetric cases (a) present,

for both the intermediate position x0 = 10 (solid curve) and the far field position

x0 = 50 (dashed curve), two temporal evolutions. For x0 = 10 a local maximum,

followed by a minimum, is visible in the energy density, then the perturbation is

slowly amplifying and the transient can be considered extinguished only after hun-

dreds of time scales. For x0 = 50 these features are less marked. It can be noted

that the far field configuration (x0 = 50) has a faster growth than the intermediate

field configuration (x0 = 10) up to t = 400. However, in the asymptotic state the

growth is comparable. In the symmetric cases (b) the growths become monotone

after few time scales (t = 20) and the perturbations quickly reach their asymptotic

states (around t = 50). The intermediate field configuration (x0 = 10, solid curve)

is always growing faster than the far field configuration (x0 = 50, dashed curve).

This particular case shows a behaviour that is generally observed in this analysis,

that is, asymmetric conditions lead to transient evolutions that last longer than the

corresponding symmetric ones, and demonstrates that the transient growth for a

longitudinal station in the far wake can be faster than in the intermediate wake.

However, the more noticeable results presented in Fig. 7.10 are that the asym-

metric growths in the early transient are much less rapid than the symmetric ones

and that the function G, in the case of asymmetric perturbations only, clearly shows
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Figure 7.9. Effect of the shape function parameter y0. (a)-(c) The amplifi-
cation factor G and (b)-(d) the temporal growth rate r. Re = 100, k = 1.2,
αi = 0.01, n0 = 1, x = 12, symmetric initial condition, y0 = 0,2,4,6. (a)-(b):
φ = π/2. (c)-(d): φ = 0.

a modulation which is very evident in the first part of the transient, and which cor-

responds to a modulation in amplitude of the pulsation of the instability wave, see

for example results for the asymmetric case in Fig. 7.13(b). In the early transient

the angular frequency oscillates around a mean value with a regular period, which is

the same visible on G, the square norm of the velocity oscillation, and an amplitude

which is growing until this value jumps to a new value around which oscillates in a

damped way. This second value is the asymptotic constant value. This behaviour is

always observed in the case of asymmetric longitudinal or oblique instability waves.
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Figure 7.10. Effect of the symmetry of the perturbation. (a) - (b): The amplifica-
tion factor G as function of time. (a) asymmetric initial condition, (b) symmetric
initial condition. Re = 100, k = 0.6, αi = 0.02, n0 = 1, y0 = 0, x0 = 11 and
50, φ = π/4. Intermediate (x0 = 11, solid curves) and far field (x0 = 50, dashed
curves) wake configurations. The periods τinter,τfar are those of the modulation
visible on G, in the intermediate and far field, respectively.

Instead, it is not shown by transversal (φ = π/2) waves or by symmetric waves

where, on the one hand, the asymptotic value is rapidly reached after a short mono-

tone growth and, on the other, the growth is many order of magnitude faster, and as

a consequence, a modulation would not be easily observable. Thus, two time scales

are observed in the transient and long term behaviour of longitudinal and oblique

perturbations: namely, the periodicity associated to the average value of the pulsa-

tion in the early transient, clearly visible in the asymmetric case only, and the final

asymptotic pulsation. The asymptotic value of the pulsation is usually higher than

the initial one.

Figure 7.11 illustrates a very interesting comparison between two-dimensional and

three-dimensional waves (a logarithmic scale on the ordinate is used in part (a) of

Fig. 7.11). The purely two-dimensional wave (solid curve) is immediately reaching

a low maximum of amplitude (at about t = 15), then the perturbation decreases

while oscillating and reaches an absolute minimum around t = 150. Afterwards,

the disturbance slowly grows up to about t = 300, where an inflection point of the

amplification factor G occurs. Then, the growth becomes faster and the perturbation

is strongly amplified in time. The purely three-dimensional perturbation (dashed

curve) is instead immediately amplified following a monotone trend, and does not
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Figure 7.11. Effect of the angle of obliquity φ. (a) The amplification factor G
and (b) the temporal growth rate r as function of time. Re = 100, k = 0.7,
n0 = 1, αi = 0.02, y0 = 0, x0 = 11.50, asymmetric initial condition, φ = 0 (solid
curves), φ = π/2 (dashed curves).

present fluctuations in time. The initial growth is actually rapid and an inflection

point of the amplification factor G can be found around t = 50. Beyond this point,

the growth changes its velocity and becomes slower, but still destabilizing. Both

cases have asymmetric initial conditions and are ultimately amplified. The two-

dimensional case turns out to be more unstable than the three-dimensional one, as

the 2D asymptotically established exponential growth is more rapid than the 3D

one (see solid and dashed curves in Fig. 7.11(a) for t > 400). However, it should

be noted that for a quite extended part of the transient (up to about t = 380), the

three-dimensional perturbation presents a larger growth than the two-dimensional

one. Moreover, both the transients are lasting hundred time scales, a fact that is in

agreement with what previously stated for asymmetric inputs. This configuration

presents a 3D rapid growth, a condition that could in principle lead to by-pass

transition. However, in this case, the early 3D amplification is slower than the 2D

asymptotic growth (compare thick line and solid curve beyond t > 400, in Fig.

7.11(a)), thus the lift-up mechanism cannot occur.

As a general comment, a long-term unstable behaviour (see Figures 7.6 and 7.11)

as well as initial transient growth followed by asymptotic damping (see Fig. 7.9) is

shown for viscous transversal waves (φ = π/2). Unstable final behaviour for purely

transversal waves was instead always observed in inviscid stability analysis carried

out with the present initial-value problem formulation (see Blossey et al. 2007)
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7 – Temporal behaviour of small three-dimensional perturbations applied to the growing wake

in the two-dimensional parallel jet and mixing layer. An initial transient growth,

followed by a non permanent decay, is also displayed by two-dimensional waves (see

Fig. 7.11). Longitudinal waves, however, have in general a monotone increasing or

decrasing behaviour, and sometimes show a minimum of energy before an ultimate

growth. A two-dimensional perturbation is usually reaching its (stable or unstable)

asymptotic state faster than oblique waves, when the other parameters are fixed (see

an example in figure 7.12, §7.4).

7.4 Asymptotic behaviour and comparison with

normal mode analysis

Computations to evaluate the long time asymptotics are made by integrating the

equations forward in time beyond the transient (Criminale et al. 1997; Lasseigne et

al. 1999) until the temporal growth rate r, defined in relation (7.19), asymptotes to

a constant value (dr/dt < ε). The choice of the threshold ε can offer a quantitative

support of when the transient can be considered extinguished. In Fig. 7.12, the

temporal growth rates of three configurations with different angles of obliquity are

shown. The open circles indicate when r can be approximated as a constant value,

according to the above criterium (ε ∼ 10−4). These results demonstrate that, as

stated before, an increase of the angle of obliquity implies transients that last longer.

The angular frequency (pulsation) f of the perturbation can be defined consid-

ering the phase ϕ of the complex wave at a fixed transversal station (for example

y = 1)

ϕ(t; α,γ) = arg(v̂(y = 1,t; α,γ)) = tan−1(
v̂i(y = 1,t; α,γ)

v̂r(y = 1,t; α,γ)
) (7.20)

and then computing the time derivative of the phase perturbation ϕ

f(t; α,γ) =
|dϕ(t; α,γ)|

dt
(7.21)

Although defined at any time t, the frequency f is here referred to as an asymptotic

property of the perturbation. Since defined through the perturbation velocity field,

it is reasonable expecting constant values of frequency, once the asymptotic state

is reached. Moreover, it can be observed that the temporal scale over which the

pulsation asymptotes to a constant value is, at maximum, as long as the scale of the

extinguishing transient, according to the criterium dr/dt < ε (see for example Fig.
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Figure 7.12. Temporal growth rate r as function of time (continuous curves) and
temporal length of the transient (open circles) according to the criterium dr/dt < ε,
with ε ∼ 10−4. Re = 100, k = 1.2, αi = 0.05, n0 = 1, y0 = 0, x0 = 10.50, symmetric
initial condition, φ = 0,π/4,π/2.

