Alterazioni del sistema cardiovascolare nel volo spaziale

Relatore
Ing. Stefania Scarsoglio

Studente
Marco Enea

Anno accademico 2015 – 2016
Indice

1 Introduzione 3
 1.1 Importanza dello studio dei problemi del sistema cardiovascolare nello spazio 3
 1.2 Presentazione del testo 4

2 Sistema cardiovascolare 5
 2.1 Struttura 5
 2.2 Funzionamento 6
 2.2.1 Ciclo cardiaco 6
 2.2.2 Alcune definizioni 7
 2.2.3 Barorecettori 8

3 Microgravità 9
 3.1 Effetto della microgravità su un fluido 10
 3.2 Microgravità simulata 12
 3.2.1 Head-down bed rest 12
 3.2.2 Volo parabolico 13
 3.2.3 ISS 13

4 Conseguenze del volo spaziale sul sistema cardiovascolare 15
 4.1 Effetti immediati 15
 4.1.1 Diminuzione del volume del fluido interstiziale 15
 4.1.2 Diminuzione della pressione venosa centrale 16
 4.1.3 Decremento del battito cardiaco e aumento del volume sistolico 17
 4.1.4 Aumento della gittata cardiaca 18
 4.1.5 Dilatazione dei vasi sanguigni 19
 4.1.6 Riduzione del volume del plasma 20
 4.2 Effetti di lunga durata 21
 4.2.1 Diminuzione della massa del ventricolo sinistro 21
 4.2.2 Intolleranza ortostatica 22
<table>
<thead>
<tr>
<th>5</th>
<th>Contromisure adottate</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Lower body negative pressure</td>
<td>24</td>
</tr>
<tr>
<td>5.2</td>
<td>Altre contromisure</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Modelli matematici</td>
<td>27</td>
</tr>
<tr>
<td>6.1</td>
<td>Presentazione modello</td>
<td>27</td>
</tr>
<tr>
<td>6.2</td>
<td>Presentazione risultati</td>
<td>30</td>
</tr>
<tr>
<td>6.3</td>
<td>Discussione risultati</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Conclusioni</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Bibliografia</td>
<td>36</td>
</tr>
</tbody>
</table>
Capitolo 1

Introduzione

1.1 Importanza dello studio dei problemi del sistema cardiovascolare nello spazio

Con la cosiddetta "corsa allo spazio", nata tra Stati Uniti ed URSS durante la Guerra Fredda, sono state sviluppate tecnologie tali da permettere l'immissione in orbita spaziale di astronauti, con o senza equipaggio.

Nel tempo, si notarono una serie di cambiamenti fisiologici negli astronauti che ne compromettevano la completa autonomia, sia durante che il volo che una volta rientrati a terra.

Da allora, sono state fatte diverse investigazioni cliniche per capire le motivazioni di questi cambiamenti, i quali colpivano in maggior misura il sistema cardiovascolare. Ai nostri giorni si conoscono praticamente tutti gli effetti di breve durata del volo spaziale sul sistema cardiovascolare (anche se alle volte vi sono pareri discordanti sulle loro cause), mentre sono in fase di sviluppo degli studi su quelli di lunga durata.

Naturalemente, la comprensione di questi effetti permetterebbe di studiare delle contromisure che faciliterebbero il volo spaziale e consentirebbero di diminuire i rischi in missioni dalla durata più lunga.

Inoltre, gli studi effettuati in condizioni di microgravità, tipica del volo spaziale, sono fondamentali per la ricerca medica, in quanto possono essere sviluppate tecnologie riutilizzabili su pazienti affetti da problemi simili a quelli cui sono soggetti gli astronauti.
1.2 Presentazione del testo

Questo lavoro ha l’obiettivo di presentare i vari problemi del sistema cardiovascolare durante il volo spaziale. Si è fatto riferimento a una serie di studi, esperimenti e misurazioni effettuati sia attraverso opportune simulazioni sulla Terra, sia direttamente durante la missione spaziale.

Nel capitolo 2 si vuole dare una visone generale della struttura e del funzionamento del sistema cardiovascolare.

Nel capitolo 3 si introduce la definizione di microgravità, si analizza l’effetto che ha la microgravità su un fluido e si descrivono i principali metodi di simulazione di microgravità.

Nel capitolo 4 vengono invece presentati i principali problemi del sistema cardiovascolare derivanti dal volo spaziale, facendo una distinzione tra quelli che si manifestano in tempi relativamente brevi e quelli di lunga durata.

Nel capitolo 5 si elencano una serie di contromisure adottate dagli astronauti per prevenire o mitigare questi problemi, in modo particolare quello dell’intolleranza ortostatica.

Infine, nel capitolo 6, si presenta una simulazione numerica attraverso un modello preesistente. Sono state misurate le influenze della pressione idrostatica e della pressione intratoracica in funzione della gravità e delle diverse posizioni del corpo.
Capitolo 2
Sistema cardiovascolare

L’apparato circolatorio o cardiovascolare è l’insieme degli organi deputati al trasporto di fluidi diversi – come il sangue e, in un’accezione più generale, la linfa – che hanno il compito primario di apportare alle cellule dell’organismo gli elementi necessari al loro sostentamento.

2.1 Struttura

Il sistema cardiovascolare è costituito da tre elementi principali: cuore, vasi sanguigni e sangue.

Il cuore è un muscolo che genera la forza necessaria a spingere il sangue nei vasi sanguigni. Esso è formato da quattro camere. Le due camere superiori, gli atri, ricevono il sangue che ritorna al cuore da vasi venosi, mentre le due inferiori, i ventricoli, ricevono sangue dagli atri e generano la pressione necessaria a spingere il sangue fuori dal cuore nelle grandi arterie.

Il sangue viene trasportato dal cuore ai vari organi, per poi ritornare di nuovo al cuore attraverso un sistema chiuso di vasi che prende il nome di sistema vascolare.

Il sangue che lascia il cuore viene trasportato agli organi e ai tessuti tramite la arterie, che si ramificano nei capillari. Dai capillari il sangue ritorna al cuore attraverso le vene.

Il sangue è un fluido, anche se in realtà è composto per quasi la metà del suo volume da cellule. La porzione liquida del sangue è detta plasma.

