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Sommario

Lo studio della turbolenza è sempre stato un ramo molto attivo della fluidodinamica. Ciò è
dovuto al fatto che è osservabile nella vita quotidiana, sia in fenomeni naturali (correnti at-
mosferiche e oceaniche, diffusione del fumo, flusso cardiocircolatorio) che in applicazioni
(flusso in tubazioni, flusso attorno ad un profilo alare, turbomacchine). Nonostante gener-
almente sia un fenomeno dissipativo (e pertanto indesiderato), in determinate situazioni si
rivela utile: basti pensare al mescolamento di fluidi (molto più efficace quando turbolento),
alla trasmissione del calore e all’uso dei vortex generator sulle ali di impiego aeronautico
per anticipare la transizione turbolenta, che presenta il vantaggio di ritardare lo stallo.

Nonostante sia così facilmente osservabile, la turbolenza continua a essere uno dei
grandi problemi irrisolti della fisica moderna, a causa dell’intrinseca non linearità delle
equazioni che la descrivono.

Gli approcci moderni generalmente prevedono l’utilizzo di tecniche numeriche (com-
putazionalmente costose) ed esperimenti successivamente analizzati con metodi statistici.
In entrambi i casi si ha una gran quantità di dati spesso difficili da interpretare. Man mano
che la potenza di calcolo é andata aumentando, questo problema si é reso sempre più press-
ante, portando alla necessità di un approccio multidisciplinare che potesse semplificare
questo tipo di analisi. In questo contesto, la teoria delle reti complesse - un’applicazione
della teoria dei grafi - rappresenta un metodo per caratterizzare sistemi complessi che in-
cludono un grande numero di entità interagenti tra di loro.

La teoria delle reti complesse é stata utilizzata con buoni risultati in svariati ambiti,
dalla sociologia alla biologia, dall’informatica alla progettazione urbana; negli ultimi anni
sono stati proposti alcuni approcci basati su di essa per lo studio di turbolenze, approcci
in grado di fornire un’idea di base del sistema in oggetto senza ricorrere a tecniche più
costose.

In particolare, in questa tesi si userà una tecnica basata sulle reti complesse per studiare
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il flusso turbolento in un canale, utilizzando dei dati disponibili online (e ottenuti tramite
simulazione DNS) sul JHTDB (John Hopkin’s Turbulence Database); in sostanza, si an-
alizzeranno le differenze tra reti ottenute utilizzando i dati prelevati da diverse regioni del
flusso.
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Introduction

T he study of turbulence has always been a very interesting subject in fluid dy-
namics. This is due to the fact that it is commonly observable in many every-
day situations, both in natural phenomena (atmospheric currents, diffusion of

smoke, sea currents, blood flow in the circulatory system) and industrial applications (flow
of a fluid through pipes, aeronautic applications, turbomachinery). Despite usually being
a dissipative, unwanted phenomenon, there is a variety of situations in which turbulent
transition is deliberately induced: a common example is the mixing of fluids, that is much
more efficient in a turbulent flow, or the transmission of heat, let alone the usage of vortex
generators on airplane wings in order to delay stall by anticipating turbulent transition.

Even if its applications are so common, turbulence still represents one of the most
challenging problems of nowadays physics, and a general, analytical approach for dealing
with turbulent problems is yet to be found (because of the high non-linearity of the equa-
tions describing it, as explained later). Feynman himself described turbulence as ’the most

important unsolved problem of classical physics’.

Modern approaches usually involve numeric techniques (very expensive, from a com-
putational point of view) and experimental simulations, that are later treated with statistical
methods. Both ways provide a huge amount of data, that are often difficult to be examined
and interpreted. With increasing computational power, this problem has become more and
more important, leading to the need of interdisciplinary techniques that can make statistical
analysis lighter. In this situation, complex network theory - a combination of graph theory
and large-number statistic - can be a powerful method to analyse very complex systems
with a great number of entities interacting dynamically, just as turbulent flows.

Complex network theory has been successfully used in many branches of science, go-
ing from sociology (study of social networks) to biology, computer science, biochemistry,
optimization problems in urban design, providing promising results. In the last few years,
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Introduction

only a few complex network approaches have been proposed to study turbulent flows,
mainly to give a preliminary spatial characterization of a turbulent flow. In this context,
these approaches can represent an extremely efficient tool to obtain a basic overview of the
general properties of a turbulence.