7.13). This means that, beyond the time for which dr/dt < ε is becoming valid,

both temporal growth rate and frequency are reaching their asymptotic values.

In Fig. 7.13, the complete evolution in time of the temporal growth rate and the

frequency, for symmetric and asymmetric initial conditions, is shown for a particular

configuration (k = 0.5, αi = 0.02, x0 = 10, φ = 0, Re = 100). These results

verify that the transient is lasting longer for asymmetric inputs rather than for the

symmetric ones (see Fig. 7.10), as can be seen by symbols indicating when the

asymptotic state is reached. In this case, according to the criterium dr/dt < ε

with ε ∼ 10−4, the asymptotic state can be considered as reached beyond t = 90

for symmetric inputs, and beyond t = 600 for asymmetric inputs. In general, for

asymmetric perturbations the transient is extinguished after a time scale t ∼ 102,
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Figure 7.13. (a) Temporal growth rate and (b) angular frequency as function of
time for symmetric (dashed curves) and asymmetric (solid curves) initial conditions,
and temporal length of the transient (circles: symmetric perturbation, triangles:
asymmetric perturbation) according to the criterium dr/dt < ε. Re = 100, x0 = 10,
k = 0.5, αi = 0.02, φ = 0, y0 = 0, n0 = 1, ε ∼ 10−4.

while for symmetric disturbances the transient time scale is t ∼ 10. Moreover, as

previously said, the frequency asymptotes to a constant value after a time, at most,

equal to the one of the extinguishing transient. Here, this fact is confirmed for both

symmetric and asymmetric disturbances, as the frequency reaches its asymptotic

value just before the transient can be thought of as concluded (see symbols in Fig.

7.13(b) indicating the length of the transient, according to the criterium dr/dt < ε).

It should be noted that, for the asymmetric case, frequency f and temporal growth

rate r rapidly oscillate around a mean value in the transient up to t = 500 and

then reach their asymptotic states, while in the symmetric case a monotone trend

is observed for both frequency and temporal growth rate before the final states are

reached.

Figure 7.14 presents a longitudinal comparison between the initial-value problem

and the asymptotic theory results represented by the zero order Orr-Sommerfeld

problem in terms of temporal growth rate r and pulsation f .

In fig. 7.14 the imaginary part αi of the complex longitudinal wavenumber is fixed,

and differing polar wavenumbers (k = αr) are considered. For both the symmetric

and asymmetric arbitrary disturbances here considered, a good agreement with the

stability characteristics given by the multiscale near-parallel Orr-Sommerfeld theory

can be observed. However, it should be noted that the wavenumber corresponding
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Figure 7.14. n0 = 1, y0 = 0, φ = 0, ε ∼ 10−4. (a) Temporal growth rate and (b)
pulsation. Comparison among the asymptotic results obtained by the initial-value
problem analysis (circles: symmetric perturbation; triangles: asymmetric pertur-
bation), normal mode analysis (solid curves), and experimental data (Williamson
1989, thick line in (a) and square in (b)). αi = 0.05, x0 = 11, Re = 50.

to the maximum growth factor in the case of asymmetric perturbations is about

15% lower than the one obtained in the case of symmetric perturbations and the

one obtained by the normal mode analysis. When the perturbations are asymmetric,

the transient is very long, of the order of hundreds time scales. This difference can be

due either to the fact that the true asymptote is not yet reached, or to the fact that

the extent of the numerical errors in the integration of the equations is higher than

that obtained in the case of symmetric transients, which last only a few dozen time

scales. Note that this satisfactory agreement is observed by using arbitrary initial

conditions in terms of elements of the trigonometrical Schauder basis for the L2

space, and not by considering as initial condition the most unstable waves given by

the Orr-Sommerfeld dispersion relation. Moreover, a maximum of the perturbation

energy (in terms of r) is found around k = 0.8 and confirmed by both the analyses.

As shown in Fig. 7.14, initial-value problem results are also contrasted with the

laboratory experimental results obtained in 1989 by Williamson, who gave a quanti-

tative determination of the Strouhal number and wavelength of the vortex shedding

– oblique and parallel modes – of a circular cylinder at low Reynolds number. The

comparison is quantitatively good, because it shows that a wavenumber close to the

wavenumber that theoretically has the maximum growth rate at Re = 50 (see part

(a) of Fig. 7.14) has a – theoretically deduced – frequency which is very close to
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the frequency measured in the laboratory. At this point, also the laboratory exper-

imental uncertainty, globally of the order of a ±10% in an accurate measurement

set up, should be introduced. The uncertainty associated to the laboratory method

and to the theoretical model (estimated through the difference between the position

of the maximum growth rate showed by the two cases of asymmetric and symmetric

perturbation) overlaps, which confirms the quality of this comparison. The same

quantitative agreement is observed also at Re = 100.

7.5 Concluding remarks

The three-dimensional stability analysis of the intermediate asymptotics of the two-

dimensional viscous growing wake has been considered as an initial-value problem.

The vorticity formulation is analogous to the one first proposed by Criminale &

Drazin (1990). The perturbative equations are Laplace-Fourier transformed in the

plane normal to the base flow. Differently to what usually done, a complex wavenum-

ber in the streamwise direction has been introduced, by means of a spatial Laplace

transform in streamwise direction.

An important point is the kind of base flow used in the formulation. Since the

longitudinal component of the Navier-Stokes matched asymptotic expansion is only

considered, the initial-value problem becomes a near parallel analysis parameterized

on the streamwise variable, which makes this study similar to a zero order multiscale

near-parallel Orr-Sommerfeld analysis. The use of a parameterized base flow can

be thought of as a first step to better describe the spatial evolution of the physical

system. In this regard, the introduction of the imaginary part of the longitudinal

wavenumber (the spatial damping rate) was done to explicitly include also in the

structure of the perturbation, which otherwise would have been homogeneous in the

x coordinate, a degree of freedom associated to the spatial evolution of the system.

Various transient scenarios have been observed in the region of the wake where

the entrainment is present for Re 50,100. For example, initial damping followed by

a fast growth for perturbations aligned with the basic flow, initial transient growths

that smoothly level off and are followed either by an ultimate damping or by a slow

amplification for oblique waves. As a general and summarizing comment, it can be

concluded that the most important parameters affecting these configurations are the

angle of obliquity, the symmetry of the perturbation and the spatial growth rate.

While the symmetry of the disturbance is remarkably influencing the transient be-

haviour leaving inalterate the asymptotic fate, a variation of the obliquity and the
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7 – Temporal behaviour of small three-dimensional perturbations applied to the growing wake

spatial growth rate can significantly change both the early trend and the final sta-

bility configuration. The number of oscillations and the distribution in y direction

were also considered. However, their effect is only to extend or shorten the length of

the transient, while the ultimate state is not different. More specifically, if the per-

turbation oscillates rapidly or lies mainly outside the shear region then, for a stable

configuration, the final damping is accelerated while, for an unstable configuration,

the asymptotic growth is delayed. The asymptotic fate of purely transversal viscous

waves can show a long-term unstable behaviour as well as initial transient growth

followed by asymptotic damping. On the contrary, a weak final growth is generally

observed for inviscid transversal waves in 2D parallel jets and mixing layers studied

with the same initial-value problem formulation.

