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Abstract

Pipe flow is a prominent example among the shear flows that undergo transition
to turbulence through the generation of some unstable structures.
Over the course of the last two centuries many studies have highlighted the impor-
tance of these exact coherent structures, called puffs and slugs, in the mechanism
that bring to turbulence.
The aim of this thesis is to follow the “life” of these structures.
Their birth, caused experimentally by jet injection or naturally by an obstacle
or by wall roughness. Fundamental is to understand how they are organized
around exact coherent structures known as travelling waves and how their struc-
ture changes with Reynolds number.
Their growth, through splitting and spreading upstream and downstream. Fun-
damental is to find out what is the influence of the Reynolds number and how
energy is distributed.
Their death (eventually), that brings the flow to relaminarize. Fundamental is
to study lifetime in order to predict if and when turbulence will decay.
Finally, we summarize the main strategies useful to eliminate or at least control
turbulence spreading.
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1 INTRODUCTION

1 Introduction

1.1 Introduction to turbulence

Turbulence is one of the most common examples of complex and disordered dy-
namical behaviour in nature. It is commonly observed in everyday phenomena
such as most of the terrestrial atmospheric circulation, river flows, smoke rising
from a cigarette and even blood flowing in arteries.
Experimentally it has been observed that, by changing some parameters, flow
undergoes a transition from laminar to turbulent. Generally, the motion of fluids
is laminar at low speeds and becomes turbulent as the velocity increases.
In the laminar case, fluid flows regularly, smoothly and in parallel layers, with no
disrupting between those layers. In this state, viscous forces are dominant.
On the other hand, when turbulence is triggered, fluid becomes disordered, chaotic
and layers start mixing. Here, flow is dominated by inertial forces since velocity
is higher.

In natural and industrial processes, turbulence can have unfavorable and even
detrimental effects. Turbulence is the major cause of friction losses in transport
processes and it is responsible for a drastic drag increase in flows over bounding
surfaces. In general, the transfert of fluids is energetically far more efficient if the
motion is smooth and laminar. Hence, much effort is invested into developing
ways to control and reduce turbulence intensities, for instance by smoothing or
cooling the walls of pipes or airfoils or by creating favorable pressure gradients.

Even more critical is the transition regime since the pressure and flow rate
fluctuations in the laminar-turbulent intermittent flows are very large (markedly
higher than in the case of a fully turbulent flow).
A more detailed discussion about friction losses is developed in the Chapter 5.

1.2 Reynolds number

The dimensionless quantity used as a guide is the Reynolds number (Re),
defined as the ratio of inertial forces to viscous forces within a fluid which is
subjected to relative internal movement due to different fluid velocities, which is
known as a boundary layer in the case of a bounding surface such as the interior
of a pipe.
This concept was introduced by George Stokes in 1851, but the Reynolds number
was named after Osborne Reynolds (1842–1912), who popularized its use in 1883
[3], after his pioneering study on the motion of fluids.
This fundamental parameter is used to estimate the likelihood of a flow to be
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1 INTRODUCTION

turbulent. Indeed, when the flow is characterized by a low Reynolds number, it
is well-ordered and stable (hence, laminar), but when we increase it, the laminar
flow gives way to highly disordered turbulent dynamics.

Furthermore, this dimensionless number can be used to predict a critical point,
called the transition point, upstream of which the flow is fully laminar and down-
stream of which the flow is fully turbulent.
Actually, as it will be completely explained in the following chapter, the transi-
tion from laminar to turbulent flow takes place over a finite region.
So, even though it is not possible to detect a single point at which transition
occurs, this model is very useful for purposes of analysis.

In this report, we deal with transition to turbulence in a representative case
of shear flow: pipe flow. So, we need to define the Reynolds number for a round
cross-section pipe.

Re =
UD

ν
=
ρUD

µ
(1)

where U is the mean velocity, D is the diameter of the pipe, ν is the kinematic
viscosity of the fluid, µ is the dynamics vicosity of the fluid and ρ is the fluid
density.

In (1), UD represents the inertial term and ν represents the viscous one.
Hence, it is clear that for low values of Re, viscous forces are dominant and the
fluid flow regularly. When U increases, the inertial term takes over the viscous
one and the flow becomes turbulent.

1.3 Dynamics of pipe flow

This report deals with the transition to turbulence of shear flows. However, as
mentioned before, we will not discuss about every type of shear flow, but we will
focus on pipe flow, probably the most prominent example of shear flux.
Pipe flow, a branch of hydraulics and fluid mechanics, is a type of liquid flow
within a closed circular cross-section conduit. The shear flow in a pipe is known
as Hagen-Poiseuille flow. In this case, because of the cylindrical geometry, the
speed is a function of radius u(r) and in literature [2,3,4] it is considered the case
of independence on x (so, it is not given much importance to the length of the
pipe).
The fundamental equations that govern the fluid motion, and obviously the pipe
flow dynamics, are the Navier-Stokes equations. In Cartesian coordinates xi the
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1 INTRODUCTION

N-S equations for a not compressible flow with constant properties are written as

∂ui
∂xi

= 0 (2)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

+ fi (3)

If the flow is characterized by high Re, viscous effects and heating ones are con-
fined in small regions (boundary layers), resulting negligible in the other parts
of the domain. Eliminating these two effects, Navier-Stokes equations can be
modified and can be written as

∂ρ

∂t
+∇ · (ρV) = 0 (4)

ρ

(
∂V
∂t

+∇ · ∇V
)

= −∇p+ ρf (5)

where ρ is the density, V is the velocity vector field, f are the vector field of
external forces and p is the pressure gradient.
These equations are known as Euler equations.
Starting from (3), it is possible to obtain the analytical form of the velocity profile
in the pipe. We consider a fluid that is: stationary(∂ui

∂t
= 0), incompressible

(∂ui
∂xi

= 0) (2) and not subjected to external forces (fi = 0). Furthermore, since
u = [0, 0, uz], and uz depends only on r also the term uj

