Hydrodynamic linear stability of the two-dimensional bluff-body wake through modal analysis and initial-value problem formulation

Stefania Scarsoglio

Dottorato di Ricerca in Fluidodinamica - XX ciclo

Dipartimento di Ingegneria Aeronautica e Spaziale Politecnico di Torino

27 Marzo 2008

- Physical problem
- Normal mode analysis
- Entrainment evolution
- Initial-value problem
- Multiscale analysis for the stability of long waves
 - Conclusions

Physical Problem

Flow behind a circular cylinder steady, incompressible and viscous;

 Approximation of 2D asymptotic Navier-Stokes expansions (Belan & Tordella, 2003), 20≤Re≤100.

Normal mode analysis

The linearized perturbative equation in terms of stream function $\psi(x, y, t)$ is

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

Normal mode hypothesis $\longrightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$

• $\varphi(x,y,t)$ complex eigenfunction

h₀ = k₀ + i s₀ complex wave number
σ₀ = ω₀ + i r₀ complex frequency

k₀: wave number
s₀: spatial growth rate
ω₀: frequency
r₀: temporal growth rate

Convective instability: $r_0 < 0$ for all modes, $s_0 < 0$ for at least one mode. *Absolute instability:* $r_0 > 0$, $v_g = \partial \sigma_0 / \partial h_0 = 0$ for at least one mode.

Stability analysis through multiscale approach

- Slow variables: $x_1 = \varepsilon x$, $t_1 = \varepsilon t$, $\varepsilon = 1/Re$.
- Hypothesis: $\psi(x, y, t)$ and $\Psi(x, y)$ are expansions in terms of ε :

(ODE dependent on φ_0) + ε (ODE dependent on φ_0 , φ_1) + $O(\varepsilon^2)$

Order zero theory Homogeneous Orr-Sommerfeld equation

 $\begin{cases} \mathcal{A}\varphi_{0} = \sigma_{0}\mathcal{B}\varphi_{0} \\ \varphi_{0} \to 0, |y| \to \infty \end{cases} \qquad \qquad \mathcal{A} = (\partial_{y}^{2} - h_{0}^{2})^{2} - ih_{0}Re[u_{0}(\partial_{y}^{2} - h_{0}^{2}) - \partial_{y}^{2}u_{0}] \\ \mathcal{B} = -iRe(\partial_{y}^{2} - h_{0}^{2}) \\ \partial_{y}\varphi_{0} \to 0, |y| \to \infty \end{cases}$

 \longrightarrow eigenfunctions φ_0 and a discrete set of eigenvalues σ_{0n} **First order theory** Non homogeneous Orr-Sommerfeld equation

 $\begin{cases} \mathcal{A}\varphi_{1} = \sigma_{0}\mathcal{B}\varphi_{1} + \mathcal{M}\varphi_{0} & \mathcal{M} = \left\{ \begin{bmatrix} Re(2h_{0}\sigma_{0} - 3h_{0}^{2}u_{0}) - \partial_{y}^{2}u_{0} + 4ih_{0}^{3} \end{bmatrix} \partial_{x_{1}} \\ \varphi_{1} \rightarrow 0, \ |y| \rightarrow \infty & +(Reu_{0} - 4ih_{0})\partial_{x_{1}yy}^{3} - Rev_{1}(\partial_{y}^{3} - h_{0}^{2}\partial_{y}) + Re\partial_{y}^{2}v_{1}\partial_{y} \\ \partial_{y}\varphi_{1} \rightarrow 0, \ |y| \rightarrow \infty & +ih_{0}Re\left[u_{1}(\partial_{y}^{2} - h_{0}^{2}) - \partial_{y}^{2}u_{1}\right] + Re(\partial_{y}^{2} - h_{0}^{2})\partial_{t_{1}} \right\} \end{cases}$

Perturbative hypothesis – Saddle points sequence

• For fixed values of x and Re the saddle points (h_{0s}, σ_{0s}) of the dispersion relation $\sigma_0 = \sigma_0(h_0, x, \text{Re})$ satisfy the condition $\partial \sigma_0 / \partial h_0 = 0$;

• The system is perturbed at every station with the most unstable characteristics at order zero.

Re=35, x/D=4. Level curves, $\omega_0 = cost$ (thick curves), $r_0 = cost$ (thin curves).

 $\omega_0(k_0, s_0), r_0(k_0, s_0).$ Re = 35, x/D = 4.

Frequency. Comparison between present solution (accuracy $\Delta \omega = 0.05$), Zebib's numerical study (1987), Pier's direct numerical simulations (2002), Williamson's experimental results (1988).