For disturbances aligned with the flow, it has been demonstrated that the asymp-

totic behaviour is in good agreement with the zero order results of spatio-temporal

multiscale modal analyses. It should be noted that this agreement is obtained not

using as initial condition the most unstable wave given by the Orr-Sommerfeld dis-

persion relation at any section of the wake, but arbitrary initial conditions in terms

of elements of the trigonometrical Schauder basis for the L2 space.
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Chapter 8

Multiple scales analysis for the

stability of long waves in

near-parallel flows

In this chapter, the three-dimensional stability analysis of long waves applied to the

two-dimensional wake is studied as an initial-value problem by means of a multi-

ple scales approach. Since different scales can be identified in the stability analysis

of spatially developing flows, the polar wavenumber can be considered a small pa-

rameter for a perturbative analysis in the limit of long waves. Indeed, there are

some flow configurations for which long waves are destabilizing (for example Blasius

boundary layer and three-dimensional cross flow boundary layer). In such instances,

wavenumber of the unstable wave is much less than O(1).

The initial-value problem formulation is carried on in terms of velocity and vorticity,

similarly to what first proposed by Criminale & Drazin (1990), but considering

now a non-parallel base flow (see §8.1.1). The base flow is, in fact, approximated

using both the longitudinal as well as the transversal components of the asymptotic

Navier-Stokes expansions (see §2.3), so that non-parallelism is directly inserted in the

stability analysis. A regular perturbation expansion for k → 0 is defined in §8.1.2.

The introduction of a complex wavenumber in streamwise direction, considered when

the transformation to the phase space is performed, makes the equations solvable

at any order. A combined Laplace-Fourier transform in the x and z directions is

proposed in order to consider a perturbation characterized by real streamwise and

spanwise wavenumbers, and a uniform or damped spatial longitudinal distribution.

Growing streamwise distributions are not allowed, as the perturation kinetic energy

has to remain finite. Perturbative equations are presented and discussed up to
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order O(k). Results concerning the perturbation temporal evolution are presented in

§8.2. Comparisons between multiscaling O(1) and full problem solutions in the early

transient show a good agreement in differing physical configurations (see §8.2.1).

An asymptotic comparison between multiscale data and full problem results can

be made. It can be demonstrated that the agreement turns out to be very good.

Conclusive comments are given in §8.3.

The recognition of some free shear flows as systems which slowly evolve with

respect to small unsteady perturbations allows the use of asymptotic methods (see

Bender & Orszag, 1978) to study their stability.

In literature, the WKBJ method has been usually adopted, defining as small param-

eter the inverse of the Reynolds number, ε = 1/Re (see for example Bouthier, 1973;

Belan & Tordella, 2006; Tordella, Scarsoglio & Belan, 2006). In this way, the per-

turbative method is based on the base flow parameter characterizing its streamwise

evolution. However, it should be noted that an asymptotic perturbative expansion

based on the inverse of the Reynolds number leads to a singular perturbation anal-

ysis, as in the Orr-Sommerfeld equation the highest order term is vanishing for ε

values going to zero.

Here, instead, the definition of the polar wavenumber k as small parameter of the

perturbation approach (see Lasseigne et al., 1999; Blossey, Criminale & Fisher,

2007) leads to a regular perturbation scheme. The use of a perturbation Laplace

decomposition in streamwise direction (Scarsoglio, Tordella & Criminale 2007) yields

solvable equations at any order. The validity of the multiscale approach is here

analyzed in the case of the two-dimensional wake.

8.1 The initial-value problem by means of multi-

scale approach

8.1.1 Formulation

The inner solution, that includes both the longitudinal and the transversal com-

ponents of the asymptotic Navier-Stokes expansions up to O(x−3/2) (see §2.3), is

considered to approximate the wake profile. In this way, the transversal non-linear

and diffusive dynamics of the base flow is directly introduced into the initial-value

problem formulation. The base flow is not parameterized with respect to the lon-

gitudinal coordinate only (see §7.2.1 and Scarsoglio et al. 2007), but a further

improvement concerning the base flow spatial evolution is made. In fact, the two
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velocity components are both explicit functions of x and y. As a consequence, the

non-parallelism is fully included and its influence on the perturbation evolution can

be considered.

The continuity and Navier-Stokes equations for the perturbed system are lin-

earized with respect to small three-dimensional oscillations

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
= 0 (8.1)

∂ũ

∂t
+ ũ

∂U

∂x
+ U

∂ũ

∂x
+ ṽ

∂U

∂y
+ V

∂ũ

∂y
+

∂p̃

∂x
=

1

Re
∇2ũ (8.2)

∂ṽ
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+ ũ

∂V
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∂ṽ

∂x
+ ṽ

∂V

∂y
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∂ṽ

∂y
+

∂p̃
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1

Re
∇2ṽ (8.3)

∂w̃

∂t
+ U

∂w̃

∂x
+ V

∂w̃

∂y
+

∂p̃

∂z
=

1

Re
∇2w̃ (8.4)

where (ũ(x,y,z,t), ṽ(x,y,z,t), w̃(x,y,z,t)) and p̃(x,y,z,t) are the perturbation velocity

and pressure respectively. The independent spatial variables z and y are defined

from −∞ to +∞, x from 0 to +∞. All physical quantities are normalized with

respect to the free stream velocity, the spatial scale of the flow D and the density.

By combining momentum equations (8.2)-(8.4) to eliminate the pressure terms, the

resulting governing equations become

∇2ṽ = Γ̃, (8.5)

∂Γ̃

∂t
= −[U

∂
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+ V
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− 1

Re
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∂2Ωz

∂x∂y
]ṽ +

+
∂Ωz

∂x

∂w̃

∂z
+

∂V

∂y

∂ω̃x

∂z
− ∂V

∂x

∂ω̃y

∂z
− [

∂U

∂x

∂

∂x
+

∂V

∂x

∂

∂y
]ω̃z, (8.6)

∂ω̃y

∂t
= −[U

∂

∂x
+ V

∂

∂y
+

∂U

∂x
− 1

Re
∇2]ω̃y − ∂U

∂y

∂ṽ

∂z
+

∂V

∂x

∂w̃

∂y
, (8.7)

where the perturbation vorticity (ω̃x,ω̃y,ω̃z), the mean vorticity in spanwise direc-

tion Ωz =
∂V

∂x
− ∂U

∂y
and the kinematics relation Γ̃ =

∂ω̃z

∂x
− ∂ω̃x

∂z
have already been

included. Equations (8.6) and (8.7) are the Orr-Sommerfeld and Squire equations

respectively, written in partial differential equation form and expressed through dif-

ferent dependent variables. Since 7 scalar unknown quantities (ũ,ṽ,w̃,ω̃x,ω̃y,ω̃x,Γ̃)

are involved in the three scalar equations (8.5)-(8.7), four more scalar relations are

needed. Thus, the perturbation vorticity definition and the continuity equation
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ω̃ = ∇× ũ, (8.8)

∇ · ũ = 0, (8.9)

where ω̃ = (ω̃x,ω̃y,ω̃z) and ũ = (ũ,ṽ,w̃), formally close the perturbative system

(8.5)-(8.7). From equations (8.5)-(8.7), it can be noted that perturbation vorticity

vanishes in the free stream.