Il sangue nel corpo espletà funzioni diverse, in particolare quella di trasportare l’ossigeno dai polmoni ai tessuti e riportare indietro l’anidride carbonica.
2.2 Funzionamento

Nel nostro organismo sono presenti due grossi circuiti arteriosi: la circolazione sistemica e la circolazione polmonare. Questi due circuiti sono collegati in serie in modo che tutto il sangue possa fluire attraverso il circolo polmonare. Al contrario, gli organi del circuito nel corpo sono collegati in parallelo.

- La circolazione sistemica prende l’avvio dal ventricolo sinistro che, contrandosi, spinge il sangue ricco di ossigeno nell’aorta e da qui in tutte le arterie del corpo, che trasportano il sangue ossigenato ai diversi tessuti e apparati.
- Dai tessuti, il sangue attraverso il sistema delle vene cave, raggiunge l’atrio destro del cuore.
- Dal ventricolo destro inizia la circolazione polmonare: da qui il sangue viene pompato, tramite l’arteria polmonare, nei polmoni dove negli alveoli circondati da una ricca rete di capillari, cede l’anidride carbonica e si arricchisce di ossigeno.
- Tramite le vene polmonari raggiunge l’atrio sinistro del cuore e da qui riparte tutto il ciclo precedente.

I due sistemi arteriosi lavorano in due regimi a pressioni differenti: a bassa pressione quello del circuito polmonare e delle vene, ad alta pressione quello delle arterie e della circolazione sistemica.

Il compito principale del sistema a bassa pressione è di "serbatoio" del sangue, infatti l’80% del sangue circolante nel corpo (circa il 7% della massa magra nell’uomo, all’incirca quattro-cinque litri) può essere trovato lì; questa funzione è favorita dalla elevata elasticità e capacità dei vasi. In caso di perdita di volume (emorragia), i vasi si restringono; nel caso opposto, per esempio, nelle trasfusioni di sangue aumentando il volume il sistema aumenta la sua capacità. La pressione venosa centrale (il cui valore normale è di circa 3-9 mmHg) è un buon indicatore del volume di sangue circolante.

2.2.1 Ciclo cardiaco

Il ciclo cardiaco comprende tutti gli eventi associati con il flusso del sangue attraverso il cuore durante un singolo battito cardiaco.

Il ciclo può essere diviso in due fasi principale: la sistole, l’evento della contrazione ventricolare, e la diastole, l’evento del rilasciamento ventricolare.

Iniziamo a esaminare il ciclo cardiaco a metà della diastole, un momento nel quale gli atri e i ventricoli sono completamente rilasciati:
• Riempimento ventricolare:
 Il sangue, grazie alla propria pressione, torna al cuore attraverso le vene sistemiche e quelle polmonari, entra negli atri rilasciati e riempie i ventricoli; la pressione nelle vene è sufficientemente alta da spingere il sangue nel cuore (ritorno venoso). Successivamente, gli atri si rilasciano e inizia la sistole.

• Contrazione isovolumetrica
 All'inizio della sistole, i ventricoli iniziano a contrarsi e la pressione aumenta, fin quando la pressione ventricolare non supera quella atriale, chiudendo le valvole. Così, anche se i ventricoli sono contratti, il volume di sangue al loro interno resta costante.

• Eiezione ventricolare
 Nella restante parte della sistole, il sangue viene pompato nell'aorta attraverso le valvole, ora aperte, e il volume ventricolare diminuisce. Durante l'efflusso del sangue dai ventricoli (eiezione ventricolare), la pressione ventricolare raggiunge un picco per poi diminuire. Quando è minore di quella aortica, le valvole si chiedono e ricomincia la diastole.

• Rilasciamento isovolumetrico
 All'inizio della successiva diastole, la pressione ventricolare è tale per cui tutte le valvole sono chiuse e il volume di sangue che resta nei ventricoli rimane costante.
 Una volta che la pressione ventricolare diventa abbastanza bassa da consentire alle valvole di aprirsi, il sangue fluisce dagli atri ai ventricoli, e il ciclo della pompa ricomincia.

2.2.2 Alcune definizioni

Di seguito sono riportate una serie di definizioni necessarie alla comprensione dell'elaborato.

Con pressione diastolica (PD) si intende la minima pressione aortica, raggiunta proprio al termine della diastole.
La pressione sistolica (PS), invece, è il massimo raggiunto dalla pressione aortica alla fine della sistole.
Il valore medio della pressione aortica che si registra durante il ciclo cardiaco è chiamato pressione arteriosa media (MAP, Mean Arterial Pressure).

Con i termini "Volume Telediastolico" (EDV, End-Diastolic Volume) e "volume Telesistolico" (ESV, End-Systolic Volume) si indica il volume di sangue...
contenuto nel ventricolo rispettivamente alla fine della diastole e della sistole. Il volume di ciezione ventricolare (SV, Stroke Volume) è invece il volume di sangue pompato dal cuore ad ogni battito cardiaco, Esso è strettamente legato alla Gittata Cardiaca (CO, Cardiac Output), ovvero il volume di sangue pompato dal ventricolo nell'unità di tempo.

2.2.3 Barorecettori

I barocettori sono organi di controllo della circolazione sanguigna. In particolare, si tratta di recettori neurosensoriali, posti nei vasi sanguigni e nel cuore che rispondono a variazioni pressorie del sistema cardiovascolare. I barocettori rispondono specificamente allo stiramento di parete del vaso e, nell'uomo, si dividono in:

- recettori di bassa pressione (o recettori di volume) si localizzano nelle vene, nei vasi polmonari e nelle pareti del cuore, agendo direttamente nel rilevare le variazioni di volume del sangue.

- recettori di alta pressione (o barocettori arteriosi seno-aortici) sono localizzati in due punti strategici: nell'arco aortico, poiché la pressione dell'aorta influenza il flusso di sangue in tutti gli organi del circuito sistemico, e nei seni carotidei, poiché la pressione delle carotidi influenza il flusso ematico al cervello, organo estremamente sensibile alle variazioni di flusso.
Capitolo 3

Microgravità

La gravità è stata descritta per la prima volta da Sir Isaac Newton. Essa è la forza di attrazione tra due masse. L’accelerazione di un oggetto verso il suolo causato esclusivamente dalla gravità, nelle vicinanze della superficie terrestre, è detta "gravità normale", o "1G". Questa accelerazione è pari a 9,8 m/s².