In particular, in this work we will apply a network-based approach to a turbulent flow
in a channel. We will use time series data obtained via a DNS simulation in a database
freely available online (John Hopkins Turbulence Database JHTDB) in different regions
of the flow. We will then use an algorithm (called visibility algorithm) to obtain a complex
network for each point and compare their different topology in order to gather some in-
formation about the underlying physical system, and evaluate which the properties of the
time series are retained by the complex network. In particular, the thesis will be organized
as follows:

• In Chapter 1 we will give a general overview of turbulent flows; we will outline the
dynamic processes that influence their behaviour and the difficulties encountered in
dealing with turbulent problems;

• Chapter 2 is about the main features of complex networks: some basic notions about
graph theory and the main parameters that characterize the topology of a network;

• Chapter 3 is dedicated to the visibility algorithm, as proposed by Lacasa et al.[4];

• Chapter 4 deals with the analysis and comparison of the complex networks obtained
in various points of the turbulent flow, discussing their differences and how the dy-
namic system from which they are generated influences their properties; in particu-
lar, the points will have the same x and z coordinates, i.e. we will move along the
direction normal to the channel wall (because it is the inhomogeneous one, hence
the most interesting to study).

Some closing remarks are discussed in the Conclusions section. Finally, all the MATLAB
scripts devised to perform the analysis are reported in Appendix.
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Chapter 1

General properties of Turbulence

E
very fluid system can be described with a set of equations called Navier-Stokes

equations, which in the general case look like the following (in their differential
form): 

∂ρ
∂t

+∇ · (ρ~u) = 0

ρ(∂~u
∂t

+ u∇u) = ρFv +∇ · T

The former equation represents the conservation of mass, the latter is the quantity of
motion balance. The nature of the flow depends on the value of some parameters (mainly
the Reynolds number): in particular, when the Reynolds number reaches a certain threshold
(which depends on the phenomenon we are observing), we have the so called transition

from laminar to turbulent flow. While it’s very difficult to give a proper definition of tur-
bulence because of the variety of situations in which it can appear, it’s possible to identify
some features that are common to all turbulent flows:

• Randomness: turbulent flows are a typical example of deterministic chaos. While
the aforementioned equations are almost impossible to solve due to their strong non-
linearity, they are still deterministic, i.e. certain initial conditions always lead to
the same solution of the motion field. But, at high Reynolds number, it’s almost
impossible to determine the exact initial conditions; moreover, when the flow is tur-
bulent, the solution of the equation is strongly dependent on the initial conditions,
i.e. small changes in them lead to great variability of the solution;

• Diffusivity: turbulent processes usually involve great rates of mass, momentum and
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CHAPTER 1. General properties of Turbulence

heat transfer (due to the diffusive term present in the quantity of motion equation);

• Large Reynolds numbers: turbulent processes come to existence when inertial
forces are much greater than viscous forces; this is due to the fact that inertial forces
are responsible for the system instability (so, given a perturbation, the system either
diverges or stabilizes in a completely different equilibrium condition), while vis-
cous forces tend to damp perturbations. So, since the Reynolds number is the ratio
between inertial forces and viscous forces, it’s only natural that when it reaches a
certain value (depending on the specific experimental situation) there is transition
from laminar to turbulent flow, and the nonlinear convective term in the NS equation
becomes predominant;

• Three-dimensional and rotational: the flow is never irrotational, i.e. it shows non-
null and non-costant vorticity (vorticity is the infinitesimal rotation of the velocity
field, ~ω = ∇ × ~v); in particular, turbulent flows are characterized by an high, fluc-
tuating vorticity. These fluctuations (with large magnitude) could never maintain
themselves if the motion field wasn’t 3D;

• Dissipation: even if at first they are negligible, viscous shear stresses always convert
kinetic energy in thermal energy, so at some point in time (if there is no external
energy to maintain the flow) turbulence will eventually decay.

So, given that it is impossible to solve the equations analytically, some statistical ap-
proaches have been proposed, based on the average values of the quantities involved. The
first step is considering every variable as the sum of its mean value and the fluctuation:
f(~x, t) = 〈f〉 + f ′(~x, t); thus, we can rewrite the NS equations for the average values,
obtaining the Reynolds-averaged Navier-Stokes Equations (RANS)[1].

It’s important to notice that the dynamics of a turbulent flow are deeply influenced by
the fact that there is a variety of ’scales’ at which they happen, i.e. the vorticose structures
(called eddies) can be more or less wide.

This leads to another approach called LES (Large Eddy Simulation), in which the cal-
culation is simplified by excluding the small scale solutions (that are the most computa-
tionally expensive) with a filter (as we will se later, small eddies are associated to high
frequencies, so usually a low-pass filter is used). Still, the most accurate method is DNS
(Direct Numerical Simulation), in which the NS equations are solved directly without a
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CHAPTER 1. General properties of Turbulence

turbulence model. Obviously this method is the most expensive (computational cost grows
with Re3).