A combined spatial Laplace-Fourier decomposition in the x-z plane is now performed

for every dependent variable. The transformed perturbation quantities (ũ,ω̃,Γ̃) are

now called (û,ω̂,Γ̂). A general function

ĝ(y,t; α,γ) =

∫ +∞

−∞

∫ +∞

0

g̃(x,y,z,t)e−iαx−iγzdxdz (8.10)

indicates the Laplace-Fourier transform of a dependent variable in the α− γ phase

space and in the remaining independent variables y and t. In general α is complex

(α = αr + iαi), while γ is real. In order to have a finite perturbation kinetic energy,

the imaginary part αi of the complex longitudinal wavenumber can only assume

non-negative values. In so doing, perturbative waves are allowed to spatially decay

(αi > 0) or remain constant in amplitude (αi = 0). The governing equations (8.5)-

(8.7), joined by the scalar relations (8.8)- (8.9), can now be expressed as follows

∂2v̂

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)v̂ = Γ̂ (8.11)

∂Γ̂

∂t
= GΓ̂ + Hv̂ + Kω̂y (8.12)

∂ω̂y

∂t
= Lω̂y + Mv̂ (8.13)

where the perturbation angle of obliquity φ = tan−1(γ/αr) with respect to the x-

y physical plane, the polar wavenumber k =
√

α2
r + γ2, the wavenumbers αr =

kcos(φ) and γ = ksin(φ) in the x and z directions respectively, and the spatial

damping rate αi in the streamwise direction have already been introduced. The

terms G, H, K, L and M are ordinary differential operators, written in the form

G = G(y; k,φ,αi,Re), and similarly for H, K, L and M, since they are function of

y, and are parameterized through the polar wavenumber k, the angle of obliquity

φ, the spatial growth rate αi, the Reynolds number Re. With respect to equations

(7.12)-(7.14), equations (8.11)-(8.13) have additional terms due to the transversal
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component V of the base flow (and its longitudinal and transversal variations). A

more accurate description of the mean vorticity leads, among other things, to the

explicit presence in equation (8.12) of the transversal vorticity ω̂y. This means that

three-dimensional effects causing the perturbation transversal vorticity evolution

can now directly influence the temporal behaviour of the other disturbance vorticity

components. If φ = 0 there is no production of transversal vorticity at any time, and

transversal vorticity contribute in equation (8.12) vanishes. The explicit expressions

for operators in equation (8.12) are

G = − i(kcos(φ) + iαi)U − V
∂

∂y
+

1

Re
[
∂2

∂y2
− k2 + α2

i − 2ikcos(φ)αi], (8.14)
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+
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while for operators in equation (8.13) the following relations hold

L = − i(kcos(φ) + iαi)U − V
∂

∂y
+

1

Re
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M = − iksin(φ)
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+

iksin(φ)

k2 + 2ikcos(φ)αi − α2
i
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∂x

∂2
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The full linear system (8.11)-(8.13) is to be solved subject to appropriate initial and

boundary conditions. Among all solutions, those whose perturbation velocity field

is zero in the free stream are sought. Periodic initial conditions for

Γ̂ =
∂2v̂

∂y2
− (k2 − α2

i + 2ikcos(φ)αi)v̂ (8.19)

can be shaped in terms of set of functions in the L2 Hilbert space, as

v̂(0,y) = e−(y−y0)2cos(n0(y − y0)) or v̂(0,y) = e−(y−y0)2sin(n0(y − y0)), (8.20)

for the symmetric and the asymmetric perturbations, respectively. Parameter n0

is an oscillatory parameter for the shape function, while y0 is a parameter which

controls the distribution of the perturbation along y (by moving away or bringing

nearer the perturbation maxima from the axis of the wake). It can be verified (see

§7.3) that a possible introduction of an initial transversal vorticity ω̂y(0,y) 6= 0 does

not substantially modify the perturbation temporal behaviour, as the contribution

of the transversal vorticity to the perturbation energy evolution is basically all due to

the three-dimensionality of the disturbance, regardless the specific initial condition

imposed. Thus, initial condition for ω̂y is chosen equal to zero.

The trigonometrical system (1,sin(n0y),cos(n0y), . . . ), where n0 = 1,2, . . . , is a

Schauder basis for the space of square-integrable periodic functions with period

2π. This means that any element of the space L2, where the dependent variables

are defined, can be written as an infinite linear combination of the elements of the

basis.

Once initial and boundary conditions are included, the full linear system (8.11)-

(8.13) is numerically solved by the method of lines on a spatial bounded domain

[−yf , + yf ]. The value of yf is chosen so that the numerical solutions are not

sensitive to further extensions of the computational domain size. Here, for the

stability analysis of long waves, the numerical domain 2yf can vary its order of

magnitude between 101 and 102.

8.1.2 Multiple spatial and temporal scales

In the stability analysis of spatially developing flows, different scales can be identi-

fied. In general, long and slow scales - related to the slow base flow evolution - as

well as short and fast scales - linked to the disturbance dynamics - can be defined.

The WKBJ method has been usually carried on adopting as small parameter of
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8 – Multiple scales analysis for the stability of long waves in near-parallel flows

the perturbation expansion the inverse of the Reynolds number (see for instance

Bouthier, 1973; Belan & Tordella, 2006; Tordella, Scarsoglio & Belan, 2006), which

characterizes the non-parallelism of the base flow. Here, the choice of the small

parameter is no more related to streamwise evolution of the base flow, but is based

on the perturbation characteristics.

In some flow configurations, in fact, it is observed that long waves can be destabi-

lizing. Examples of this behaviour are the two-dimensional Blasius boundary layer

as well as the three-dimensional cross-flow boundary layer. Studies on 2D and 3D

boundary layers (see, among others, Mack, 1976; Schlichting 1968; Reshotko, 1976;

Reed & Saric, 1989; Saric, Reed & White, 2003) confirm this fact and show that

the perturbation wavenumber k is much less than O(1) when instability occurs.

In general, large wavenumber values would imply short scales that can be easily

damped. Moreover, an inspection of equations (8.11)-(8.13) reveals the presence of

the wavenumber k at different orders of magnitude and suggests that multiple times

as well as multiple scales can be identified through it.

Thus, the small parameter which allows for a regular perturbation scheme is the

polar wavenumber k. Two spatial scales - a short one, y, and a long one, Y = ky

- are defined. For the temporal dynamics, three temporal scales - the fast one, t,

and the slow ones, τ = kt and T = k2t - can be determined. Note that the scale

T = k2t is related to the viscous terms and becomes unnecessary in the inviscid

case. The perturbation quantities (v̂,Γ̂,ω̂y) are now function of y,Y,t,τ,T , thus can

be expressed as Γ̂ = Γ̂(y,Y,t,τ,T ; k,φ,αi), and similarly for v̂ and ω̂y. The respective

operators in the equations become

∂

∂t
=

∂

∂t
+ k

∂

∂τ
+ k2 ∂

∂T
(8.21)

∂

∂y
=

∂

∂y
+ k

∂

∂Y
(8.22)

∂2

∂y2
=

∂2

∂y2
+ 2k

∂2

∂y∂Y
+ k2 ∂2

∂Y 2
(8.23)

A regular perturbation expansion for the dependent variables (v̂,Γ̂,ω̂y) can be as-

sumed and expressed as

v̂ = v̂0 + kv̂1 + k2v̂2 + · · · ,

Γ̂ = Γ̂0 + kΓ̂1 + k2Γ̂2 + · · · ,

ω̂y = ω̂y0 + kω̂y1 + k2ω̂y2 + · · · , (8.24)
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with the following initial conditions

Γ̂0(y,Y,0,0,0; k,φ,αi) = Γ̂(y,Y,0,0,0; k,φ,αi),

Γ̂1(y,Y,0,0,0; k,φ,αi) = Γ̂2(y,Y,0,0,0; k,φ,αi) = · · · = 0, (8.25)

ω̂y0(y,Y,0,0,0; k,φ,αi) = ω̂y(y,Y,0,0,0; k,φ,αi),

ω̂y1(y,Y,0,0,0; k,φ,αi) = ω̂y2(y,Y,0,0,0; k,φ,αi) = · · · = 0. (8.26)

Initial conditions at order O(1) are defined as in the full linear problem, while at

higher orders (O(k),O(k2), . . .) are equal to zero. Boundary conditions remain as

stated in the full linear problem. It is necessary that the series expansions begin as

indicated, so that all variables are at the same order of magnitude. This point can

be noted from the definition, in the phase space, for Γ̂, ω̂y, and the constraint of

incompressibility that requires the velocity to be divergence free.