Con il termine di microgravità, invece, si indica una situazione in cui la forza di gravità è prossima allo zero (in genere si fa riferimento a 10⁻⁶ G).

In queste condizioni, si ha la sensazione di "assenza di peso". Di conseguenza, tutti gli oggetti (dai più leggeri ai più pesanti) e tutte le persone si trovano in caduta libera.

La condizione di microgravità è classica nei voli spaziali. Per questo motivo, gli astronauti si trovano costretti a lavorare in condizioni di microgravità e di conseguente assenza di peso. Nonostante le astronavi abbiano un’atmosfera attentamente controllata che permette una normale respirazione e un’adeguata temperatura, sono diverse le problematiche cui sono soggetti gli astronauti durante e dopo un volo spaziale a causa dell’alterazione dell’ambiente in cui sono abituati a vivere.

Uno dei sistemi più sollecitati sotto questo punto di vista è il sistema cardiovascolare. Nel tempo, gli uomini hanno sviluppato un sistema per fronteggiare la pressione idrostatica. Questo meccanismo doveva prevenire l’eccessivo aumento del liquido interstiziale nei tessuti e allo stesso tempo provvedere ad un adeguato flusso di sangue al cervello nella posizione eretta. Ciò che vari studiosi stanno cercando di comprendere appieno è l’adattamento di questo meccanismo all’assenza di peso per un tempo relativamente prolungato.
3.1 Effetto della microgravità su un fluido

Uno degli effetti principali sul corpo umano durante il volo spaziale è la perdita del gradiente di pressione idrostatica. Per introdurre il concetto, si può fare una semplice dimostrazione dell’effetto della gravità su un fluido in un contenitore con estremità capacitanti, dove per capacitanza si intende la capacità che hanno i vasi sanguigni di dilatarsi elasticamente sotto l’effetto di una pressione sanguigna crescente. Altra definizione utile è quella di "Hydrostatic Indifference Level" (HIL), che rappresenta il punto di non-variazione della pressione, il quale subisce uno spostamento verso il basso in microgravità.

Figura 3.1: Spostamento dell’HIL in microgravità

In presenza di un’accelerazione gravitazionale allineata con l’asse del contenitore, il gradiente di pressione sarà

\[\frac{dp}{dZ} = \rho g \]

dove \(z \) è la coordinata verticale (positiva verso l’alto), \(\rho \) la densità del fluido e \(g \) l’accelerazione di gravità. In questo caso viene fatta l’assunzione che il fluido che circonda il serbatoio abbia densità trascurabile, altrimenti con \(\rho \) si indicerebbe la differenza di densità tra il fluido nel contenitore e quello circostante. La pressione relativa a ogni altezza può essere trovata attraverso un’integrazione. Se il fluido che stiamo studiando ha densità costante, la pressione varrà

\[P = P_0 - \rho g (z - z_0) \]

dove \(P_0 \) è una pressione nota che si trova in corrispondenza di \(z_0 \). Il cambiamento di pressione dovuto all’alterazione dell’accelerazione gravitazionale può essere trovato uguagliando lo spostamento di volume da un’estremità del serbatoio all’altra. Scelgendo \(P_0(z_0) = 0 \), si dimostra che la rimozione della
gravità dal sistema porta ad un valore della pressione pari a

\[P_{0y} = -\rho g \left(\frac{z_2 c_2 - z_1 c_1}{c_1 + c_2} \right) \]

con \(c_1 \) e \(c_2 \) le capacitanz e rispettivamente alle estremità \(z_1 \) e \(z_2 \).

Si può notare che un contenitore aperto può essere descritto da una capacitanza all'estremità superiore \(c_1 \to \infty \) e \(P_{0y} = 0 \). Per capacitanz e identiche e in presenza di gravità, \(P_{0y} = 0 \) si troverà a metà tra la pressione all'apertura e quella al fondo. Pertanto l'HIL si troverà a metà altezza del contenitore per \(c_1 = c_2 \), mentre sale se \(c_1/c_2 \) aumenta e scende se \(c_1/c_2 \) diminuisce(Fig 3.2).

Figura 3.2: Distribuzione delle pressioni in contenitore aperto e con estremità compliants in condizioni di 1G e 0G

Questo può essere assimilato al meccanismo di adattamento sviluppato dall'uomo. Sappiamo, infatti, che due delle componenti che contribuiscono alla pressione sanguigna sono: una pressione statica (circa 7 mmHg), dovuta alle caratteristiche elastiche del sistema cardiovascolare e indipendente dal flusso sanguigno, e una componente idrostatica, dovuta alla forza di gravità. Quando siamo distesi a letto, la maggior parte del sangue si colloca nelle grandi vene del'addome. Una volta alzatisi, il sistema circolatorio è esposto alla forza gravitazionale. L'immediata diffusione del sangue nelle estremità inferiori del corpo e la difficoltà di arrivare al cervello dovuto alla colonna idrostatica tra testa e cuore è compensata da un meccanismo regolato direttamente dal sistema nervoso, attraverso i già citati barorecettori. Così, si assicura un ritorno dalle estremità più basse all'atrio destro e un effettivo funzionamento di pompa del cuore, che porta il sangue al cervello, andando contro la gravità.
3.2 Microgravità simulata

3.2.1 Head-down bed rest

Con Head Down Bed Rest si intende un modello di simulazione di microgravità terrestre che consiste nel posizionare il soggetto da esaminare su un letto inclinato di un certo angolo, in modo da poter riprodurre le condizioni del volo spaziale.

HDBR è caratterizzato dall’immobilizzazione e l’eliminazione di tutto ciò che porta alla nascita di accelerazioni G_z, come cambiamenti di posizione e/o direzione.

Di conseguenza, si avrà uno spostamento dei fluidi verso l’alto e assenza di lavoro contro la gravità. Il primo fenomeno, agendo sui recettori di volume, induce un decremento del volume del plasma del 10-15%, il quale a sua volta porta a una serie di cambiamenti cardiovascolari molto simili a quelli che avvengono nello spazio.

L’head down bed rest è stato contestato in quanto non considerato un modello adatto alla simulazione del volo spaziale. Questo è parzialmente vero, dal momento che non si può avere una simulazione della fase di lancio e delle accelerazioni cui l’astronauta è sottoposto. Tuttavia, resta comunque il miglior modello terrestre per simulare gli effetti indotti dalla microgravità e per valutare la contromisure da adottare per contrastare gli effetti fisiologici.