∂ui
∂xj

= 0. The velocity
profile obtained along the axis is

uz(r) = −
dp
dz

4µ
(a2 − r2) (6)

where a = D/2 with D the diameter of the pipe and µ is the dynamic viscosity
(for more details see ref.[4]). How can be clearly see in (6) and in Fig.1, the
velocity profile is a paraboloid: at r = a, i.e. on the wall, the velocity is equal
to zero. This fact is known as no-slip condition which is due to the presence
of viscosity; at r = 0 the parabolic profile has a maximum, that is the highest
velocity in the pipe

umax = − a
2

4µ

dp

dz

However, the velocity profile depends largely on the Reynolds number (see Section
1.2).
When Re is less than about 30, the Poiseuille theory always provides an accurate
description of the flow.
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1 INTRODUCTION

Figure 1: Definition diagram for pipe flow. It is evident the parabolic shape of
the velocity profile obtained in (6). From ref. [4].

At higher Reynolds numbers, the Hagen-Poiseuille description is no longer valid
in all the pipe, but exclusively after some distance down the pipe. At the entrance
of the pipe, the flow has not the appropriate parabolic velocity profile, but there
is an entry length in which the flow is tending towards the parabolic profile. The
higher is the Reynolds number, the longer is this entry zone. The dependence
of the extent of the entry length on the Re is X

D
' Re

30
where X is defined as

the distance downstream from the entry at which umax is within 5 per cent of its
Poiseuille value.

But, the most dramatic change in flow at higher Reynolds number is the tran-
sition from laminar to turbulent, of which we will widely discuss in the following
chapters. The flow develops a highly random character with rapid irregular fluc-
tuations of velocity in both space and time.
After the transition, many laminar features are not retained. For example, the
pressure difference needed to produce a given flow rate through a pipe is larger
when the flow is turbulent then when it is laminar (as can be seen in Fig.2).

Figure 2: Variation of non-dimentional average pressure gradient with Reynolds
number. Dotted lines represent wholly laminar and turbulent flow. From ref. [4].

Furthermore, as it is fully explained in Chapter 5, transition to turbulence pro-
duce a drastic increasing in friction losses, which are bigger and bigger if the pipe
is rough.
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The Moody chart (Fig.3) is used qualitatively to study the variation of the friction
factor as a function of the Reynolds number and of the relative pipe roughness. It
can be divided into two regimes of flow: laminar and turbulent. For the laminar
flow regime (Re <∼ 3000), roughness has no discernible effect, and the Darcy
friction factor fD, defined in pipe by the Darcy–Weisbach equation:

f =
∆p
ρU2

2
L
D

(7)

(where ∆p is the pressure drop over a length L in a pipe with a diameter D and
ρ is the fluid density), is determined analytically by Poiseuille law f = 64/Re.
For a fully turbulent flow and in a smooth pipe the friction factor lies on the
Blasius curve f = 0.3164Re−0.25. The Blasius equation has no term for pipe
roughness and hence it is valid only to smooth pipes (see Fig.3: Smooth Pipe).
For rough pipe, Darcy friction factor can be computed thanks to the Colebrook
equation that can be solved only by iteration

1√
f

= −2.0 log

(
e/D

3.7
+

2.51

Re
√
f

)
(8)

where e/D is called the relative roughness.
In the chart there is a grey region called Transition Region, where happens the
switch from laminar to turbulent flow.

Figure 3: Moody diagram. This is a graph in non-dimensional form that relates
the Darcy friction factor fD, Reynolds number Re, and surface roughness for fully
developed flow in a circular pipe e/D. It is mainly used for qualitative studies.
[Original diagram: S Beck and R Collins, University of Sheffield]
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2 TURBULENT COHERENT STRUCTURES (BIRTH)

2 Turbulent coherent structures (Birth)

Transition to turbulence in pipe flow is one of the most fundamental and longest-
standing problems in fluid dynamics.
The mechanism that leads to the origin of turbulence in wall-bounded shear flows
has been studied since the first classical experiments undertaken by Reynolds in
1883, but many aspects still remain to be elucidated.
The transition from laminar to turbulent flow can involve a sequence of instabili-
ties in which the system realizes progressively more complicated states, or it can
occur suddenly.

2.1 Puffs, Slugs and Travelling Waves

At moderate flow speeds, turbulence is confined to localized patches; it is only at
higher speed that the entire flow becomes turbulent.
Such patches, turbulent structures found in transitional pipe flow, are called slugs,
if they occur at Re > 2600, or puffs, if they are observed for Re < 2600. The
main difference between the two is that slugs have a sharp laminar turbulence
interface at their leading edge and at their trailing edge; for puffs only the trailing
interface is sharp.

The process that leads to the formation of these patches (and consequently
to the transition) is the so called lift-up mechanism [5,6]. Here streamwise
vortices of relatively small magnitude transport low momentum fluid away from
the wall to the center of the pipe and simultaneously lift high momentum fluid
towards the wall, creating local strong anomalies in the velocity profile called
streaks (elongated regions of low or high streamwise velocity with respect to their
surroundings).
If the process was linearly stable, eventually all perturbations would decay.
However, during this process the perturbation amplitude can grow substantially
and once it reaches a sufficiently large value nonlinear effects will become impor-
tant and lead to a secondary instability.
Nonlinear self-interaction of the unstable modes regenerates the streamwise vor-
tices closing the feedback loop, thus sustaining these flow states against viscous
decay. [5,6]
This self-sustained process has been proposed first by Hamilton et al and Waleffe
[7,8].

This nonlinear nature of fluid turbulence has suggested to focus on the non-
linear solutions to the fundamental equations of Navier-Stokes.
In pipe flow, the simplest of these solutions are travelling waves (TWs), which
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2 TURBULENT COHERENT STRUCTURES (BIRTH)

provide a dynamical and fully nonlinear approach to the problem.
TWs are defined as exact coherent structures (Waleffe 1998, 2001, 2003), because
they share with coherent structure the presence of some large-scale features, a
predictable dynamics, and a relatively frequent occurrence and they are exact
solutions to the equation of motion.
These solutions satisfy

v(x, r, θ, t) = v(x− ct, r, θ) (9)

where (x, r, θ) are cylindrical coordinates, t time and c the wave speed, that is
constant in streamwise direction.