Substituting relations (8.24) - together with the transformations (8.21)-(8.23) - in

the full linear system (8.11)-(8.13), the following ordered hierarchy of equations,

expressed up to O(k), results

Order O(1)

∂2v̂0

∂y2
+ α2

i v̂0 = Γ̂0 (8.27)

∂Γ̂0

∂t
−GhΓ̂0 −Hhv̂0 = 0 (8.28)

∂ω̂y0

∂t
− Lhω̂y0 = 0 (8.29)

where the subscript h (h = highest) indicates that these operators, at any order of

the multiscaling, are involving only terms at the highest order of the perturbation

expansion (8.24). As the order is here O(1) (h = 0), these operators are acting on

quantities (Γ̂0,v̂0,ω̂y0). Operators Gh = Gh(y; φ,αi,Re) as well as Hh and Lh are

function of the only short scale y. Their explicit expressions are
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Gh = αiU − V
∂

∂y
+

1

Re
(

∂2

∂y2
+ α2

i ), (8.30)

Hh =
∂Ωz

∂x

∂

∂y
− 1

αi

∂2Ωz

∂x2

∂

∂y
+ αi

∂Ωz

∂y
− ∂2Ωz

∂x∂y
− ∂U

∂x
(α2

i +
∂2

∂y2
) +

+
1

αi

(α2
i

∂

∂y
+

∂3

∂y3
), (8.31)

Lh = αiU − V
∂

∂y
+

1

Re
(

∂2

∂y2
+ α2

i )−
∂U

∂x
+

1

αi

∂V

∂x

∂

∂y
. (8.32)

Order O(k)

∂2v̂1

∂y2
+ α2

i v̂1 = −2
∂2v̂0

∂y∂Y
+ 2icos(φ)αiv̂0 + Γ̂1 (8.33)

∂Γ̂1

∂t
−GhΓ̂1 −Hhv̂1 = −∂Γ̂0

∂τ
+ Gh−1Γ̂0 + Hh−1v̂0 + Kh−1ω̂y0 (8.34)

∂ω̂y1

∂t
− Lhω̂y1 = −∂ω̂y0

∂τ
+ Lh−1ω̂y0 + Mh−1v̂0 (8.35)

where the subscript h− 1 (h = highest) indicates that these operators, at any order

of the multiscaling, are involving only terms at order h − 1 of the perturbation

expansion (8.24). As the order is here O(k) (h = 1), these operators are acting on

quantities (Γ̂0,v̂0,ω̂y0). Operators Gh−1 = Gh−1(y,Y ; φ,αi,Re) as well as Hh−1, Kh−1,

Lh−1 and Mh−1 are function of both the short scale y as well as the long scale Y .

The explicit expressions are

Gh−1 = −icos(φ)U − V
∂

∂Y
+

1

Re
[2

∂2

∂y∂Y
− 2icos(φ)αi], (8.36)

Hh−1 =
∂Ωz

∂x

∂

∂Y
− 1

αi

∂2Ωz

∂x2

∂

∂Y
− i

α2
i

cos(φ)
∂2Ωz

∂x2

∂

∂y
− icos(φ)

∂Ωz

∂y
+

− 2
∂2

∂y∂Y

∂U

∂x
+ 2iαicos(φ)

∂U

∂x
+

3

αi

∂3

∂y2∂Y

∂V

∂x
+ αi

∂V

∂x

∂

∂Y
+

+
i

α2
i

cos(φ)
∂V

∂x

∂3

∂y3
− icos(φ)

∂V

∂x

∂

∂y
, (8.37)

Kh−1 =
2

αi

sin(φ)
∂Ωz

∂x
− i

α2
i

sin(φ)
∂2Ωz

∂x2
− isin(φ)

∂V

∂x
(1− 1

α2
i

∂2

∂y2
), (8.38)
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and

Lh−1 = −icos(φ)U − V
∂

∂Y
+

1

Re
[2

∂2

∂y∂Y
− 2icos(φ)αi] +

+
1

αi

∂V

∂x
(

∂

∂Y
+

i

αi

cos(φ)
∂

∂y
), (8.39)

Mh−1 = −isin(φ)
∂U

∂y
− i

α2
i

sin(φ)
∂V

∂x

∂2

∂y2
. (8.40)

Some remarks are in order here. First, a comment concerning the role of αi is needed.

Equations above are derived under the hypothesis αi 6= 0. If αi = 0, there is no

temporal evolution of perturbations. This means that disturbances initially imposed

remain constant as time passes and reach, in the end, an asymptotic condition of

marginal stability (r = 0). This fact is deduced considering equation (8.27). For

αi = 0, the homogeneous solution assumes the expression v̂0h = c1 + c2y. Since

the velocity field has to be zero in the free stream, c1 = 0 and c2 = 0. Thus v̂0,

and therefore Γ̂0, are identically zero. This means that, in equation (8.28), there

is no temporal evolution for Γ̂0, and since transversal vorticity ω̂y0 is initially zero,

there is no temporal evolution for the transversal vorticity, too. For αi = 0, initial

perturbations are always present, remaining unvaried at any time.

For αi 6= 0, all equations can be solved in a most general way. Solution of equations

for the generic order h > 0 is obtained by preventing secular terms in the dynamics.

This results in the resolution of evolutive equations, in terms of the slow scales

τ and T , which involve lower order quantities. When the base flow is parallel

(U = (U(y),0)), equations at order h explicitly depend on solutions at order h − 1

as well as h − 2 (see Criminale et al., 2003). Here, instead, it can be evinced

that the introduction of both the longitudinal as well as the transversal mean flow

components leads to equations at order h which explicitly depend on solutions at

order h− 1, h− 2, h− 3 and h− 4.

Order O(1) (h = 0) is the most important approximation of the perturbative anal-

ysis and its formal expression is simplified with respect to the full problem. Note

that short and fast scale variables (y and t, respectively) only appear. Terms corre-

sponding to operators K and M are missing. The absence, in equation (8.29) of an

operator acting on the transversal velocity v̂, means that ω̂y is always zero for any

time and any angle of obliquity. Three-dimensional aspects are all related to the

streamwise perturbation vorticity component ω̂x. In the limit k → 0, the transversal

vorticity ω̂y is negligible for the full problem solution, too. This can be explained

considering operator M in equation (8.18). For k → 0, this operator is going as well
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to zero. The production of perturbation transversal vorticity is all due to this term,

thus ω̂y can be considered absent at any time. Moreover, a comparison of operators

G with Gh, and H with Hh, shows that order O(1) is better approximating the full

linear system when perturbations are purely transversal rather than longitudinal.