Figura 3.3: Head down bed rest
3.2.2 Volo parabolico

Nei voli parabolici, un aeroplano compie una traiettoria kepleriana o parabolica. In particolare, ad un’altezza di circa 6000 metri si ha una brusca salita con angolo di rampa di circa 45°. Raggiunto il vertice della parabola, si ha una condizione di microgravità per un tempo di circa 30 secondi, per poi scendere nuovamente con angolo simile a quello di salita.

Nella fase di salita e di discesa si è in condizioni di ipergravità, intorno all’1.8G. Pertanto, per le misurazioni effettuate si ha una transizione da 1G a 0G per un tempo minore (20 secondi). In questo caso non si può parlare di gravità nulla, perché le turbolenze atmosferiche impediscono un’accelerazione multidirezionale pari a circa 0.05G, che comunque non influisce sulle ricerche sul sistema cardiovascolare.

![Figura 3.4: Volo parabolico](image)

3.2.3 ISS

La sigla ISS sta per "International Space Station".

In generale, un qualsiasi mezzo spaziale è tenuto in orbita poiché viene lanciato in una traiettoria curvilinea sopra la Terra in modo che possa viaggiare ad una velocità tale da mantenere la condizione di assenza di peso, trovandosi sempre alla stessa altezza rispetto alla superficie. Per esempio, uno Shuttle che vola su un’orbita 320 km sopra la superficie deve viaggiare a una velocità di circa 27740 km/h per raggiungere un’orbita stabile.

In termini fisici, ciò è dimostrato dal fatto che la velocità è tale da superare la
forza di attrazione della Terra. Inoltre, si viene a creare una forza centrifuga che bilancia la spinta verso il basso generata dalla forza gravitazionale dell’astronave e da ciò che in essa è contenuto. In questo modo, le forze inerziali e gravitazionali sono controbilanciate. Gli astronauti al suo interno si trovano pertanto in condizioni di assenza di peso.

Il vantaggio maggiore risiede nell’ammontare del tempo nel quale vengono raggiunte le condizioni di microgravità. Nell’ISS, infatti, possono essere condotti esperimenti in questa situazione per due settimane.

Figura 3.5: Stazione Spaziale Internazionale
Capitolo 4

Conseguenze del volo spaziale sul sistema cardiovascolare

Le risposte del sistema cardiovascolare all’entrata in microgravità possono essere:

- Di breve termine, ossia in un tempo che va dai secondi alle ore;
- Di tempo intermedio, dalle ore a qualche giorno;
- A lungo termine o croniche, ovvero fino a qualche mese.

Le risposte di breve termine sono particolarmente importanti perché ci permettono di comprendere la natura e il tempo di intervento di un seguente adattamento alla microgravità. Inoltre, la validità dei modelli di microgravità terrestri dipende da come simulano sia gli stimoli iniziali che il processo di adattamento.

4.1 Effetti immediati

4.1.1 Diminuzione del volume del fluido interstiziale

Una prima conseguenza dell’assenza di pressione idrostatica è il movimento del sangue dalle estremità inferiori a quelle superiori. Questo porta a un incremento della capacità dei tessuti e dei vasi sanguigni nella parte inferiore, mentre si riduce quella nella parte superiore. Pertanto, facendo riferimento al modello descritto precedentemente(Fig. 3.2), il rapporto \(c_1/c_2 \) diminuisce, e ci sarà uno spostamento verso il basso dell’HIL, che in condizioni 1G si trova vicino al cuore.

Si avrà dunque una ridistribuzione del volume di fluido presente nelle gambe.
Figura 4.1: *Redistribuzione del fluido interstiziale nelle diverse fasi del volo*

E' stato misurato un decremento del 7,7 % (0,6 litri per gamba) rispetto alla condizione di pre-lancio dopo un'ora dall'ingresso in orbita. Bisogna comunque sottolineare come questa diminuzione di volume sia in parte dovuta alla posizione di pre-lancio (gambe rannicchiate verso il corpo).

4.1.2 Diminuzione della pressione venosa centrale

Un'altra variazione che ha scardinato alcune ipotesi dei primi anni 90' riguarda la pressione venosa centrale (CVP), ovvero la pressione nell'atrio destro del cuore, la struttura in cui affluisce tutta la circolazione venosa sistemica. Infatti, era stata formulata l'ipotesi per cui la pressione venosa centrale crescesse come conseguenza dello spostamento dei fluidi verso la testa indotta dalla microgravità (aumento del ritorno venoso).

Il decremento della CVP è stato dimostrato grazie a una misura continua registrata in una situazione di passaggio dalla condizione di gravità terrestre a microgravità. La pressione venosa centrale è stata continuamente misurata su un'astronauta durante una missione della NASA (Buckey JC et al., 1996). Per la misurazione è stato progettato un particolare strumento, che prevedeva un catetere direttamente inserito nella vena del braccio del soggetto da monitorare, la notte prima del giorno prefissato per il lancio. Prima del lancio, i membri dell'equipaggio si sono posizionati sui sedili orizzontali, mentre egli è rimasto nella posizione supina con le gambe in su per quattro ore. Otto ore dopo il lancio, è stato misurato un incremento della PVC da 5 a 6 cm di acqua per i membri dell'equipaggio seduti e da 10 a 12 per l'astronauta studiato.
Si è registrato un ulteriore aumento durante il lancio; tuttavia, una volta entrati in condizioni di 0G, la pressione venosa centrale è scesa di circa 3 cm di acqua nei primi 60 secondi.

Figura 4.2: Misurazioni della PVC

Nonostante un decremento della pressione venosa centrale, Norsk ha misurato un incremento della pressione transmurale (Norsk, 2014), ovvero la differenza tra pressione venosa centrale e la pressione esterna all’atrio destro (o intratoracica). Una volta entrati nella condizione di assenza di peso, la compressione scompare immediatamente nei soggetti in posizione supina e, come vedremo, sì ha un espansione del torace, cosicché la pressione intratoracica scenda di 5.6 mmHg. Simultaneamente, è stata riscontrata una diminuzione della pressione venosa centrale di 1.3 mmHg, per un incremento di quella transmurale pari a 5.6 – 1.3 = 4.3 mmHg.