Confirmation of this picture has been provided by several experiments in pipe
flow. Surprisingly clear transients of travelling waves were observed confirming
their relevance to the turbulent dynamics. Furthermore, transients of unstable
TWs have been observed that are in close agreement with numerical solutions.

2.2 Setup of experiments

The first experimental observations of the transition from laminar to turbulent
in pipe flow was undertaken early in 1880 by Osborne Reynolds. In his 1883
paper [1] Reynolds described the transition from laminar to turbulent flow in
a classic experiment in which he examined the behaviour of water flow under
different flow velocities using [...]three tubes, whose diameters were nearly 1-inch,
1
2
-inch, and 1

4
-inch. They were all about 4 feet 6 inches long, and fitted with

trumpet mouthpieces, so that water might enter without disturbance. The water
was drawn through the tubes out of a large glass tank in which the tubes were
immersed, arrangements being made so that a streak or streaks of highly coloured
water entered the tubes with the clear water.

Figure 4: Osborne Reynolds’s apparatus of 1883 demonstrating the onset of tur-
bulent flow. The apparatus is still at the University of Manchester.

After this pioneering experiment, many efforts have been made in order to
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increase the quality of the observations and obtain the most satisfactory results,
thanks to many devices installed on the pipe used for the experiments.

In the Appendix we provide a detailed description of the experimental setup
used by Hof et al. in 2004 [5]. We have chosen to describe only one of the numer-
ous experimental apparatuses used in the last years as they follow indicatively
the same scheme.
The experimental procedure is to create a single turbulent puff close to the pipe
inlet and to monitor any changes in the turbulent fraction at downstream posi-
tion.

In pipe flow laminar profile is linearly stable for all Reynolds numbers. Thus,
to trigger transition, two thresholds have to be crossed: the flow has to be suffi-
ciently fast and a perturbation has to be strong enough. In modern times, taking
extraordinary care and minimizing inlet disturbances enable laminar flow to be
maintained to higher flow rates (Reynolds number of ' 100000).
Hence, it is important to choose efficiently a perturbation capable of triggering
turbulence. Darbyshire & Mullin (1995) [10] established the possibility of sys-
tematic dependence of the threshold amplitude for disturbances added to fully
developed flow. However,a scaling could not be extracted from their results and
it was Hof et al. (2003) [9] who showed that the threshold amplitude ε (defined
by the volume flux Φinj from the injector) of a jet disturbance has a scaling of
ε = O(Re−1) over a signicant range.
In Fig.5a stability curves for two different values of Re are shown. The amplitude
of perturbation required to cause transition is plotted as a function of length*
(that is an estimation of the spatial extent of the disturbed flow immediately
downstream of the injection point).

a) b)

Figure 5: a) Stability curves measured for Re = 2170 and Re = 4000. Error bars
correspond to the widths of the determined probability distribution after 40 runs
of experiment. b) A log-log plot of the stability curve obtained using the long pipe.
The range of Re covered is 2000 to 18 000 and the amplitude of perturbation has
been nondimensionalized by the respective mass flux in the pipe. From ref. [9]
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Perturbations with amplitudes below the curve did not cause transition and de-
cayed as they propagate downstream. On the other hand, for disturbances above
the threshold, transition takes place and the state achieved is either a puff or slug
depending on Re. Each data point was obtained by repeating the experiment
around 40 times since the threshold is a statistical process as discussed by Dar-
byshire & Mullin (1995) [10].

From Fig.5b it is clear the proportionality between the amplitude of the per-
turbation and the Reynolds number, also for high Re values. Here we can see
that the threshold data are not represented below Re = 2000 since experimental
evidence suggests that turbulent flow cannot be maintained below this value.

2.3 Experimental and numerical results

Several experiments have been carried out in order to study this phenomenon.
The introduction of PIV measurements has enabled to determine and visualize
the in-plane and the out-of-plane velocity field, so that the full three component
velocity field in the measurement plane was obtained.
Three velocity fields in the cross-sectional plane measured during the passage of
the turbulent slug (or puff) are shown in Fig.6, where experimentally (top) and
numerically (bottom) observed streak patterns are compared. Regions of high
velocity relative to the laminar profile are shown in red, regions of low velocity
relative to the laminar profile are shown in blue, and transverse components are
indicated by arrows.

In these pictures, firstly we can see how, regardless of Reynolds number, the
turbulent flow is composed by two main highly symmetric regions with two dif-
ferent behaviours: the central region where low-speed streak is found and the
near-wall region where we can observe high-speed streaks. Another characteristic
that can be observed is that the section of each high-speed streak has roughly
the same elliptical shape, they are well-ordered azimuthally along the wall but
their number changes; low-speed streak is characterized by a core from which a
varying number of arms departs. The number of these streaks and arms depends
on Re. Depending on the Reynolds number considered, each experimentally ob-
served streak pattern corresponds to a Cm symmetric traveling wave, where the
subscript m specifies an m-fold rotation symmetry (confirming the presence of
travelling waves solutions) [11].

Furthermore, as explained in the previous sections, the self-sustained process
implies the existence of several pair of vortices that are responsible of the creation
of the streaks. Also the number of these eddies depends on Re: three and two
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2 TURBULENT COHERENT STRUCTURES (BIRTH)

vortex pairs were observed in turbulent puffs at Re = 2000 (A) and Re = 2500

(C) and coherent states with four and six vortex pairs were observed in fully
developed turbulence at Re = 3000 and Re = 5300 (E).