At order O(k) (h = 1), corrections related to the slow temporal evolution of Γ̂0 and

ω̂y0 are inserted. Terms corresponding to operators G, H, K, L and M are now

all present, and acting on perturbation quantities at order h − 1. As in the full

problem with k → 0, contribute of operators Kh−1 and Mh−1 is formally present

if φ 6= 0, but is always negligible. Operators Gh−1 and Hh−1 contain terms which

mainly correct solution at order O(1) in the longitudinal case. Therefore, at this

order, it is reasonable expecting a good approximation of the full problem for both

longitudinal as well as transversal perturbations. Long and short scales (Y and y,

respectively), as well as slow and fast scales (τ and t, respectively) show up.

8.2 Perturbation temporal dynamics

In the present work, attention is aimed to the resolution of multiscaling at order

O(1), and comparison with the full linear problem as k → 0. A summary of the

most significant transient behaviour and asymptotic fate of three-dimensional per-

turbations is presented. Results will be mainly focused on parameters such as the

obliquity, the symmetry, and the spatial damping rate of the disturbance. In par-

ticular, the latter parameter αi can vary its order of magnitude around the polar

wavenumber value.

8.2.1 Transient period of perturbations

To measure the perturbation temporal growth, the concepts of kinetic energy density

e(t; k,φ,αi)

e(t; k,φ,αi) =
1

2

∫ +yf

−yf

(|û|2 + |v̂|2 + |ŵ|2)dy =
1

2

1

|k2 + 2ikcos(φ)αi − α2
i |

×
∫ +yf

−yf

(|∂v̂

∂y
|2 + |k2 + 2ikcos(φ)αi − α2

i ||v̂|2 + |ω̂y|2)dy, (8.41)

and normalized amplification factor G(t; k,φ,αi)

G(t; k,φ,αi) =
e(t; k,φ,αi)

e(t = 0; k,φ,αi)
. (8.42)
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are introduced (see §7.3) in the phase space for both multiscale O(1) quantities

(v̂0,Γ̂0,ω̂y0) and full problem solutions (v̂,Γ̂,ω̂y). The total kinetic energy can be

obtained by integrating the energy density over all k and φ.

Moreover, the temporal growth rate r is defined as

r(t; α,γ) =
log|e(t; α,γ)|

2t
, t > 0 (8.43)

to evaluate the perturbation temporal evolution of solutions obtained by multiscaling

at order O(1) and full problem. The temporal growth rate r is not defined for t = 0.

This quantity, in fact, has a precise physical meaning asymptotically in time.
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Figure 8.1. Effects of the spatial growth rate αi. (a) The amplification factor
G and (b) the temporal growth rate r as function of time. Comparison between
multiscale O(1) (thick curves) and full problem (thin curves). Re = 50, k = 0.03,
n0 = 1, φ = π/4, y0 = 0, x0 = 12, asymmetric initial condition, αi = 0.04,0.4.

As previously mentioned, significant transients of three-dimensional perturba-

tions are here presented to observe the agreement between solutions of multiscaling

at order O(1) and full problem. The results are all concerning the intermediate

asymptotic region of the wake, which is where the spatial evolution is mainly taking

place. The polar wavenumber k is around the order O(10−2) or smaller.

In Fig. 8.1 an interesting phenomenon is observed, for a three-dimensional per-

turbation, by changing the value of αi. Spatially damped waves are temporally

amplified. The influence of the imaginary part of the longitudinal wavenumber is

remarkable, as by changing its order of magnitude from 0.04 to 0.4 the perturbation

is becoming more amplified in time. This confirms, as already observed in §7.3, that

112



8 – Multiple scales analysis for the stability of long waves in near-parallel flows

0 5 10 15 20

10
0

10
1

10
2

(a) 

t 

 G 

sym 

asym 

O(1) full problem 

0 50 100 150 200 250
−0.1

0.2

0.5

 r 

t 

(b) 

O(1) full problem 
sym 
asym 

Figure 8.2. Comparison between multiscale O(1) (thick curves) and full prob-
lem (thin curves). Effect of the symmetry of the perturbation. (a) The am-
plification factor G and (b) the temporal growth rate r as function of time.
Re = 100, k = 0.02, n0 = 1, φ = π/2, y0 = 0, x0 = 13.50, αi = 0.08,
symmetric and asymmetric initial conditions.

perturbations that are spatially confined are more amplified in time also in the limit

k → 0. The agreement between multiscale O(1) (thick curves) and full problem

(thin curves) is very good in the early transient as well as in the asymptotic state

for both values of αi considered.

Fig. 8.2 shows the influence of the perturbation symmetry on the early time

behaviour (a logarithmic scale is used on the ordinate of part (a) of the figure). It

can be noted that, as previously stated (see §7.3 and §7.4), the symmetric initial

condition leads - in the transient behaviour - to a faster temporal growth than the

asymmetric one, although both configurations are approaching the same asymptotic

unstable state. Indeed, the transient in the asymmetric case is lasting longer (t ∼
102) than in the symmetric case (t ∼ 101). The agreement between multiscale O(1)

and full problem turns out to be very good for asymmetric and symmetric conditions,

for both the early transient and the ultimate fate.

Fig. 8.3 displays the effect of differing orders of magnitude for the polar wavenum-

ber k. Three orders are considered, k = 0.1,0.01,0.001. As expected, for smaller

values of the polar wavenumber the agreement between multiscale O(1) and full

problem is going better (multiscale O(1) solution practically coincides with that of

the full problem for k = 0.001). Order O(10−2) or less, is the wavenumber value for

which the multiscale approach can be considered consistent. In comparing the full
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Figure 8.3. Effects of the polar wavenumber k. (a) The amplification factor G and
(b) the temporal growth rate r as function of time. Comparison between multiscale
O(1) (thick curves) and full problem (thin curves). Re = 100, n0 = 1, φ = 0, y0 = 0,
x0 = 27, αi = 0.2, symmetric initial condition, k = 0.1,0.01,0.001.
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Figure 8.4. Comparison between multiscale O(1) (thin curves) in the limit for
αi → 0, and full problem (thick curves) with αi = 0. (a) The amplification factor G
and (b) the temporal growth rate r as function of time. Re = 50, n0 = 1, φ = π/2,
y0 = 0, x0 = 12, asymmetric initial condition, k = 0.04, αi = 0.005,0.01,0.05
(multiscale O(1)), αi = 0 (full problem).

problem with k = 0.01 and the multiscale O(1), it can be noted that the multiscale

solution tends to overestimate the actual growth of the perturbation.
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In Fig. 8.4, the limit for αi → 0 is considered. Here, the thick curves represent

the full problem solution with αi = 0, while the thin curves are the multiscale O(1)

results with αi values going to zero. The right limit of multiscale O(1) solution for

αi → 0 is finite, and is closely reaching the full problem solution with αi = 0. As can

be observed, curves with smaller spatial growth rates are approaching the thick curve

from above. This behaviour holds in the early transient as well as the asymptotic

state (a logarithmic scale is used on the ordinate of part (a) of the figure).