L’incremento della pressione transmurale ha come prima conseguenza l’incremento del diametro atriale.

La diminuzione della pressione intratoracica sembrerebbe dimostrare che la pressione del ventricolo durante la contrazione, aumenti nei primi istanti di microgravità.

4.1.3 Decremento del battito cardiaco e aumento del volume sistolico

Effetti che si manifestano sensibilmente nelle prime ore successive all’entrata nelle condizioni di microgravità o di 0G sono un decremento del battito cardiaco e l’aumento del volume sistolico (Norsk, 2014), ovvero della quantità di sangue pompata a un ventricolo ad ogni sistole ventricolare. Per il primo si
tratta di un effetto compensatorio, dovuto per l’85% dai barorecettori presenti nella carotide e per il 15% dai recettori di volume cardiopolmonari.
L’incremento del volume sistolico è dovuto al meccanismo di Frank-Starling. Questo meccanismo prevede che il muscolo cardiaco regoli la forza della sua contrazione, in relazione alla quantità di sangue presente nel ventricolo alla fine dell’espansione: più sangue sarà entrato, più ne sarà eiettato, garantendo l’equilibrio tra il precarico (ritorno venoso) e la gittata cardiaca. Infatti, durante la fase di microgravità il ritorno venoso è aumentato, grazie allo spostamento del sangue dalle estremità inferiori (dove si trovava nella precedente condizione) fino al torace.

![Diagram](image)

Figura 4.3: Andamento del battito cardiaco nel volo spaziale

4.1.4 Aumento della gittata cardiaca

L’incremento del ritorno venoso provoca anche l’incremento della gittata cardiaca. La gittata cardiaca, infatti, subisce un aumento medio del 18% (Norsk et al., 2006), sia rispetto ad un soggetto seduto sia ad uno in piedi, ed è stato riscontrato non solo nelle prime fasi dell’ingresso in microgravità, ma anche dopo sette-otto giorni dall’inizio del volo spaziale.
Questo è dovuto non solo alla mancanza della spinta della gravità sulla colonnata di fluido sanguigno, ma anche dall’espansione dei polmoni e della gabbia toracica. Questa espansione, infatti, crea una zona di pressione negativa attorno al cuore e agli altri tessuti centrali, che incrementano, come già detto, il ritorno venoso, e di conseguenza la gittata cardiaca. Questa sembra essere la ragione per cui è stata osservata una diminuzione della pressione venosa centrale nonostante il fatto che le camere del cuore si siano espans. La condizione in cui la gittata cardiaca è relativamente elevata e in cui si ha
la simultanea espansione di torace e polmoni non può essere simulata sulla Terra. Pertanto, l’interazione tra cuore e polmoni è importante in assenza di peso per mantenere elevato il valore della gittata cardiaca anche duranti prolungati voli spaziali.

4.1.5 Dilatazione dei vasi sanguigni

![Figura 4.4: SVR e gittata cardiaca nel volo parabolico](image)

Tuttavia, dopo circa una settimana il livello di resistenza vascolare si attesta su livelli leggermente più alti, dovuto alla riduzione del volume sanguigno e della massa del muscolo cardiaco.

![Diagram](image)

Figura 4.5: SVR e gittata cardiaca dopo 6 giorni di micogravità

4.1.6 Riduzione del volume del plasma

L’incremento della pressione venosa centrale transmuranale insieme alla distensione delle camere del cuore nella fase iniziale del volo spaziale ha come conseguenza indiretta una diminuzione del volume del plasma.

E’ stato documentato che il volume del plasma diminuisce di un valore compreso tra il 10-17%(Norsk,2014) durante le ore iniziali del giorno del volo rispetto ai valori restrainti a terra per un soggetto in posizione supina. Tuttavia, non è perfettamente chiaro quale sia il meccanismo che porta a tutto ciò.

Si nota, comunque, come la diminuzione del volume del plasma è molto simile a quello che si ha con un semplice cambio di postura sulla Terra, dalla posiziona supina a quella in piedi, dovuta alle forze interstiziali di Starling.
4.2 Effetti di lunga durata

Come già accennato, dopo una prima fase in cui si possono notare i primi effetti della microgravità sul corpo umano e, in particolare, sul sistema cardiovascolario, dopo un tempo dell’ordine di qualche ora o giorno si iniziano a manifestare i primi effetti di "acclimation" alla microgravità, ovvero il fisioterapico adattamento a questa situazione.

L’interesse verso questo aspetto è stato sviluppato solo recentemente, soprattutto per problematiche legate sia alla difficoltà nell’avere un’accurata simulazione con modelli terrestri sia per le difficoltà legate alle prolungate e frequenti misurazioni necessarie durante il volo spaziale.

4.2.1 Diminuzione della massa del ventricolo sinistro

In un esperimento condotto su un’astronauta di rientro da una missione spaziale è stata riscontrata una diminuzione del 9.1% della LVM (left ventricular mass) dalla situazione di pre-volo a quella di atterraggio (Summers et al., 2001). Tuttavia, questa perdita è stata completamente recuperata nel giro dei tre giorni successivi all’atterraggio.

Pertanto, si è ipotizzato che si tratti di un effetto non collegato all’atrofia del muscolo cardiaco. Infatti, è stato implementato un sistema di simulazione informatizzato, il quale ha permesso di stimare una diminuzione della LVM del 7%. L’analisi delle informazioni sulle transizioni tra le situazioni di pre-volo, volo e post-volo ha permesso di evidenziare le variazioni degli elementi solidi e liquidi.

![Figura 4.6: Variazione della massa del ventricolo sinistro](image)

Secondo questa analisi, la variazione in massa del ventricolo sinistro è quasi interamente dovuta a funzioni fisiologiche che portano all’alterazione del
fluido interstiziale contenuto nel miocardio. Queste dinamiche dipendono dalla relazione idraulica presente tra pressione venosa centrale, volume del plasma e tessuto interstiziale che nasce una volta entrati in microgravità.

4.2.2 Intolleranza ortostatica

Una delle conseguenze del volo spaziale ritrovabile una volta rientrati sulla Terra è l’intolleranza ortostatica, ovvero l’incapacità di rimanere nella posizione eretta mantenendo un adeguato afflusso al cervello.