Figure 6: Comparison of experimentally (top) and numerically (bottom) observed
streak patterns. Here the laminar flow profile is subtracted from the measured
downstream velocity components. The color coding for the experimental flow pat-
terns ranges from plus (dark red) to minus (dark blue) 0.6U; the numerical flows
range from plus (dark red) to minus (dark blue) 0.4U. From ref. [5].

Comparing these streak configurations with the numerical ones, the arrangements
of high- and low- speed streaks of these states closely resemble those of the trav-
elling waves.

Until now, we have compared the static streaks configuration as seen in cross-
sectional plane at a determined moment.
What about the time evolution of the turbulent pattern?
The four cross section shown in Fig.7 are separated by 0.2s, which, based on the
bulk flow speed, correspond to a spacing of 0.18 pipe diameters. In this case the
travelling wave transient has been observed in a turbulent slug ar Re = 3000.
The general configuration is similar to that of Fig.6, indeed we can find the
high-speed streaks near the wall (shown in red) and the low-speed streak in the
center (shown in blue). In particular, this wave transient showed a C4 symmet-
ric configuration. Two distinct low-speed streak arms are distinguishable, which
initially point outwards from the pipe center in the horizontal direction. They
subsequently undergo an anti-symmetric up and down motion while high-speed
streaks essentially remain in the same position.

This dynamical behaviour is in excellent qualitative agreement with that reported
for the numerically observed TWs.
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Figure 7: Travelling wave transient observed in a turbulent slug at Re=3000.
Instead of subtracting the laminar profile from the streamwise component as in
Fig.6, Hof et al. have chosen to subtract 0.5LP + 0.5 TP. Thanks to this visual-
ization method the streaks in the near wall region are resolved more clearly. From
ref. [6].

Finally, the time spacing of the measurements can be converted into a spatial
separation in the mean flow direction (Taylor’s hypothesis1) allowing full spatial
3D reconstruction of the turbulent structure.

The rotational symmetry of the streak structure and the periodic modula-
tion of the low-speed structure corresponding to the up and down motion can be
clearly seen in Fig.8. A further evidence of the self-sustained process (of which we
spoke about above) comes from the picture on the right. In this three-dimensional
reconstruction, the same low-speed streak of a) (blue) is displayed together with
the two counter-rotating streamwise vortices (yellow and red). These vortices are
responsible of the lift-up process that generates the turbulent patches.
How we can see, a second pair of streamwise vortices surrounds the streak down-
stream. These vortices are generated due to the wavy instability of the streak.
The periodicity of the eddies confirms the existence of the self-sustained process
and the nonlinearity of the transition mechanism.
The most characteristic feature of these travelling wave solutions, i.e. the wave-
length, has been estimated by Hof, Van Doorne et al. (2005) [6] thanks to these
3D reconstructions. The second pair of vortices aligns the streak approximately
0.7D (where D is the diameter of the pipe) further downstream, thus the wave-
length of the TW has been estimated to ' 0.75D.

1Taylor’s frozen flow assumption: advection contributed by turbulent itself is small and
therefore the advection of a field of turbulence past a fixed point can be taken to be entirely
due to the mean flow; it only holds if the relative turbulent intensity is small, i.e. ū

U << 1
where ū is the eddy velocity and U is the mean flow velocity. Then the substitution t = x/U is
a good approximation

11



2 TURBULENT COHERENT STRUCTURES (BIRTH)

a) b)

Figure 8: In both pictures, length units are in millimeters. a) Reconstruction of
the three-dimensional streak structure of the traveling wave. High speed streaks
are shown in red and low speed streak is shown in blue. The blue low-speed
streak undergoes a wavy instability (as we will see better in Chapter 5). b)
Three-dimensional reconstruction of the wavy low-speed streak and the stream-
wise vorticity. Positive and negative vorticity is shown in yellow and red. The
wavy low-speed streak (shown in blue) is sandwiched between the counter-rotating
streamwise eddies. In the picture is highlighted the wavelength λ that is measured
from the upstream front of the first vortex and the upstream front of the new
vortex seeded downstream. From ref. [6].
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3 Turbulent fronts propagation (Growth)

In Chapter 2, the concepts of puff, slug and travelling wave were introduced and
it has been explained their structure, their function and the mechanism that gen-
erates them.
Here, it will be described how they propagate and eventually succeed in triggering
sustained turbulence .
The process that allows turbulent puffs to propagate depends mainly on the
Reynolds number. Indeed, starting from a single puff, turbulence proliferates
through a sequence of splittings at Re = 2300 (Fig.9 A). For Re ≤ 2300 spread-
ing of turbulence and hence any increase in turbulent fraction was exclusively
observed in the form of puff splitting. Only at Reynolds numbers bigger than
2400 (Fig.9 B) do individual puffs start to noticeably expand so that the over-
all spreading of turbulence becomes a complex mixture of splitting, as well as
growth and merging of individual turbulent domains. Finally, if Re ≤ 2040 puff
is destined to decay before succeed in splitting or growing, and thanks to that,
spreading turbulence [12,13,14].

Figure 9: Spreading of turbulence in numerical simulation.(A) Re = 2300, where
the expansion process is dominated by discrete steps, corresponding to puff splits,
whereas (B) Re = 2450, where expansion is more smooth, more rapid, and indi-
vidual puffs are no longer easily identified. From ref. [12].

Hence, we can think to divide the mechanism that leads to the spreading of the
turbulence in two different processes: puff splitting and slug spreading.

13
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3.1 Puff splitting (Re ≤ 2300)

At low Reynolds numbers, turbulence is localised in the form of puffs surrounded
by laminar flow and the upstream and downstream front speeds are identical.
This velocity is lower than the mean flow speed and so, in the reference system
relative to the bulk velocity of turbulence, the localized puff moves backwards.
As said previously, puffs are characterized by a sharp trailing laminar turbulence
interface and a rough leading edge.
In the picture below (and also in Fig.9A) we can clearly see the difference between
the upstream front (shown in black) and the downstream front (shown in yellow).
Furthermore, it can be observed that the two fronts propagate at the same speed,
since the puff has always the same length with increasing time.

a) b)

Figure 10: a) Space-time plot from simulations of pipe flow at Re = 2000. Here
it is clear that turbulence is localized with equal upstream and downstream front
speed. b) Localized state predicted by the model proposed in ref. [13] at Re ' 2000.
The state is plotted in the local phase plane, where q denotes the turbulence level
within the flow and x is the space along the pipe axis. Cup (the upstream velocity)
is equal to Cdown (the downstream velocity), yielding localized turbulence. From
ref. [13].