The interaction between big and small eddies is the real responsible of the overall be-
haviour of the flow. The statistical approach for characterizing these scales was developed
by the Russian studious Andrey Kolmogorov, whose theory is briefly summarized below.

An eddy is characterized by a dimensional scale l, a velocity scale u(l) and subsequently
a temporal scale τ(l) := l/u(l). Usually, bigger eddies have a characteristic length lothat is

comparable to the dimension of the phenomenon L. Their Reynolds numberRe0 =
u(l0)l0
ν

is quite large, i.e. the effect of viscosity is negligible. According to Kolmogorov (and
Richardson, who first theorized this idea), bigger eddies (that contain most of the energy
of the flow) are unstable, so they tend to decay transferring their energy to smaller ones.
This continues to happen in smaller and smaller eddies, until the Reynolds number is so
low that viscosity has a relevant effect and kinetic energy is dissipated into thermal energy.
This process is known as energy cascade. Considering that the eddies that start the cascade
have energy proportional to u20and temporal scale τ0 = u0

l0
, the rate of energy dissipation is

ε =
u20
τo

=
u30
l0

(so it does not depend on kinematic viscosity). In order to link large scales to
smaller ones, Kolmogorov introduced three hypotheses.

1.1 Kolmogorov hypotheses[6]

• First Kolmogorov hypothesis (local isotropy)
For Reynolds numbers large enough, small scale (l � l0) turbulent motions are

statistically isotropic (i.e. they have no preferred direction)

Kolmogorov theorized that when large scale eddies decay, information about their
geometry and their direction is lost. As a direct consequence, for Reynolds numbers
adequately large, small scale motions are universal, meaning that they are similar
in every high-Re flow. The explanation of this fact resides in the assumption that
the statistic properties of the small scale dynamics depend uniquely on the energy
dissipation rate ε and the kinematic viscosity ν.

• Second Kolmogorov hypothesis (first hypothesis of similarity)
For Reynolds numbers large enough, small scale (l < lEI) statistics are universally

determined by ε and ν
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CHAPTER 1. General properties of Turbulence

lEI ≈ 1/6lois the scale at which the universality principle is valid. For every l < lEI

(universal equilibrium range), by dimensional analysis the following scales (for di-
mension, time and velocity) are defined (Kolmogorov microscales):

η =

(
ν3

ε

)1/4

τη =
(ν
ε

)1/2

uη = (νε)
1/4

Kolmogorov showed that if one normalizes lengths and velocities with the scales
defined above, the motion field is self-similar, i.e. in every point and for every high-
Re flow the motion at small scales is statistically identical if made non-dimensional
with Kolmogorov scales. Now that the the properties of large scale and small scale
eddies are defined, there are only intermediate eddies left to deal with, i.e. all the
structures large enough to not be influenced by viscosity, but small enough to be
included in the universal equilibrium range (η � l < lEI < l0)

• Third Kolmogorov hypothesis (second hypothesis of similarity)
For Reynolds numbers large enough, eddies with lDI � l� lEI are influenced only

by ε and not ν

lDI ≈ 60η is the scale that divides the universal equilibrium range in the inertial
range and dissipation range. In the inertial range, viscosity does not have a relevant
effect yet, so energy transfer is only influenced by inertial effects.
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CHAPTER 1. General properties of Turbulence

Figure 1.1: Graphic representation of the scales introduced
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Chapter 2

Complex network theory

I n the last decades, the concept of analysing dynamic time series by converting
them into a complex network system has been introduced. In particular, it’s been
proved that the derived networks inherit some of the features of the parent time

series. Before speaking about the transformation algorithms, it’s useful to give the reader
some general information about graph theory.

A network (meaning a graph) is basically a set of nodes (or vertices, or points) con-
nected by edges (or lines). Their easy structure makes them suitable to model any kind of
system in which there are a certain number of interacting entities. Graph theory has been
strongly developed in the last century, and its range of applications is virtually countless;
infact, while at the beginning graphs were (successfully) used to solve optimization prob-
lems (theoretical computer science, game theory, city planning), they were later discovered
to be an extremely powerful tool to study biological systems, social groups and neural net-
works. Suffice it to say that for example Google’s PageRank algorithm to index web pages
is based on graph theory, combined with statistic tools. In this context, a complex network

is a graph with non-trivial features, derived from a real system and usually involving thou-
sands or millions of nodes. In the next chapter a brief overview of definitions and metrics
of a complex network will be given.

2.1 Main definitions and notations

In general there are four types of graphs: weighted graphs (directed), unweighted graphs

(directed), undirected weighted graphs (simply called weighted graphs) and undirected
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CHAPTER 2. Complex network theory

unweighted graphs; in particular, the last three are special cases of the weighted directed
graph.