Il primo caso interamente documentato di intolleranza ortostatica post-volo è stata riportato dopo la missione del 34-l Mercury, nel 1963. Da quel momento, sono state condotte numerose indagini cliniche che hanno stabilito che l’intolleranza ortostatica è da considerarsi a tutti gli effetti una conseguenza del volo spaziale. Essa si manifesta con una frequenza abbastanza alta (circa il 70% degli astronauti).

Il recupero dall’intolleranza ortostatica è molto variabile con il tempo. In particolare, all’aumentare del numero di giorni di volo aumenta considerevolmente il numero di giorni necessario al recupero completo delle proprie funzionalità.

Figura 4.7: *Astronauti affetti da intolleranza ortostatica al rientro da una missione spaziale*

Il problema della tolleranza ortostatica è imputabile, in generale, all’azione dei barorecettori arteriosi, che porta al riflesso barorile.

Esso si innesca nel momento in cui si ha una diminuzione della pressione
arteriosa media. I barorecettori arteriosi, stimolati da questa variazione, sollecitano l’attività simpatica e deprimono quella parasimpatica, causando un aumento della frequenza cardiaca e della resistenza vascolare. Inoltre, come conseguenza indiretta si avrà una aumento dell’iezione ventricolare e del ritorno venoso.
Pertanto, gli astronauti al rientro sulla Terra, provano la stessa sensazione di malese re che si prova quando si passa repentinamente dalla posizione sdra iata a quella eretta.
Sono state introdotte nel tempo una serie di possibili contromisure (Antonutto & Pampero, 2003), illustrate nel capitolo 5, per cercare di eliminare o quantomeno mitigare i problemi legati a questo fenomeno.
Capitolo 5

Contromisure adottate

5.1 Lower body negative pressure

La Lower Body Negative Pressure (LBNP) permette di ottenere uno stress sul sistema cardiovascolare simile a quello che si ha in condizione di gravità terrestre quando si è in piedi. Lo strumento che permette di effettuarla è un cilindro che ricopre la parte bassa dell’addome e le estremità inferiori, al fine di mantenere una controllata differenza di pressione tra i due ambienti durante il periodo di assenza di peso.

Figura 5.1: Esempio di Lower Body Negative Pressure
Il membro dell’equipaggio è inserito in questo strumento e viene effettuata una tenuta ermetica attorno alla vita. Una pompa aspira aria dal tubo in modo tale da creare una pressione negativa al suo interno e di conseguenza anche intorno alle gambe del soggetto. Questo permette uno spostamento del sangue dalle estremità inferiori alle gambe. La pressione è mantenuta a questi livelli per circa 50 minuti, in modo tale da avere la possibilità di effettuare le misurazioni previste.

Questa situazione permette di diminuire il volume sistolico e, di conseguenza, la gittata cardiaca, oltre a controbilanciare in parte la diminuzione in volume del plasma.

Pertanto, questa contromisura può essere utile per attenuare o cercare di eliminare il problema della tolleranza ortostatica.

5.2 Altre contromisure

![Figura 5.2: Esempio di Penguin Suit indossata da astronauta](image)

Un’altra contromisura utilizzata dagli astronauti per contrastare la tolleranza ortostatica è l’assunzione di sali e liquidi circa 2 ore prima del rientro, per aumentare il volume dei fluidi nel corpo e compensare la perdita in volume del sangue.

Gli astronauti Russi utilizzano le cosiddette "Thigh cuffs", anelli inseriti nelle cosce che hanno il compito di limitare lo spostamento dei fluidi indotto dal volo spaziale. Il loro effetto principale è quello di aumentare il battito cardiaco e diminuire la pressione diastolica del sangue.
Infine, gli astronauti indossano le "Penguin suits", particolari tute introdotte nel 1971 dalla Russia nel contesto della "corsa allo Spazio", le quali permettono l’applicazione di una pressione sull’addome e sulle estremità inferiori in grado di contrastare lo spostamento dei fluidi verso l’alto.
Capitolo 6

Modelli matematici

6.1 Presentazione modello

Il modello numerico presentato di seguito (Peterson et al., 2001) è l’adattamento di un codice preesistente che aveva l’obiettivo di stimare alcuni parametri emodinamici.

La circolazione sistemica arteriale è stata modellata come una rete di rami inclusi le 36 arterie principali. Il flusso sanguigno è stato simulato modellando ogni arteria come un tubo di sezione circolare, in cui ho un flusso assiale monodimensionale. Le equazioni di partenza del modello sono le equazioni della quantità di moto e continuità e una legge viscoelastica del tubo:

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial \left(\frac{u^2}{2} + \frac{P}{\rho} \right)}{\partial x} + F &= 0 \\
\frac{\partial A}{\partial t} + \frac{\partial}{\partial x}(uA) + \psi &= 0 \\
A(t) &= A_0[P(t)] + \int_0^{\infty} J(t')A_0[P(t-t')]dt'
\end{align*}
\]

dove \(u\) è la velocità media, \(P\) è la pressione transmurale, \(A_0\) è l’area della sezione trasversale, \(F\) un termine di attrito, \(\psi\) un termine rappresentante il flusso attraverso rami più piccoli, \(J\) è la funzione di scorrimento, \(x\) è la coordinata assiale lungo la direzione dell’arteria e \(t\) il tempo. Il termine di attrito è dato da

\[
F = \frac{2}{\rho R} \left(\frac{4\mu}{R} u(t) + \frac{2\mu}{R} \int_0^\infty \frac{\partial u(t')}{\partial t} W(t-t')dt' \right)
\]

dove il primo termine rappresenta lo smorzamento di Poiseuille e il secondo termine approssima lo sforzo di taglio sulle pareti. Il flusso attraverso
ramificazioni più piccole è stato approssimato da una funzione lineare della differenza di pressione tra la pressione intravascolare locale P_{int} e la pressione extravascolare P_{ext}:

$$\psi(P, x) = \phi(x) P$$

con ϕ un termine lineare resistivo. Il termine di scorrimento sarà dato invece da:

$$J(t) = \frac{a}{t} e^{-t/\tau_1} - e^{-t/\tau_2}$$

dove a, τ_1 e τ_2 sono costanti.