The configuration shown in Fig.10 corresponds to the first part of the graph2

(Re < 2300−2400) in Fig.11 where front speed as a function of Reynolds number
for pipe flow is displayed. As we can see both front speeds, downstream and
upstream, coincide and they decrease with increasing Re.
In Fig.11 points are experimental results taken from the literature as indicated
and the continuous blue curve comes from model predictions by Barkley et al (for
more detail check ref. [13]).

As already mentioned, after triggering disturbance, puffs can decay, or else
split and thereby multiply. For Re > 2040, the splitting process outweighs decay,
resulting in sustained disordered motion.

2The second part of the graph will be considered in the following section.
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Figure 11: Front speeds as a function of Reynolds number for pipe flow. Points
are experimental results taken from the literature as indicated. The black curve
comes from the model of Barkley et al. 2015. This graph can be used as a guide
to establish the behaviour of the fluid at a determined Reynolds number. From
ref. [14].

Because of the stochastic nature of the splitting process, a statistical approach
must be used.
K. Avila et al. (2011) [12] found out that the probability of puff splitting P (Re, t)

(plotted in Fig.12) is exponential and hence memoryless, reflecting that the prob-
ability of splitting does not depend on the age of the puff observed. Thanks to
numerical simulations and long-pipe experiments, they were able to write the
probability distribution as

1− P (Re, t) = exp

(
− (t− t0)

τ(Re)

)
(10)

where t is the observation time, t0 is the formation time which includes any
equilibration time for the initial conditions to evolve to the turbulence state at
the particular Re and the intrinsic time needed for splitting. It depends on Re,
but is found to be consistently ∈ [100, 200]. Finally, τ(Re) is the Re-dependent
characteristic time for the process that decreases with the Reynolds number,
unlike the time scale that characterize the decay of puffs which increases rapidly
with Re3.
The behaviour of the two above mentioned characteristic timescales is displayed
in Fig.13. Data from both experiment and direct numerical simulation (DNS) are
shown. The decay data on the left branch is primarily taken from past studies3.

3In the next chapter we will talk about lifetime and decay of puffs.
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Figure 12: Probability of puff splitting after travelling a fixed distance. The five
data sets correspond to distances L in the experiments of K. Avila et al. [12], as
indicated in the legend. The error bars in the vertical direction are 95% confidence
intervals for the parameter P, whereas in the horizontal direction they show the
uncertainty in Re during a set of measurements. The solid line correspond to the
superexponential fit explained in the Chapter. From ref. [12].

Figure 13: Mean lifetime of a puff before decaying or splitting. Solid colored sym-
bols correspond to experimental splitting measurements. The solid black triangles
show the characteristic splitting time obtained from direct numerical simulations
using the spectral-element Fourier code (DNS1) and the hybrid spectral finite dif-
ference code (DNS2). The solid curve is given by τ = exp[exp(−0.003115Re +
9.161)] and approximates the Re-dependence of mean time until a second puff
is nucleated and the turbulent fraction increases; the dashed curve is given by
τ = exp[exp(0.005556Re − 8.499)] and approximates the Re-dependence of the
mean time until turbulence decays and the flow relaminarizes. Both curves corre-
spond to superexponential scaling with Re and have a crossover at Re = 2040 ±
10, determining the transition between transient and sustained turbulence in pipe
flow in the thermodynamic limit. From ref. [12].
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The intersection at Re = 2040 ± 10 marks where the mean lifetime is equal to
the mean splitting time, and after this point, splitting outweigh the decay of
puffs. This crossover determine the transition between transient and sustained
turbulence in pipe flow.
Although typically in statistical phase transition, critical point are not identical
to the exact balance point of two competing processes because of correlations, in
the present case the superexponential scaling of the two processes ensures that
the critical point will be almost indistinguishable from the intersection point.

Finally, also from these data it is clear that before Re ' 2040 puff is not
strong enough to split (due to τ very high) and so a larger cluster of turbulence
cannot form.
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3.2 Slug spreading (Re > 2400)

At higher Reynolds numbers, turbulence begin to expand in streamwise extent
and eventually render the flow fully turbulent. Such expanding turbulent regions
are known as slugs. As said previously, slugs are characterized by both sharp
trailing and leading laminar turbulent interface.
However, it is necessary to make a further distinction since the downstream
spreading exhibits a more complex behaviour observed just recently. At moderate
Reynolds numbers, slugs have diffusive downstream fronts, not unlike the down-
stream fronts observed for puffs (see Fig.14 Weak), whereas at high Reynolds
numbers the downstream fronts are sharper, with a well-defined structure similar
in intensity to the upstream fronts (see Fig.14 Strong). Barkley et al. (2015)
[13] referred to the diffusive form of the downstream fronts as weak fronts and the
sharper form as strong fronts. The corresponding slugs are thereby called weak
and strong slugs, respectively.

Figure 14: Space-time plots from simulations of pipe flow at Re = 2800 (left) and
Re = 4500 (right). At Re = 2800, the downstream front moves at a speed between
the weak and strong branches and exhibits some characteristics of both fronts as
it fluctuates. At Re = 4500, turbulence expands with a strong downstream front
and the long-time flow is fully turbulent. The upstream and downstream front
have the same character. From ref. [13]

The two cases illustrated in the figures above correspond to the second part of the
graph in Fig.11. After the first part where upstream and downstream coincide,
expansion begins with the formation of the weak downstream front. Weak down-
stream front moves slowly than the bulk advection velocity of turbulence and
so, how can be seen in Fig.15 both fronts continue to move backwards with re-
spect the moving frame of reference with the mean velocity of the flow. However,
since Cdown (speed of the downstream edge) is different from Cup (speed of the
upstream edge), slug starts expanding. This state persists until the downstream
front speed exceeds the bulk advection velocity.