From a mathematical point of view, a directed weighted graph G(N, K) = (V, L) is
defined by a set V of N nodes and a set L of K vertices. Each node can be identified by an
integer index i = 1, 2, ..., N and each edge is identified by a couple (i, j), in which i and j

are the endpoints of the link, and a real non-negative number ω(i, j) that is the weight of
the link. A common assumption is that there are no loops (i.e. there are no links between
a node and itself) and no multiple connections (i.e. each pair of nodes has no more than
one link). A graph that shows one of these two features is called multigraph or degenerate
graph. In matricial notation, a graph can be completely represented by a weight matrix

W, in which every entry wij = ω(i, j). It’s important to notice that in the case of directed
graphs the relation wij = wjiis not verified, meaning there’s no correlation among the
edges entering and exiting a node.

An unweighted graph is a graph in which the edges have no weight, so all the links are
equipollent. Unweighted graphs are represented by the adjacency matrix A, in which the
entries aijare defined as following:

aij =

1 if i and j are linked

0 otherwise

In the case of an undirected graph the edges have no direction, i.e. aij = aji. In these
graphs, two nodes i and j are neighbours if aij 6= 0. The neighbourhood of a vertex i v(i)

is the set of nodes adjacent to i, i.e. all the nodes with which i has a link. The distance

between two nodes d(i,j) is the shortest walk between the two nodes that are connected
(meaning there is a walk that goes from i to j). A trail is a walk in which no edge is
repeated, while a path is a walk in which no node is visited more than once. In this work
we will only deal with undirected unweighted graphs, so all the following definitions will
be given implicitly assuming that we are considering such a graph.

2.2 Metric properties

There is a number of parameters that can express the topological features of a graph. We
will be focusing on the following[8]:
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CHAPTER 2. Complex network theory

• Degree
The degree (connectivity) ki of a node i is defined as the number of edges in-
cident in that node; in terms of adjacency matrix it can be calculated as follows:

ki =
∑
j∈ℵ

aij

ℵ is the neighbourhood of node i, i.e. the set of nodes with which i shares an edge.
One of the most basic characterizations is the degree distribution P(k), defined as the
probability that a randomly chosen node has degree k or, similarly, as the fraction of
nodes in the graph having degree k. It is obviously possible to introduce the mean

degree of the graph 〈k〉 =
∑
k

kP (k) = 1
N

N∑
aij

i,j=1

. The nodes with high degree are

usually called hubs.

• Shortest path length
It is useful to have an idea of how ’compact’ a network is, i.e. what’s the distance
between two nodes in the graph. Moreover, it could be easier to identify the most
important nodes of the network as the ones most closely connected to the others. A
matrixD is introduced, where every entry dij is the shortest path between node i and
node j. The maximum value of dij is called diameter of the graph. The most com-
mon measure of the typical separation between two nodes is the average path length,
also known as characteristic path length, is the mean of geodesics (shortest paths)
over all the couples of nodes in the graph:

L =
1

N(N − 1)

∑
i,j∈N,i6=j

dij

This definition is inconsistent if there are disconnected components in the graph
(i.e. ∃i, j : dij =∞), but it will suffice for the purposes of this work.

• Clustering coefficient
Clustering is a typical property of social networks, where to two people who have a
friend in common are likely to know each other. Clustering (also known as trans-

itivity) can be measured with various coefficients; we will focus on the clustering
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CHAPTER 2. Complex network theory

coefficient C. Firstly, a local clustering coefficient ci is defined; this coefficient ex-
presses how likely is ajm = 1, where m and j are two neighbours of node i. This is
done by counting the actual number of edges among the nodes in the neighbourhood
of node i and dividing it by the maximum number of links ki(ki − 1)/2:

ci =
2ei

ki(ki − 1)
=

2
∑

j,m ajiamiajm

ki(ki − 1)

The global clustering C is the average of the ci over all the nodes in the graph:

C = 〈c〉 =
1

N

∑
i∈N

ci

• Modularity
The modularity of a network is a measure of how much the network is divided in
communities (clusters). A high value of modularity expresses the fact that the net-
work is strongly divided into groups; letting si = 1if node i belongs to group 1 and
si = −1if it belongs to group 2, modularity Q is defined as:

Q =
1

4m

∑
ij

(
Aij −

ki · kj
2m

)
sisj

where m = 1/2
∑

i ki is the total number of edges in the graph and kikj/2m is the
expected number of edges between i and j if the edges were placed randomly. Mod-
ularity is useful because nodes belonging to the same group are likely to share the
same properties; above all, there are a lot of connections inside the community, but
links become less dense among the different clusters, so the information transmis-
sion rate is much higher inside a single group than between a group and another.
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Chapter 3

The visibility algorithm

N ow that we have a little background information, we can deal with the generation
of the graph. As mentioned before, the idea is to transform a time series data
into a unweighted undirected graph, and study its topology in order to gather

some informations about the underlying series. Various algorithms have been proposed to
achieve this objective (for example the phase space method, introduced by Xu et al.[5]). In
this work we will use the visibility algorithm, proposed by Lacasa et al.[4] because of its
simplicity.