Per risolvere le equazioni della pressione, flusso, area di sezione trasversale per ogni istante della simulazione del ciclo del battito cardiaco è stato utilizzato lo schema di MacCormack. La lunghezza dei segmenti alle differenze finite è di circa 1 cm per ogni arteria. I segmenti singoli rappresentanti le arterie sono congiunti alle biforcazioni in modo tale da formare un albero con ramificazioni arteriose.

Nelle regioni di biforcazione, un singolo segmento arterioso si divide in $N-1$ ramificazioni. In queste biforcazioni sono generate le perdite dovute alla separazione del flusso.

Viene allora applicata l’equazione di Bernoulli non stazionaria (che presenta un termine tenente conto della dissipazione) dai rami generatori a quelli generati, ricavando $N-1$ equazioni. Il termine di dissipazione dipende dall’angolo di ramificazione.

L’equazione di continuità non stazionaria applicata al volume di controllo della biforcazione ci fornisce una singola equazione. La legge del tubo a sezione circolare permette di ricavare N equazioni.

Infine, le equazioni della quantità di moto e di continuità si accoppiano in modo tale da risolvere ogni braccio nelle variabili di pressione, velocità e area di sezione trasversale di ogni ramo.

Ogni ventricolo è rappresentato da una camera con una valvola di ingresso e una di uscita. Il ventricolo si riempie in risposta alla pressione transmurale. La gravità influenza il tasso di riempimento aggiungendo una componente idrostatica alla pressione intramuscolare. Questa relativamente piccola variazione di pressione può diventare significativa se comparata alla tipica pressione cardiaca transmurale.

In questo modello, la componente della pressione idrostatica è approssimata dall’equazione $\Delta P = \rho gh$, con ρ densità del fluido, g l’accelerazione di gravità e h l’altezza della colonna idrostatica rispetto al punto medio del ventricolo. Un valore tipico di h è 3,5 cm.

La capacità non lineare è specificata da un modello a tre segmenti dipen-
dente dalla pressione transmurale, per rappresentare i tre diversi stati del tessuto (collassato, parzialmente riempito e disteso).

Per ogni regione venosa, è stata inoltre definita una pressione extravascolare indipendente dalla postura (supina, seduta o di lancio). La variazione dell’accelerazione di gravità, invece, fa variare la pressione all’interno del torace. Sono stati pertanto scelti dei valori rappresentativi delle situazioni analizzate.

La pressione idrostatica è stata inserita nella direzione testa-piedi (e non in quella anteriore-posteriore) in tutte le aree di circolazione ad eccezione delle arterie, dove la bassa capacitanza non permette un significativo spostamento dei fluidi.

E’ stato calcolato un "hydrostatic indifference level" (HIL) per ogni posizione, basato sulla relativa altezza e complianza delle tre regioni della circolazione venosa rispetto all’atrio destro.

L’altezza del cuore relativa all’HIL determina se la pressione idrostatica fa aumentare la pressione cardiaca transmurale (nel caso in cui il cuore si trovi sopra l’HIL) o la abbassa (nel caso in cui il cuore si trovi sotto l’HIL) in una transizione da 0 a 1 G.

Infine, è stata simulata una "lower body negative pressure" (LBNP), una potenziale compromissione alla tolleranza ortostatica, applicando un vuoto di ~40mmHg rispetto alla regione venosa caudale.

<table>
<thead>
<tr>
<th>Posture</th>
<th>Effects</th>
<th>ITT, mm Hg</th>
<th>LVEDP, mm Hg</th>
<th>CVP, mm Hg</th>
<th>AOP, mm Hg</th>
<th>Cardiac output, L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUP</td>
<td>ITT</td>
<td>-4.1</td>
<td>-2.2</td>
<td>6.7</td>
<td>5.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Launch</td>
<td>ITT</td>
<td>-5.5</td>
<td>-3.5</td>
<td>6.7</td>
<td>5.6</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>HP+HP</td>
<td>-3.6</td>
<td>-3.5</td>
<td>6.6</td>
<td>5.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Sitting</td>
<td>ITT</td>
<td>-4.1</td>
<td>-6.3</td>
<td>6.8</td>
<td>5.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>HP+HP</td>
<td>-3.6</td>
<td>-6.3</td>
<td>7.3</td>
<td>6.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Standing</td>
<td>ITT</td>
<td>-3.6</td>
<td>-6.3</td>
<td>6.8</td>
<td>5.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>HP+HP</td>
<td>-3.6</td>
<td>-6.3</td>
<td>7.3</td>
<td>6.5</td>
<td>6.6</td>
</tr>
<tr>
<td>LBNP</td>
<td></td>
<td>-4.1</td>
<td>4</td>
<td>4.3</td>
<td>9.0</td>
<td>4.09</td>
</tr>
</tbody>
</table>

Figura 6.1: Risultati del modello

I risultati trovati ci danno informazioni sull’effetto della pressione idrostatica, pressione intratoracica e della combinazione delle due nelle posizioni supina, seduta, in piedi e di lancio.
6.2 Presentazione risultati

Nel caso della posizione supina, l’unico effetto sarà quello della pressione intratoracica ITP, la quale aumenta all’aumentare della gravità. Di conseguenza, la gittata cardiaca CO diminuirà proporzionalmente. La pressione venosa centrale CVP e la pressione diastolica del ventricolo sinistro LVEDP aumentano in risposta all’aumento di ITP.

Nel caso della posizione di lancio, invece, avrà sia l’effetto della pressione idrostatica HP che dell’ITP. Il trend sarà lo stesso della posizione supina, tuttavia l’aumento della pressione intratoracica dovuto all’aumento della gravità è minore rispetto alla situazione precedente. Quando ho solo l’effetto dell’ITP, ad un aumento della gravità corrisponderà un leggero aumento della CVP e LVEDP e una diminuzione del CO. Quando è simulato il solo effetto dell’HP, l’incremento di CVP e LVEDP produce un aumento del CO.

Nella situazione di effetto combinato, l’aumento dell’HP e dell’ITP con la gravità porta a una minor diminuzione del CO per maggiori incrementi di CVP e LVEDP rispetto a quelli che avrei con il solo effetto dell’ITP.

Figura 6.2: Influenza combinata di ITP e HP sulla gittata cardiaca in diverse posture
6.2

Per la posizione seduta, la pressione intratoracica decresce molto all’aumentare della gravità. Con la simulazione della sola ITP si è misurato un leggero decremento di CVP e LVEDP e un aumento del CO.