At this point, approximately at Re = 2800, a type of switching between weak and
strong downstream fronts has been frequently observed. For 2800 < Re < 3200,
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Figure 15: The two represented states are plotted in the local phase plane, where q
denotes the turbulence level within the flow and x is the space along the pipe axis.
(left) Weakly expanding state predicted by the model proposed in ref. [13]. The
system presents a strong front (upstream, speed indicated with the red arrow) and
a weak front (downstream, speed indicated with the green arrow). Cdown 6= Cup,
but they move in the same direction. (right) Strongly expanding state predicteed
by the model proposed in ref. [13]. The downstream and the upstream fronts have
the same character, but move in opposite directions, Cdown = −Cup (respectively,
the blue and the red arrow), in a reference frame moving at the neutral speed.
From ref. [13].

Figure 16: Switching between weak and strong front at Re = 3000. a) Space-time
diagrams showing the colourmap of q for two typical slugs in a moving frame of
reference with the speed of 1.06U (the speed of the weak front at this Reynolds
number). The bars show the slopes, i.e. the inverse of the speeds, of transient
weak and strong fronts in this frame of reference. b) Front speed as a function
of Reynolds number from DNS (up-triangles) and from an asymptotic analysis of
fronts in a model system (dotted lines), reproduced from Barkley et al. (2015).
From ref. [14]
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the expanding state passes through a transition zone that originates downstream
front fluctuations (see Fig. 16b). Here the front speed switches from the weak to
the strong speed asymptotics (predicted by the theory of Barkley et al. (2015)
[13]).
On the other hand, after bifurcation, upstream laminar turbulent interface does
not change at all. Its speed carry on following the behaviour described by the
lower branch in Fig.11.
In this region, turbulence is not always uniform, but commonly contains inter-
mittent laminar pockets.
Finally, when the downstream speed reaches the strong speed asymptotics, the
turbulent patch invades fully recovered laminar flow at the downstream front, in
much the same way that turbulence invades fully recovered laminar flow at the
upstream front. This produces a slug that aggressively expands and eliminates all
laminar motion. The downstream speed increases until it becomes equal (in mod-
ulus), but opposite in direction to the upstream speed (see the schematic picture
on the right in Fig.15) and this produces the symmetry between the upstream
and strong downstream fronts.

3.3 Energy budget at the fronts

Wygnanski & Champagne (1973) [16] analysed the turbulent kinetic energy of
their experimental data, focusing on the radial distribution and the balance of all
components of the energy budget. In 2017, B.Song et al. [14] revisited Wygnan-
ski & Champagne’s turbulent kinetic energy budget in order to shed light on the
origin of the different turbulent intensity profiles at weak and strong fronts.
In order to do this, they have studied the equation for the mean kinetic en-
ergy of the turbulent fluctuations in the formulation of Pope (2000) [17] using
Reynolds decomposition of the velocity field. The main discrepancy was found
about the order of magnitude of production and dissipation. These two are the
source and sink terms in the energy budget and Song’s calculation shows that
they are comparable in magnitude at all axial positions. In their work Wygnan-
ski & Champagne (1973) reported that dissipation is orders of magnitude smaller
than production at the fronts.
In Fig.17 are displayed the cross-sectionally integrated energy budget for turbu-
lent fronts at Re = 2600 (a, b) and Re = 5000 (c, d). How we have already
widely explained, at Re = 2600 slug presents a strong upstream interface and a
weak downstream edge, whereas at Re = 5000 turbulent flow is fully turbulent
and both upstream and downstream fronts are strong. So, if we focus on the
strong edges (a, c, d), as one looks into the fronts from the laminar side (i.e.
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from the left for UF and from the right for DF), turbulence production (red line)
first increases sharply, whereas the increase in dissipation (blue dash-dotted line)
is significantly delayed with respect to the production. This is a clear indication
that there are large eddies at the strong fronts extracting energy from the adja-
cent laminar flow.
As one moves further towards the bulk, the energy production rate decreases and

Figure 17: Kinetic energy budget (integrated over pipe cross-section) in the frame
of reference co-moving with the fronts. Production (red bold line), dissipation (blue
dash-dotted line), energy flux (cyan thin line), and convection (violet dashed line)

dissipation outweighs production. As a result the turbulence intensity decreases
and the strong front eventually manifests an intensity peak.
At weak fronts no significant delay of dissipation with respect to production can
be observed. Here energy production and dissipation balance each other over any
cross-section(see Fig.17b), and there is no significant transport of energy along
the streamwise direction. This implies that in weak front turbulence is locally in
equilibrium, which results in the absence of peak in the turbulence intensity.
The presence or the absence of peaks is also sketched in Fig.15 where the strong
edge is represented with a peak unlike the weak edge.
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4 Turbulent lifetime (Death)

In the previous chapters, it has been explained how turbulent patches rise, what
their structure is and how they spread, thereby generating a sustained turbulence.
Now, in this chapter, we are going to address an important issue, useful to un-
derstand which could be the destiny of turbulence propagation: turbulence
lifetime.
It is defined as the time when the energy content in the perturbation drop below
a level from which it cannot recover, so that one has entered in the basin of at-
traction of the laminar profile.
Basin of attraction is one of the main concept included in the dynamical system
theory. In the past few years it has emerged that this theory can be fundamental
for the understanding of the properties of transition pipe flow.

4.1 Introduction to dynamical system theory

In this small section we explain some concepts from the dynamical system theory
that have been really helpful to better figure out turbulence mechanisms.