Tordella, Scarsoglio & Belan, Phys. Fluids 2006.

Eigenfunctions and eigenvalues asymptotic theory

An asymptotic analysis for the Orr-Sommerfeld zero order problem is proposed. For $x \rightarrow \infty$ the eigenvalue problem becomes

$$\begin{cases} \partial_y^2 - h_0^2 - ih_0 \operatorname{Re} u_0 \end{cases} f = -i\operatorname{Re}\sigma_0 f \\ f \to 0 \text{ as } |y| \to \infty \\ \text{here} \quad f(x, y) = (\partial_y^2 - h_0^2)\varphi_0(x, y) \end{cases}$$

 $k_0 \sim 0$, as $x \longrightarrow \infty$ $s_0 < 0$, $\forall x$ \downarrow $\omega_0 \sim 0, r_0, s_0 \longrightarrow 0$, as $x \longrightarrow \infty$ $r_0 \sim s_0 + s_0^2/Re$, as $x \longrightarrow \infty$

Entrainment evolution

$$Q(x) = \frac{1}{2z_w\delta}\int_{-z_w}^{z_w}\int_0^{\delta}U(x,y)dydz$$

E(x)

dQ(x)

dx

Volumetric flow rate

Initial-value problem

 Linear, three-dimensional perturbative equations in terms of vorticity and velocity (Criminale & Drazin, 1990);

• Base flow parametric in x and $Re \longrightarrow U(y; x_0, Re)$

Laplace-Fourier transform in x and z directions for perturbation quantities:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= - (ik\cos(\phi) - \alpha_i)U\hat{\Gamma} + (ik\cos(\phi) - \alpha_i)\frac{d^2U}{dy^2}\hat{v} \\ &+ \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= - (ik\cos(\phi) - \alpha_i)U\hat{\omega}_y - ik\sin(\phi)\frac{dU}{dy}\hat{v} \\ &+ \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{\omega}_y] \end{aligned}$$

 $a_r = k \cos(\Phi)$ wavenumber in x-direction $\gamma = k \sin(\Phi)$ $\Phi = tan^1(\gamma/a_r)$ angle of obliquity $k = (a_r^2 + a_r)^2 + a_r \ge 0$ spatial damping rate

 $\gamma = k \sin(\Phi)$ wavenumber in z-direction $k = (a_r^2 + \gamma^2)^{1/2}$ polar wavenumber Periodic initial conditions for $\widehat{\Gamma} = \frac{\partial^2 \widehat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ikcos(\phi)\alpha_i)\widehat{v}$ $\begin{cases} \widehat{v}(y,t=0) = e^{-(y-y_0)^2}cos(n_0(y-y_0)) & \text{symmetric} \\ \widehat{v}(y,t=0) = e^{-(y-y_0)^2}sin(n_0(y-y_0)) & \text{asymmetric} \end{cases}$

and $\hat{\omega}_y(y,t=0)=0$

Velocity field vanishing in the free stream.

Early transient and asymptotic behaviour of perturbations

The growth function *G* is the normalized kinetic energy density

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

and measures the growth of the perturbation energy at time t.

• The temporal growth rate r (Lasseigne et al., 1999) and the angular frequency ω (Whitham, 1974)

$$r(t; \alpha, \gamma) = rac{\log|e(t; \alpha, \gamma)|}{2t}, \ t > 0$$

$$\omega(t;\alpha,\gamma) = \frac{|d\varphi(t;\alpha,\gamma)|}{dt}$$

 φ perturbation phase

Exploratory analysis of the transient dynamics

(a): Wave Ospatia = eyokytic 150, the 0.20 direction, for the petric, $p_1 = 30', 0\pi 0, k, 0.0.5, 0, 1.5, 2, 2.5$. (b): R=50, $y_0=0$, $x_0=7$, k=0.5, $\Phi=0$, asymmetric, $n_0=1$, $\alpha_i=0,0.01,0.05,0.1$.

(d): R=100, $y_0=0$, $x_0=11.50$, k=0.7, asymmetric, $\alpha_i=0.02$, $n_0=1$, $\Phi=0$, $\pi/2$.

(e): $R=100 \text{ } x_0=12, \text{ } k=1.2, \alpha_i=0.01,$ symmetric, $n_0=1, \Phi=\pi/2, y_0=0,2,4,6.$

(f): R=50 $x_0=14$, k=0.9, $\alpha_i=0.15$, asymmetric, $y_0=0$, $\Phi=\pi/2$, $n_0=1,3,5,7$.