8.2.2 Asymptotic comparison with the full linear problem

Computations to evaluate the long time asymptotics are made by integrating the

equations forward in time beyond the transient (Criminale et al. 1997; Lasseigne et

al. 1999) until the temporal growth rate r, defined in relation (8.43), asymptotes to

a constant value (dr = dt < ε). The choice of the threshold ε can offer a quantitative

support of when the transient can be considered extinguished.
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Figure 8.5. n0 = 1, y0 = 0, φ = π/4, ε ∼ 10−4. (a) Temporal growth rate and
(b) angular frequency. Comparison between multiscale O(1) (squares: symmetric
inputs, dots: asymmetric inputs) and full linear problem (circles: symmetric inputs,
triangles: asymmetric inputs). k = 0.01, x0 = 10, Re = 100.

The angular frequency (pulsation) f of the perturbation can be defined, for both

multiscale O(1) as well as full problem solutions, as the temporal derivative of the

phase ϕ of the complex wave, at a fixed transversal station

f(t; α,γ) =
|dϕ(t; α,γ)|

dt
(8.44)
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where

ϕ(t; α,γ) = arg(v̂(y = 1,t; α,γ)) = tan−1(
v̂i(y = 1,t; α,γ)

v̂r(y = 1,t; α,γ)
) (8.45)

Since defined through the perturbation velocity field, it is reasonable expecting

constant values of frequency, once the asymptotic state is reached. In §7.4, in fact,

it was found that beyond the time for which dr = dt < ε is becoming valid, both

temporal growth rate as well as frequency are reaching their asymptotic values.

Now, an asymptotic comparison between multiscale O(1) and full problem can be

made, see Fig. 8.5. The polar wavenumber k is fixed k = 0.01, while the imaginary

part αi of the complex longitudinal wavenumber is assuming differing values in the

range [0,0.6]. Multiscale O(1) results (squares and dots) are in excellent agreement,

for symmetric and asymmetric initial inputs, with full problem data (circles and

triangles). Note that the agrement improves for increasing values of αi. A minimum

of the perturbation energy (in terms of r) is found around αi = 0.2 − 0.3 and a

similar behaviour is shown by the angular frequency f .

8.3 Concluding remarks

The three-dimensional stability analysis of long waves applied to the two-dimensional

viscous wake has been considered by means of a multiple scales approach. The

initial-value problem is based on the vorticity-velocity formulation first proposed

by Criminale & Drazin (1990). The governing equations are Laplace-Fourier trans-

formed in the plane normal to the base flow. A complex wavenumber in the stream-

wise direction has been introduced, by means of a spatial Laplace transform in

streamwise direction. The two-dimensional wake is described by the asymptotic

Navier-Stokes expansion solutions, which take into account the transversal non-

linear and diffusive dynamics of the physical system.

A regular perturbation scheme, where the polar wavenumber k is defined as small pa-

rameter, has been proposed. The introduction of a complex wavenumber in stream-

wise direction makes the equations solvable at any order in a general way, provided

that αi 6= 0. However, the right limit of multiscale O(1) solutions for αi → 0 is

finite, and approaches the full problem solution for αi = 0.

General properties of perturbative equations have been presented and discussed up

to order O(k), while order O(1) of the multiscaling is only solved. Different transient
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configurations have been observed by changing the most important parameters - an-

gle of obliquity, spatial damping rate and symmetry of the perturbation - affecting

the temporal evolution. Unstable configurations in time have always been observed

in the limit of long waves. In general, for k of the order of about O(10−2), the

comparison between multiscale approach and full problem formulation turns out to

show a good agreement. Multiscale data have been compared with full problem re-

sults in the asymptotic temporal limit. As far as small wavenumbers are considered,

the agreement turns out to be excellent for both symmetric as well as asymmetric

initial conditions arbitrarily expressed in terms of elements of the trigonometrical

Schauder basis for the L2 space.

An extension to order O(k) of the multiscale analysis can be made, in order to better

describe the long term state of perturbations that are not purely transversal with

respect to the base flow plane. The present multiscale approach, here validated in

the case of the two-dimensional weakly non-parallel wake, can be applied to other

near-parallel shear flows, for example the three-dimensional boundary layer.
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Chapter 9

Conclusions

The hydrodynamic linear stability of the two-dimensional bluff-body wake has been

studied by means of the normal mode analysis and the initial-value problem.

The common aspect of the two perturbative approaches is the steady non-parallel

base flow, which is accurately described through asymptotic Navier-Stokes expan-

sions. The physical domain is divided into two region, namely inner and outer flow

regions. For both the regions, analytical asymptotic Navier-Stokes expansions are

adopted. Matching criteria, based on the matching of differential physical quanti-

ties (pressure gradient and vorticity) involved in the system dynamics, have been

discussed together with the structure of the expansions expressed in terms of in-

verse powers of the coordinates. According to the boundary layer model, the inner

expansions for the 2D velocity field is used to approximate the wake profile. In so

doing, the longitudinal as well as the transversal non-linear and diffusive dynamics

are directly taken into account.

The modal analysis has been first considered. The stability analysis of the in-

termediate and far region of the near-parallel two-dimensional wake is studied by

means of a multiscale approach. The disturbance is tuned to the local wavenumber

along the wake, selected by the zero order theory, and is associated to a classical

spatial and temporal WKBJ analysis. The multiscale approach, based on the intro-

duction of a small parameter equal to the inverse of the Reynolds number, explicitly

accounts for the non-parallel effects associated to the lateral momentum dynamics.

The correction due to the transversal dynamics increases with Re and is larger for

the pulsation and the temporal growth factor than for the spatial growth factor. It

is negligible for the wavenumber. Such corrections allow absolute instability pockets

to show up in the first part of the intermediate wake. These pockets are present

when the Reynolds number Re is equal to 50 and 100, but are absent when Re is
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as low as 35. This is in agreement with the general notion of a critical Reynolds

number of about 47 for the onset of the first instability.

Moreover, for Re = 50 and Re = 100, angular frequency results in agreement

with numerical and experimental global data in literature are found in the wake

region where the temporal growth rates are close to zero. Convective instability is

observable throughout the domain, and this configuration asymptotically sets on a

condition of marginal stability. All instability characteristics tend to vanish in the

far wake, a fact that is independently confirmed by the asymptotic analysis of the

Orr-Sommerfeld equation.

Through the use of the Navier-Stokes expansion solutions for the inner field of

the wake, an estimate of the entrainment streamwise distribution in the intermediate

and far wake has been analytically determined in terms of asymptotic expansions.

The entrainment has been defined as the longitudinal volume flow rate variation

in the streamwise direction. It turns out to be intense downstream the separation

region, where the two-symmetric standing eddies are situated. Here, the maximum

of the distribution is reached and the dependence on the Reynolds number is clear.

Then, the entrainment continuously decreases in the intermediate wake, and is al-

most vanished in the far field. In particular, the decrease can be considered almost

concluded for all the Re here taken into account at an average distance from the

body of 50 - 60 diameters, which is a value of the same order of magnitude as the

control parameter Re. This result confirms the validity of the spatio-temporal mul-

tiscaling approach, based on the inverse of the Reynolds number, and often adopted

in wake stability analysis. In fact, unitary values of the slow temporal and spa-

tial scales - defined as ξ = x/Re and τ = t/Re, respectively - are reached in the

downstream region where the entrainment process can be considered extinguished.

Then, the linear stability analysis of the two-dimensional laminar wake has been

studied as an initial-value problem. The wake is first represented through the longi-

tudinal component of the Navier-Stokes expansions only. Thus, base flow is param-

eterized with respect to the Reynolds number and the longitudinal coordinate, and

is growing in thickness and flow rate along the streamwise coordinate.