A dynamical system consists of an abstract phase space (or state space), whose
coordinates describe the state at any instant, and a dynamical rule that specifies
the immediate future of all state variables, given only the present values of those
same state variables. In our case, the state space should provide a complete
description of the dynamics, in that at any point in this space the Navier-Stokes
equations together with boundary conditions uniquely determine the evolution.
In our phase space, there is one region dominated by laminar flow. Initially, below
the formation of the turbulent structures, laminar state is a, so called, attractor.
Roughly speaking, an attractor for a dynamical system is a closed subset A of its
phase space such that for "many" choices of initial point the system will evolve
towards A. The union of all orbits which converge towards the attractor is called
the basin of attraction B(A) [18]. This means that all initial conditions return
to the laminar profile indicated by the blue circle (see Fig.18a).

The turbulent dynamics take place in other parts of the state space (see red
point in Fig.18b). Initially, the turbulent state is a chaotic repellor in phase space,
which gives rise to long-lived turbulent transients. The phase-space dynamics of
turbulence is organized around travelling waves (see Section 2.1) that are unstable
numerical solutions of the Navier-Stokes equations. As one approaches the critical
point for the onset of the structure, one initial condition is slowed down and
ends up in the critical point, indicated in red. As the Re increases, the laminar
state is still stable, but it is reduced from a global to a local attractor; the
basin of the turbulent state grows, whereas that of the laminar one diminishes in
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Figure 18: A sketch of the saddle-node bifurcation in the state-space of the system.
a) Below the appearance of exact coherent structures, all initial conditions return
to the laminar profile (blue dot), as indicated by the arrows. b) At the critical
point, one set of initial conditions converges to the new exact coherent structure
(red dot). c) Above the critical point a saddle (yellow) and a node (red) appear
and a finite regions of initial conditions is attracted to the node. From ref. [19].

proportion to Re−1 (i.e. the number of initial conditions that lead to turbulent
flow markedly increases). Consequently, as pointed out in Section 2.2, smaller
and smaller perturbations to the laminar flow are sufficient to cause a transition
to turbulence.

This scenario may suggest that, at high Reynolds numbers, turbulent repellor
evolves into a turbulent attractor. However, as it is explained later in the Chapter,
the possibility of decay indicates that the basin of attraction of turbulence is
not compact nor space filling; there must be connection to the laminar profile.
In dynamical systems such structures are known as chaotic saddles or strange
saddles : with chaotic attractors4 they share positive Lyapunov exponents5 for
the motion close to the saddle, but they are not persistent and have a constant
probability of decay [11].

Hence, above the critical point, a saddle point (yellow) and a node (in red)
appear and a finite regions of initial conditions is attracted to the node (Fig.18c).
The saddle point has stable and unstable directions, with the unstable directions
either pointing towards the laminar profile or to the new node. In the example
shown in (c), the saddle has one unstable direction, and the node has only stable
directions.

Another analogy to help one visualize the meaning of a chaotic saddle is that
of a particle in a box with curved walls (Ott E. 1993 [20]). The particle dynamics

4Chaotic attractor: exhibits sensitive dependence on initial conditions: any two arbitrarily
close alternative initial points on the attractor, after any of various numbers of iterations, will
lead to points that are arbitrarily far apart, and after any of various other numbers of iterations
will lead to points that are arbitrarily close together.

5Lyapunov exponent (λ): it gives a measurement of the sensibility of the dynamical
system orbits for the initial conditions. If λ > 0 : great dependence on the initial conditions.
Furthermore, it can be defined a characteristic timescale as 1

λ that mirrors the limits of the
predictability of the system.
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is such that the particle moves along straight lines until it hits a wall where it is
elastically reflected. With the exception of a spherical, ellipsoidal, or rectangular
shape, nearly any boundary will produce chaotic particle dynamics. The fact
that this model is energy conserving whereas a hydrodynamic flow is dissipative
should not be of concern: If the dynamics is expanded to include friction on the
particle and a motor that keeps the particle in motion, one arrives at a dissipative
analog with the same key features. To obtain a chaotic saddle, introduce a hole
into the wall through which the particle can escape. Until the particle hits the
hole it will bounce around chaotically, and the dynamics will have a positive
Lyapunov exponent λ. Because of the positive Lyapunov exponent, correlations
in trajectories will disappear quickly (on a timescale of the order of 1

λ
), and the

probability of hitting the escape hole remains nearly the same: whenever the
particle hits the wall it escapes with a probability equal to the area of the hole
divided by the total surface area.

4.2 Distribution of lifetimes

Two implications of strange saddle that can be observed in pipe and other shear
flow are: a) the distribution of lifetimes becomes exponential for long times, b) the
decay of turbulence at some point in time without any noticeable prior indication.
These two observations are obviously connected. If the probability of decay is
constant in time and independent of when the turbulence was started (b), then
this means that the distribution of lifetimes is exponential (or better, super-
exponential) (a).

Initially, it was generally assumed that, once the transition has taken place,
under steady conditions, the turbulent state will have persisted indefinitely and
it was thought that the lifetime would diverge at some critical Reynolds number.
However, extensive calculations and experimental studies have shown that tur-
bulence in pipes is transient, and that the lifetime increases super -exponentially
with Re [21,22,23].

The super-exponential behaviour of the lifetime was firstly discovered by Hof et
al. (2008) [22], who repeated the experimental studies carried out in the previous
years (see Apprendix) with substantial technical improvements. In their work
in 2008, Hof et al. identified two main constraints needed to be improved: first
of all the limited range in lifetimes measured that causes insufficiently resolved
statistics and secondly the initial formation time t0 that can be larger than the
actual observation time and this causes significant uncertainties in the evaluations
of lifetimes.
The implementation of accurate temperature control allowed measurements to
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be carried out at constant temperatures (±0.05K) for several days and hence
avoiding Reynolds number changes caused by the temperature dependence of
the viscosity. Furthermore, the pipe section was accurately aligned and special
care has been taken at the pipe inlet to avoid turbulence being induced. The
automation of the measurement techniques combined with these improvements
allow them to prolong the observational time-span up to 8 orders of magnitude.