Quando è simulato il solo effetto della pressione idrostatica, una forte diminuzione di CVP e LVEDP produce una significativa diminuzione del CO.

L’effetto combinato di HP e ITP porta a una situazione in cui una maggiore diminuzione della CVP e LVEDP produce una minore diminuzione del cardiac output rispetto a quella che avrei con la sola ITP.

Infine, per la situazione di posizione eretta, i risultati per le variazioni della sola ITP sono uguali a quelli della posizione seduta.

Per gli effetti dell’aumento di gravità sulla sola pressione idrostatica, le diminuzioni di CVP e LVDEP sono maggiori rispetto alla posizione seduta e causano maggiori diminuzioni del CO.

L’effetto combinato di HP e ITP fa in modo che un maggior decremento della CVP e LVEDP comporta una minore diminuzione del CO rispetto alla situazione in cui ho unicamente ITP.

![Diagram](image.png)

Figura 6.3: **Influenza dell’ITP, dell’HP e della loro combinazione sulla gittata cardiaca nella posizione eretta**

Per quanto riguarda la simulazione di lower body negative pressure, si è misurata con una pressione di -40mmHg in 0G valore di pressione aortica e gittata
cardiaca simili a quelli che si rilevano in condizione di 1G in posizione eretta, suggerendo come questa possa essere considerata una valida contromisura all’intolleranza ortostatica.
Ulteriori risultati sono quelli relativi allo stroke volume(SV). Un’aumento della gravità porta a una riduzione dello SV, in accordo con le considerazioni fatte nel capitolo 4.
Il volume telediastolico è più influenzato rispetto a quello telesistolico, soprattutto per quanto riguarda il ventricolo destro. Questo risultato riflette la forte influenza della pressione idrostatica sul ritorno venoso.

Il ventricolo destro si trova più vicino all’HIL rispetto al sinistro. Tuttavia, la pressione transmurale del ventricolo destro varia meno rispetto a quella del ventricolo sinistro. Un minor cambiamento della pressione transmurale comporta una minore pressione diastolica di riempimento. Questo dimostra l’influenza che ha la pressione idrostatica intraventricolare sul riempimento diastolico.
6.3 Discussione risultati

In generale, per tutte le combinazioni e tutte le posture, la CO è stata determinata dalla pressione transmurale diastolica, come evidenziato in figura 6.4. Indipendentemente da cosa porti ai cambiamenti nella pressione transmurale (spostamento dei fluidi intravascolari, cambiamento della pressione intratoracica o la combinazione delle due), il cardiac output è determinato dalla sua differenza di pressione diastolica di riempimento.

![Figura 6.4: Gittata cardiaca in funzione della pressione cardiaca transmurale](image)

Questi risultati confermano che questo modello di cuore si comporti seguendo il meccanismo di Frank-Starling, dove la forza che porta alla saturazione ventricolare è la pressione transmurale ventricolare.

Si noti che il forte effetto della pressione idrostatica nella diminuzione della gittata cardiaca con l'incremento della gravità è controbilanciato dalla benefica influenza della pressione intratoracica, in grado di produrre una diminuzione intermedia della CO.

La LVEDP agisce su un livello più vicino all'HIL rispetto a quello della CVP, pertanto essa decresce meno negli "stand test". Allora, la pressione cardiaca transmurale che determina il riempimento diastolico varia relativamente poco.

E' stata tuttavia misurata una diminuzione della CO del 18% dopo un tempo
Figura 6.5: Variazione della LVEDP, ITP e CVP con la posizione

di 5 minuti durante gli stand test pre-volo, mentre arriva al 28% nella situazione di post-volo. Questa variabilità potrebbe spiegare, almeno in parte, la differenza tra i risultati delle simulazioni e i reali valori umani pre-volo.
La differenza tra i risultati sperimentali e quelli della simulazione, pertanto, suggeriscono che la pressione transmural diastolica cali maggiormente durante gli stand test rispetto ai risultati della simulazione nella condizione post-volo.
Una spiegazione potrebbe risiedere nel fatto che l’atrofia dei muscoli addominali indotta dal volo spaziale porta a una pressione intratorica più bassa quando la massa addominale è in condizioni di gravità, e il diaframma scende quando l’astronauta è in piedi. Questo meccanismo migliorerebbe il ritorno venoso e si oppone all’effetto necessario a spiegare la bassa gittata cardiaca negli astronauti dopo il volo.
Capitolo 7

Conclusioni

Il volo spaziale induce, a causa della microgravità, uno spostamento dei fluidi dal basso verso l’alto.
Questo spostamento ha una serie di conseguenza sul sistema cardiovascolare, che hanno esse dirette o indirette: aumento della pressione venosa centrale transmurale (nonostante un decremento della CVP), aumento dello Stroke Volume e della gittata cardiaca, oltre che una riduzione della resistenza vascolare sistemica. Inoltre, si registra una leggera diminuzione del battito cardiaco.

Una volta rientrati sulla Terra, però i meccanismi di regolazione individuano una pressione arteriosa media troppo bassa, e intervengono aumentando il battito e la gittata cardiaca, inducendo il fenomeno dell’intolleranza ortostatica.
Altro effetto di più lunga durata è la diminuzione in massa del ventricolo sinistro, che si è dimostrato essere causata dalla perdita in volume dei fluidi interstiziali.

Negli ultimi anni si sta andando sempre più verso una ricerca sugli effetti che si manifestano in voli spaziali di lunga durata, per cercare di capire se sussistono le condizioni fisiche per raggiungere pianeti più lontani con un equipaggio a bordo.
Capitolo 8

Bibliografia

André E. Aubert, Frank Beckers, Bart Verheyden, *Cardiovascular function and basics of physiology in microgravity*, Acta Cardiol (2005) 60(2), 129-151;

Kristy Peterson, Edwin T. Ozawa, George M. Pantalos, M. Keith Sharp, *Numerical Simulation of the Influence of Gravity and Posture on Cardiac Perfor*

David Williams, Andre Kuipers, Chiaki Mukai, Robert Thirsk, Acclimation during space flight: effects on human physiology, CMAJ (2003) 180, 1317-1323;

Helmut Hinghofer, Gravity, the hydrostatic indifference concept and the cardiovascular system, Eur J Appl Physiol (2011) 111, 163–174;

Cindy L. Stanfield, Fisiología