Let x(ti) = x1, ..., xNbe the values of a time series of N measurements and imagine to
plot them in a vertical bar diagram. In Figure(3.1) we have an example of a |sin(t)|plotted
between 0 and π discretized in 16 equidistant points. In this diagram, we link every bar
with all the bars that are visible from the top of the chosen one with a straight line. Thus,
we can obtain a graph in which every point is a node and a link exists if two nodes are
visible from one another.

Formally, we can enunciate a visibility criteria: two arbitrary data points (ta, ya) and
(tb, yb) are visible (and thus are connected in the visibility graph) if for every data (tc, yc)

between them the following relation is verified:

yc < (ya − yb)
tb − tc
tb − ta

The graph obtained with this algorithm shows some interesting features; in particular,
it is:

• Connected: each node sees at least its neighbours (left and right);

12



CHAPTER 3. The visibility algorithm

Figure 3.1: Visibility algorithm

• Undirected: the existence of a link between node a and b implies a link between
b and a (although the algorithm could be easily built so that it would distinguish
ingoing and outgoing connectivity);

• Unweighted: all the links are equivalent, so the algorithm returns an unweighted
network;

• Invariant under affine transformation: the visibility graph doesn’t change if the time
series is rescaled horizontally or vertical or if it is translated along the x or y axis.

The constructed graph inherits some properties of the underlying time series: periodic
series produce regular graphs, as well as random series convert into random graphs. In the
present work, a MATLAB script has been devised; this script, given a time series in form of
a vector, returns the adjacency matrix relative to its visibility graph and some representative

13



CHAPTER 3. The visibility algorithm

metrics.
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Chapter 4

Results of the simulation

4.1 The JHTDB database

A s mentioned before, in this work a turbulent flow in a channel is studied. In
particular, we will investigate the topology of two visibility graphs obtained by
time series measured in different regions of the turbulent flow: we will consider a

point in the buffer layer and a point in external region; in order to have a wider perspective
on the various regions of the flow, we also considered three additional points (wall region,
channel axis and one in between the two aforementioned). As mentioned before, the points
are taken along the wall (because it is the inhomogeneous direction), so they share the same
x and z coordinates (they were taken at about the center of the channel).

The data has been retrieved from the John Hopkin’s Turbulence Database (JHTDB), an
open-access freely available online (http://turbulence.pha.jhu.edu/). Despite the impossib-
ility to solve deterministically in a closed form the NS equations, thanks to the modern
development of computational power of electronic devices many numeric resolution tech-
niques have been effectively used. The data in this database is obtained via a DNS (Direct
Numerical Simulation), meaning that the NS equations are solved directly without any
turbulence model. DNS is usually very expensive from a computational point of view,
and it is practically inapplicable with flows at high Reynolds number (the computational
cost grows with Re3). Still, it is used with simple configurations such as isotropic homo-
geneous turbulence and channel flow; also, it is applied to study turbulences for research
purposes, because the conditions needed for theoretical studies usually can’t be recreated
experimentally. The database can be accessed via a web interface (for data cutout) or dir-

15
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CHAPTER 4. Results of the simulation

ectly via a program, using APIs developed for many programming languages. Given that
we used only two points, we downloaded the data using the web interface in .h5 format
and extracted it with a MATLAB script.

4.2 Characteristics of the flow

The simulations parameters were the following:

• Domain dimensions: Lx × Ly × Lz = 8πh× 2h× 3πh, where h is half the channel
height;

• Grid: Nx ×Ny ×Nz = 2048× 512× 1536

• Timestep: δt = 0.0065;

• Time stored: t = [0.0, 25.9935]

So, we have 2048 x 512 x 1536 points in the gridspace, each one sampled at 4000 timesteps.
The flow had the following characteristics:

• Viscosity: ν = 5 · 10−5;

• Mean pressure gradient: dP/dx = 0.0025;

• Bulk velocity: Ū = 0.99994;

• Reynolds number over full channel height and bulk velocity: Re =
2hŪ

ν
= 3.9998 ·

104;

• Friction velocity: uτ = 4.9968 · 10−2;

• Viscous length scale: δv = ν
uτ

= 1.0006 · 10−3;

All values are given in non-dimensional units.