(a)-(b)-(c)-(d): R=100, $y_0=0$, k=0.6, $\alpha_i=0.02$, $n_0=1$, $\Phi=\pi/4$, $x_0=11$ and 50, symmetric and asymmetric.

Asymptotic fate and comparison with modal analysis

Asymptotic state: the temporal growth rate r asymptotes to a constant value $(dr/dt < \varepsilon \sim 10^{-4})$.

(a)-(b): Re=50, α_i =0.05, Φ =0, x_0 =11, n_0 =1, y_0 =0. Initial-value problem (triangles: symmetric, circles: asymmetric), normal mode analysis (black curves), experimental data (Williamson 1989, red symbols).

Multiscale analysis for the stability of long waves

Different scales in the stability analysis:

- Slow scales (base flow evolution);
- Fast scales (disturbance dynamics);

 In some flow configurations, long waves can be destabilizing (for example Blasius boundary layer and 3D cross flow boundary layer);

 In such instances the perturbation wavenumber of the unstable wave is much less than O(1).

Small parameter is the polar wavenumber of the perturbation:

Full linear system

 $G = G(y; k, \phi, \alpha_i, Re)$

base flow (U(x,y:Re), V(x,y;Re))

Multiple scales hypothesis

Regular perturbation scheme, k<<1:</p>

 $\hat{v} = \hat{v}_0 + k\hat{v}_1 + k^2\hat{v}_2 + \dots$ $\hat{\Gamma} = \hat{\Gamma}_0 + k\hat{\Gamma}_1 + k^2\hat{\Gamma}_2 + \dots$ $\hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \dots$

• Temporal scales: $t, \tau = kt, T = k^2t;$

• Spatial scales: y, Y = ky;

<u>Order O(1)</u>

$$\frac{\partial^2 \hat{v}_0}{\partial y^2} + \alpha_i^2 \hat{v}_0 = \hat{\Gamma}_0$$

$$\frac{\partial \hat{\Gamma}_0}{\partial t} - G_h \hat{\Gamma}_0 - H_h \hat{v}_0 = 0 \qquad G_h = G_h(y; \phi, \alpha_i, Re)$$

$$\frac{\partial \hat{\omega}_{y0}}{\partial t} - L_h \hat{\omega}_{y0} = 0$$

Order O(k)

$$\frac{\partial^2 \hat{v}_1}{\partial y^2} + \alpha_i^2 \hat{v}_1 = -2 \frac{\partial^2 \hat{v}_0}{\partial y \partial Y} + 2icos(\phi) \alpha_i \hat{v}_0 + \hat{\Gamma}_1$$
$$\frac{\partial \hat{\Gamma}_1}{\partial t} - G_h \hat{\Gamma}_1 - H_h \hat{v}_1 = -\frac{\partial \hat{\Gamma}_0}{\partial \tau} + G_{h-1} \hat{\Gamma}_0 + H_{h-1} \hat{v}_0 + K_{h-1} \hat{\omega}_{y0}$$
$$\frac{\partial \hat{\omega}_{y1}}{\partial t} - L_h \hat{\omega}_{y1} = -\frac{\partial \hat{\omega}_{y0}}{\partial \tau} + L_{h-1} \hat{\omega}_{y0} + M_{h-1} \hat{v}_0$$

 $G_{h-1} = G_{h-1}(y, Y; \phi, \alpha_i, Re)$

Comparison with the full linear problem

(a)-(b): Re=100, k=0.01, $\Phi = \pi/4$, x₀=10, n₀=1, y₀=0. Full linear problem (black circles: symmetric, black triangles: asymmetric), multiscale O(1) (red circles: symmetric, red triangles: asymmetric).

(a): R=50, y₀=0, k=0.03, n₀=1, x₀=12, $\Phi = \pi/4$, asymmetric, $\alpha_i = 0.04$, 0.4.

(b): R=100, $y_0=0$, $n_0=1$, $x_0=27$, $\Phi=0$, symmetric, $\alpha_i=0.2$, k=0.1, 0.01, 0.001.

(c): R=100, $y_0=0$, k=0.02, $x_0=13.50$, $n_0=1$, $\Phi=\pi/2$, $\alpha_i=0.08$, sym and asym.

Conclusions

- Synthetic perturbation hypothesis (saddle point sequence);
- Absolute instability pockets (Re=50,100) found in the intermediate wake;
- Good agreement, in terms of frequency, with numerical and experimental data;
- No information on the early time history of the perturbation;
- Different transient growths of energy;
- Asymptotic good agreement with modal analysis and with experimental data (in terms of <u>frequency</u> and <u>wavelength</u>);
- Multiscaling O(1) for long waves well approximates full linear problem.