The vorticity-velocity formulation is due to Criminale & Drazin (1990), who first

proposed it. The perturbative equations are Laplace-Fourier transformed in the x

and z directions, respectively. In this case, differently to what usually done, a com-

plex longitudinal wavenumber has been introduced, by means of a spatial Laplace

transform in the streamwise direction. The introduction of the imaginary part of the

longitudinal wavenumber (the spatial damping rate) was done to explicitly include

also in the structure of the perturbation a degree of freedom related to the spatial
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evolution of the system.

Many parameters - such as the angle of obliquity, the symmetry, the length, the spa-

tial damping rate, the number of oscillations of the distribution in the y direction of

the perturbation - have been introduced, and their influence has been observed in

different transient configurations. Counter-intuitive behaviours - like initial damp-

ing followed by a fast growth for perturbations aligned with the basic flow, initial

transient growths that smoothly level off and are followed either by an ultimate

damping or by a slow amplification for oblique waves - as well as more expected

monotone trends have been found. The most important parameters affecting the

temporal evolution are the angle of obliquity, the symmetry of the perturbation and

the spatial damping rate. While the symmetry of the disturbance is remarkably in-

fluencing the transient behaviour leaving inalterate the asymptotic fate, a variation

of the obliquity and the spatial damping rate can significantly change both the early

trend as well as the final stability configuration. Instead, the effect of the number

of oscillations and the distribution in y direction is only to extend or shorten the

length of the transient, while the ultimate state is not different.

For disturbances aligned with the flow, the asymptotic behaviour turned out to be

in good agreement with the zero order results of spatio-temporal multiscale modal

analyses. The agreement is obtained not using as initial condition the most unstable

wave given by the Orr-Sommerfeld dispersion relation at any section of the wake,

but arbitrary initial conditions in terms of elements of the trigonometrical Schauder

basis for the L2 space.

The three-dimensional stability of the near-parallel two-dimensional wake has

been then analyzed as an initial-value problem by means of a multiscale approach,

based on the slow and long scales associated to small wavenumbers. The two-

dimensional wake is now described with both the longitudinal and the transversal

asymptotic Navier-Stokes expansions, which take into account the transversal non-

linear and diffusive dynamics of the physical system. The initial-value problem

extends the formulation previously presented for the parameterized growing wake

to the case of a weakly non-parallel base flow. Similarly to what assumed before, in

the perturbation decomposition a complex wavenumber in the streamwise direction

has been introduced.

A regular perturbation scheme, where the polar wavenumber k is defined as the

small parameter, has been considered. The stability analysis in the limit k → 0

is studied because in some flow configurations (for example Blasius boundary layer

and three-dimensional boundary layer) long waves turned out to be destabilizing.

In these cases, instability occurs for wavenumbers that are much less than O(1).
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The introduction of a complex wavenumber in the streamwise direction made the

equations solvable at any order in a general way, for αi 6= 0. Moreover, it has been

observed that the right limit of multiscale O(1) solutions for αi → 0 is finite, and

tends to the full problem solution with αi = 0.

Solutions up to order O(1) have only been considered, and different transient con-

figurations have been observed to validate the multiscaling. The parameters that

mostly affect the transient - the angle of obliquity, the symmetry and the spatial

damping rate of disturbance - have been changed. Interesting early growths have

been shown. Amplified configurations in time have always been observed in the limit

of long waves.

In general, for small polar wavenumber k of the order of about O(10−2), the com-

parison between the multiscale approach and the full problem formulation showed

a good agreement. Multiscale data have been compared with full problem results

in the asymptotic temporal limit. As far as small wavenumbers are considered, the

agreement is excellent for both symmetric as well as asymmetric initial conditions

arbitrarily expressed in terms of elements of the trigonometrical Schauder basis for

the L2 space. This result confirms the validity of multiscale approach for long waves,

even at the lowest order of expansion.

Some concluding comments are in order here, while comparing the two stability

approaches. In general, for three-dimensional perturbations, both the methods use

a combined Laplace-Fourier decomposition for the independent variables x and z,

respectively. Then, two different strategies are used to solve the resulting partial

differential equations in y and t.

In terms of the underlying mathematical complexities, the normal mode hypothesis

strongly simplifies the linearized system, that is transformed into an eigenvalue prob-

lem. Indeed, the temporal dependence is specified through an exponential asymp-

totic behaviour, and the perturbative equations become ordinary differential equa-

tions in y. Moreover, in the combined spatio-temporal modal analysis applied to

a near-parallel flow a few parameters are present - namely the Reynolds number

and the longitudinal coordinate - and can be easily handled. Here, the perturba-

tive hypothesis based on the sequence of saddle points is proposed. This approach

is original and synthetic since the most destabilizing wavenumber is considered at

every longitudinal station. Thus, the only parameter remaining is the Reynolds

number.

In the initial-value problem, instead, no temporal evolution is prescribed for the per-

turbations. In this way, partial differential equations - in y and t - are to be solved.

Since perturbations are arbitrarily chosen in terms of elements of the trigonometrical
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Schauder basis for the L2 space and do not have a prescribed temporal evolution,

many more parameters have to be dealt with, for example the angle of obliquity,

the symmetry, the length, the spatial damping rate and the number of oscillations

of the distribution in the y direction of the perturbation. The initial-value prob-

lem turns out to be less concise than the modal analysis because of the increased

number of parameters. Some of these are arbitrarily changed according to what

suggested by results found in the modal analysis. This procedure, however, is not

so easy and can be improved, since it does not completely exploit all the potential

information offered by the initial-value problem. In fact, modal results cannot give

information on significant early growth, as they only consider the ultimate state

of perturbations. On the contrary, initial-value problem results often showed rapid

transient amplifications. Moreover, phenomenons like lift-up and by-pass transition

can, in principle, be captured within this framework. To better address the effort of

describing the transient behaviour, an optimization scheme can be adopted. Opti-

mal initial conditions are those for which the maximum energy growth occurs at a

certain time t. Note that variational methods are not necessary for the optimization

procedure, but the use of Lagrange multipliers is sufficient to maximize the energy,

because the present formulation considers the temporal evolution of vorticity and

velocity without using eigenfunction expansions.

The initial-value problem can be applied to the stability analysis of other mean

shear flows. In particular, the linear stability of the near-parallel three-dimensional

boundary layer can be studied by means of the multiscale approach based on small

wavenumbers. For this physical problem, indeed, results in literature confirm that

perturbative waves are long when instability occurs. The optimization scheme briefly

described above can be adopted to observe which disturbance configurations are the

most dangerous in terms of transient growth. The complete temporal evolution

of optimal initial conditions could be helpful in predicting the breakdown of the

laminar regime for flow configurations in presence of swept wings, rotating disks

or axisymmetric bodies, since it is widely recognized that in low disturbance fields

such as flight, boundary layer transition to turbulence generally occurs through the

uninterrupted growth of linear instabilities.

Moreover, the present formulation applied to a free shear flow can be extended to

include the non linear non-modal interaction between disturbances initially imposed.

In turbulent mixings, if the mixing scales differ, and the largest scale also has the

highest energy content, then the energy exchange is deeper than that which would

occur if the scales were equal. If, instead, the largest scale has the lowest energy, the

energy exchange is reduced and delayed with respect to the configuration with equal
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scales. Here, the non-linear interaction between initial disturbances with different

amplitude, length and obliquity can be considered to verify the analogy between

unsteady dynamics and turbulent dynamics. If the analogy is correct, the reciprocal

influence between a long wave with low energy and a short wave with high energy

should lead to a lower early energy growth and a transient lasting longer than if two

initial waves with the same scales were considered.
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