We report below a table summarizing the various regions of a turbulent flow near wall:

In order to examine network topology differences between two regions of the flow, we
took a point in the buffer layer (y1 = 20δv) and a point in the external region (y2 = 70δv).

16



CHAPTER 4. Results of the simulation

Region Position
Viscous sublayer y < 5δv Viscous friction is predominant over turbulent friction

Buffer layer 5δv < y < 30δv Transition between viscous sublayer and log law
Logarithmic law region 30δv < y < 0.3h Log law is valid

Wall viscous region y < 50δv Viscosity contribution to total friction is relevant
External region y > 50δv Viscosity direct effect is negligible

Table 4.1: Regions of a turbulent flow near wall

4.3 The networks

As mentioned before, two points were considered. In grid coordinates, they were P1 =

(1024, 491, 800) (buffer layer) and P2 = (1024, 500, 800) (external region), corresponding
to (12.5664, 9.9204 · 10−1, 4.9087) and (12.5664, 9.9752 · 10−1, 4.9087); the coordinates
are made dimensionless with the half-channel height h. As characteristic parameter, the
energy of the flow was chosen, because it is a scalar (hence easier to work with) and gives
a general overview of the features of the motion field. In order to determine it, the velocity
field (u, v, w) in both points was downloaded, the we calculated the energy as:

E(x, y, z) =
u2

2
+
v2

2
+
w2

2

The energy trend in time is the following:

Figure 4.1: Energy over time
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CHAPTER 4. Results of the simulation

This way, we can use the visibility algorithm to build the two complex networks:1

Figure 4.2: Network of the buffer layer point

Figure 4.3: Network of the external region point

1The images were generated using Gephi software https://gephi.org

18
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CHAPTER 4. Results of the simulation

In both graphs, the size of the nodes is proportional to their degree, while their color
depends on their clustering coefficient, with a palette that goes from blue to red.We also
reported network statistics for two “extreme” situations, in order to have a comparison
scale: a near-wall point (y+ = 5) and a point in the channel axis, both with the same x

and z coordinates. In order to show the transition an additional point was considered in
between the two coordinates considered; this point is located at y+ = 50. Below there are
some general properties of the graphs:

y+ = 5 BL (y+ = 20) y+ = 50 ER (y+ = 70) Channel axis
Average degree 75.165 87.313 32.091 106.553 29.679

Average path length 282.621 293.064 329.868 259.693 360.782
Network diameter 857 890 1023 775 1086

Clustering coefficient 0.729 0.718 0.708 0.739 0.7
Modularity 0.947 0.946 0.977 0.936 0.981

Table 4.2: Metrics of the two networks

Firstly we report below the trends of the various metrics among the different points:
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4.4 Discussion of the results

It’s immediate noticing that the two points closest to the channel wall are very similar, i.e.
they show almost identical topological parameters; as we move towards the center of the
channel, the complex networks’ metrics begin to have a different evolution pattern. Of
course these variations are directly linked to the underlying dynamic system.

Let us consider again the two points that are closest to the wall. They show low values
for diameter and average path length, meaning that the networks are ’dense’, so their nodes
are connected pretty tightly. As mentioned in Chapter 1, a fully-fledged turbulence con-
tains smaller and bigger eddies, with bigger eddies being also the most energetic. Having
said that, one can infer that near the channel walls viscosity has a major effect, so only
small, short-living eddies survive (bigger ones are disrupted); then, having a small net-
work, with shorter-memory connections is coherent with the physical system underneath
it. From this point of view, it’s only natural that the network relating to the channel axis
has just opposite features: larger diameter, larger average path, because there are larger,
more energy-containing structures made up of connections with longer memory.

Now let us focus on the point in the external region, which is quite a special point,because
it’s on the boundary between the viscosity-influenced region and the region out of the log
law space. This point shows particularly high degree and clustering coefficient, and at the
opposite very low modularity. Once again, this reflects the behaviour of the flow: the way
the visibility graph is constructed, points with higher degree are usually points with high
energy surrounded by less energetic points; in this context, it makes sense that a point in
the external region has a really high degree, because most of the points in the log law will
have lower velocity (thus lower energy) and so will be ’visible’ from it. This theory is cor-
roborated by the fact that a point near the channel axis is likely to have many neighbours
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with comparable energy, so it will probably have a significantly lower degree, as it actually
happens in this case. As for the modularity, from a network point of view it’s dependent
on the distribution in communities. Generally speaking, high modularity means strong di-
vision in communities; in particular, the higher the modularity, the fewer the communities.
So, considering that in the external region the effect of viscosity begins to be negligible,
there is a stronger influence of larger eddies; this leads to a transition situation, because
there is a chaotic interaction between large and small structures. Modularity drops drastic-
ally, because there is no time to develop an organized system with few communities and
the nodes are linked very similarly. As opposed to this, the channel axis network shows
a much larger modularity: the flow is organized in large eddies, with longer memory, and
graph represents it exactly.

Let us now focus on the spatial variation of the clustering coefficient. In social net-
works, the clustering coefficient measures the probability of the ’friends’ of a node i being
acquaintances. In this case, the points directly influenced by viscosity see, as said before,
a flow animated by small, short-living structures. These eddies provoke a strong, deep
perturbation of the system, which is responsible for a faster loss of memory of the con-
nections between the nodes; because of that, we have low clustering coefficient, Instead,
for the point in the external region it’s much higher, because the influence of larger eddies
becomes stronger.

So then, it is possible to infer the following:

• The point in the buffer layer is highly influenced by viscosity; the network para-
meters show clearly that its evolution is dictated by short memory structures, whose
continuous decaying exerts a non-negligible perturbation on the system’s behaviour;
the nodes of the graph are quite independent and the overall situation doesn’t really
depend on the previous instants.

• As for the external region point, the situation is a bit less obvious: the general be-
haviour cannot be brought back to the exclusive action of small eddies, nor bigger
vortices, but rather to the combined influence of both; infact, for all of the paramet-
ers analysed, there is a sudden trend inversion, with properties significantly different
compared to the points closer to the wall. Still, the properties are also quite different
also from the network of the channel axis, so the overall dynamic is pretty unique
and due to the interaction between big and small vortices.
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T he analysis of the networks provided results that are coherent with the theoretical
model illustrated in Chapter 1. Infact, we demonstrated that the regions closest to
the wall are dominated by small eddies (as predicted by Kolmogorov’s theory),

while the region around channel axis is influenced by larger, more energetic vortices. The
point in the external region turned out to be a very interesting choice because of the pecu-
liar properties it possesses: the interaction between the different phenomenological scales
generates a particular behaviour, quite different from the two beforementioned. Network
analysis demonstrated that short-living eddies generate smaller, less connected graphs, be-
cause there is no time to develop a complex structure with many connections. On the
contrary, points in the range of longer living structures have bigger networks, less dense
and more clustered.

By examining a system that’s been thoroughly analysed in countless other works, it
is possible to verify the trustworthiness of the complex network approach to this kind of
problems. In particular, in this case the interpretation of the results was coherent with the
mathematical model commonly used to deal with turbulence problems: it is worth noticing
that unfortunately the visibility algorithm (at least in the way it was implemented in this
work) doesn’t inherit the absolute “scale” of the problem, but only shows the differences
between networks; for example, in this situation we couldn’t tell a priori which points
were more energetic, the difference was inferred only by studying the external region point.
Basically, two completely different system (even periodic series with completely different
values but same period) could end up having the same visibility graph, if they evolve in
time with the same pattern (as mentioned in Chapter 3, visibility graphs are invariant under
affine transformations).

So, with a relatively small effort, we were able to gain a variety of information about
the various points in the flow. The visibility algorithm proved really effective in differential
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analysis, because interpreting the differences between the networks lead us to hypothesize
a physical situation coherent with Kolomogorov’s turbulence models. Thus, it is possible
to develop a systematic method to operate a preliminary characterization of the regions
in turbulent flows (but it could be easily extended to other phenomena), and with a fast
analysis gain an overall knowledge of the physical system.

In particular, the visibility algorithm is fast and easy to implement, and constructs a
graph very easy to interpret: infact, given the way it is built, it immediately shows how
every node (which is, after all, a measurement in a given instant of time) is connected to all
the others, thus providing a straightforward insight on the dynamic changes of the system
and to which extent the configuration at a certain instant of time depends on the situation at
the previous instants. Finally, complex network has been confirmed to be a very promising
technique to perform a characterization of turbulent flows, and the visibility algorithm
proved to be a good option to generate a graph to study.
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Appendix

Below there is the code used to generate the adjacency matrix from the time series and to
calculate its properties.

%GENERATE ADJACENCY MATRIX FROM TIME-SERIES DATA

%AND CALCULATE ITS METRICS

clear all

clc

t = 0:0.0065:25.9935;

load(’energy_fields.mat’);

N = length(t);

series = energy_delta_50;

%Calculate adjacency matrix

A = ones(N);

for i = 1:N

A(i, i) = 0; %Elements on the main diagonal are null by definition

end

for i = 1:N

c = 0;

for j = (i+2):N

if (c~=0)

A(i, j) = 0;

continue;

end

for k = (i+1):j %Visibility condition

if(series(k)>(series(j)+(series(i)-series(j))*(j-k)/(j-i))) %Visibility condition
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c=1;

end

if (c~=0)

A(i, j)=0;

break;

end

end

end

end

for i = 1:N %The adjacency matrix is symmetric

for j = (i+2):N

A(j, i) = A(i, j);

end

end

%Floyd-Warshall algorithm for shortest paths

D = repmat(inf, N, N); %I start with every vertex disconnected

for i = 1:N

D(i, i) = 0;

%The distance between a vertex and itself is 0 end

for i = 1:N

for j=1:N

if (A(i,j) == 1)

D(i,j)=1; %Shortest path between neighbours = 1

end

end

end

for k = 1:N

for i = 1:N

for j = 1:N

if D(i,j) > D(i,k) + D(k, j)

D(i,j) = D(i,k) + D(k,j);

end

end
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end

end

K = zeros(1, N); %Connectivity vector

for i = 1:N

for j = 1:N

K(i) = K(i) + A(i,j);

end

end

%Average distance and diameter of the graph

diameter = 0;

sum = 0;

for i = 1:N

for j = 1:N

sum = sum + D(i,j);

if (D(i,j) > diameter)

diameter = D(i,j);

end

end

end

average_distance = sum / (N*(N-1));

% disp(’Distanza media ’);

% disp(average_distance);

% disp(’Diametro ’);

% disp(diameter);

% disp(K);

fid = fopen(’graph_adjacency.dat’, ’wt’);

for i = 1:size(A, 1)

fprintf(fid, ’%d ’, A(i, :));

fprintf(fid, ’\n’);

end

fclose(fid);

fid = fopen(’graph__metrics.dat’, ’wt’);

fprintf(fid, ’Diameter: %g\n’, diameter);
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fprintf(fid, ’Average path length: %g\n’, average_distance);

fprintf(fid, ’Connectivity vector: \n’);

for i = 1:N

fprintf(fid, ’%d ’, K(i));

end

The file “energy-fields.mat” is obtained by extracting the velocity field from the .h5 file
downloaded by the JHTDB and calculating the kinetic energy:

clear all

clc

velocity_buffer_layer = zeros(3, 4000);

velocity_external_region = zeros(3, 4000);

external_region = hdf5info(’channel_70_delta_punto_491.h5’);

buffer_layer = hdf5info(’channel_20_delta_punto_500.h5’);

energy_buffer_layer = zeros(1, 4000);

energy_external_region = zeros(1, 4000);

energy_delta_5 = zeros(1, 4000);

delta_5_file = hdf5info(’channel_5_delta_punto_506.h5’);

velocity_delta_5 = zeros(3, 4000);

axis_file = hdf5info(’channel_axis_punto_257.h5’);

energy_axis = zeros(1, 4000);

velocity_axis = zeros(3, 4000);

delta_50_file = hdf5info(’channel_50_delta_punto_460.h5’);

velocity_delta_50 = zeros(3, 4000);

energy_delta_50 = zeros(1, 4000);

for i = 1:3999

a1 = hdf5read(buffer_layer.GroupHierarchy.Datasets(i+4));

a2 = hdf5read(external_region.GroupHierarchy.Datasets(i+4));

velocity_buffer_layer(:, i) = a1;

velocity_external_region(:, i) = a2;

a2 = hdf5read(delta_5_file.GroupHierarchy.Datasets(i+4));
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velocity_delta_5(:, i) = a2;

a1 = hdf5read(axis_file.GroupHierarchy.Datasets(i+4));

velocity_axis(:, i) = a1;

a1 = hdf5read(delta_50_file.GroupHierarchy.Datasets(i+4));

velocity_delta_50(:, i) = a1;

end

for i = 1:4000

energy_buffer_layer(i) = (velocity_buffer_layer(1, i)^2 \

+ velocity_buffer_layer(2, i)^2 + velocity_buffer_layer(3, i)^2)/2;

energy_external_region(i) = (velocity_external_region(1, i)^2 \

+ velocity_external_region(2, i)^2 + velocity_external_region(3, i)^2)/2;

energy_delta_5(i) = (velocity_delta_5(1, i)^2 \

+ velocity_delta_5(2, i)^2 + velocity_delta_5(3, i)^2)/2;

energy_delta_50(i) = (velocity_delta_50(1, i)^2 \

+ velocity_delta_50(2, i)^2 + velocity_delta_50(3, i)^2)/2;

energy_axis(i) = (velocity_axis(1, i)^2 \

+ velocity_axis(2, i)^2 + velocity_axis(3, i)^2)/2;

end

save energy_fields.mat energy_axis energy_delta_5\

energy_delta_50 energy_buffer_layer energy_external_region;
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