In Section 3.1, we have introduced a probability function P (Re, t) that is the
probability of pluff splitting after a time t.
Likewise, we can define the probability [21] for a flow to still be turbulent after a
time t at a fixed Reynolds number (Re) as

P̄ (Re, t) = exp
−(t− t̄0)
τ̄(Re)

(11)

where τ̄ is the characteristic lifetime (k = τ̄−1 can be also interpreted as the
escape rate) and t̄0 is the initial time period required for the turbulence to form
after the disturbance has been applied to the laminar flow at t = 0 (t̄0 << τ̄).
The superposed bar highlights the difference between quantities in (3) and (4)
and from henceforth we omit it.

The very rapid increase of τ(Re) with Re reported in earlier studies led to
the conclusion that τ diverges at some finite Reynolds number Recrit, that is
τ(Re) ∝ 1/(Recrit − Re). Using this theoretical definition of τ , we would expect
that P (t, Re) (4) increases exponentially with Re, that the steepness of the ex-
ponential increases with t and that independent of the value of t all curves reach
P = 1 at Recrit.(see the dotted curves in Fig.19).

This theoretical model proposed by Faisst & Eckhardt in 2004 [24] was re-
considered in view of experimental and numerical results obtained in more recent
studies. Indeed, τ−1 has been observed to decay exponentially and not linearly
(reaching zero at the critical Reynolds number)! Crucially it only approaches zero
and hence an infinite lifetime is only reached in the asymptotic limit Re → ∞.
The probability distributions are S shaped and not simple exponentials as would
be expected if τ(Re) was a linear function. The observed distributions are not
self-similar (as suggested by Hof et al. in 2006) but instead their maximum slope
(at P (t) = 0.5) increases with L/D, where L is the length of the pipe and D is
the diameter.
For each of the measured probabilities P (t) inverse characteristic lifetime τ−1(Re)

can be determined using (11). In Fig.20 are shown the escape rates and confidence
intervals given by the studies of Peixinho & Mullin 2006 (black stars), Hof et al.
2006 (crosses), Willis & Kerswell 2007 (rhombuses), Hof et al. 2008 (squares)
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Figure 19: Probabilities for the flow to still be turbulent after travelling a fixed
distance x. The fitted curves follow directly from the superexponential scaling
shown in Fig.20. The dotted curves show the scaling that would be expected for
the critical behaviour suggested by Willis and Kerswell [26]. From ref. [22].

[25,21,26,22] and finally the data obtained by Avila et al. in 2009 (black circles)
[23]. As said previously, the experiment carried out by Hof et al. in 2008 can
be considered the most accurate one, and so we can use their results as points of
reference. The agreement with the simulations of Willis & Kerswell (2007) [26] is
very good between Re = 1740 and Re = 1820 even if τ is considered to be linear.
For Re < 1720 (before the vertical dash-dotted line) no evidence of exponential
behaviour in the lifetimes has been found. It is believed that this value of Re
marks the approximate onset of the strange saddle, and so, for Reynolds numbers
lower than 1720 the probabilities of relaminarization depend on the history of the
turbulent trajectory: the process is not memoryless, unlike the relaminarization
process at Re > 1720.
Two different superexponential functional forms (obtained from data fitting) have
been suggested for the escape rate.

• τ−1 = exp[−exp(c1Re+ c2)], with c1 = 0.0057 and c2 = −8.7

• τ−1 = exp[−(Re/c)n], with c = 1549 n = 9.95 (proposed by Tel & Lai in
2008 [27])

The impact of the mechanism to initiate the turbulent state on the relaminariza-
tion probabilities has been object of much debate in the literature (de Lozar &

Hof 2008, Avila et al. 2009, etc). In order to establish if the type of perturbation
used had an influence on the lifetime of the resulting turbulent flow, measure-
ments were carried out at various amplitudes and different perturbation types.
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Figure 20: Escape rate k = τ−1 scaling with Re. The vertical line marks the
approximate onset of the strange saddle. The inset shows the escape rate at
Re = 1860: default reduction from Re = 2000 (black circle and 95% confidence
interval), reductions from Re = 2200,1925,1900 (4, 5, /) and high numerical
resolution (.). The dashed lines are a reproduction of the linear fit given by Willis
& Kerswell and Peixinho & Mullin who considered τ as linear. From ref. [23]

Avila et al. (2010) [23] found out that all the additional cases render charac-
teristic lifetimes within the 95% confidence interval about the default prediction
(see inset of Fig.20), highlighting the independence of the lifetime statistics from
initial conditions. These results confirm the experimental findings of de Lozar &

Hof 2008 [22] who have demonstrated that outside the formation period t0, no
differences, neither in the observed turbulent structures nor in their statistics are
observed.

All these findings lead to a fundamental result (previously anticipated): in the
turbulent regime no critical point exists and turbulence remains transient at all
Reynolds numbers. The rapid exponential increase of lifetimes explains why the
transient nature of turbulence has not been observed previously. Hof et al. es-
timate that to detect the decay of turbulence in a garden hose at a flow rate as
low as 1 l/min (Re = 2400) would require a physical length of the tube of 40.000

km, about the Earth’s circumference, and an observation time of almost 5 years.
This implies that the turbulent and laminar states remain dynamically connected,
suggesting avenues for turbulence control (Chapter 5).
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5 How to eliminate turbulence

The observation that localized turbulent domains are intrinsically unstable offers
prospects to control and relaminarize flows. Such potential methods are of great
practical interest because the drag in turbulent flows is significantly larger and
this causes higher energy consumption and limits transport rates.
Turbulence is the major cause of friction losses in transport processes and it is
responsible for a drastic drag increase in flows over bounding surfaces.

5.1 Friction losses

As described in Chapter 1 (Section 1.3), losses due to friction in pipe flows are
quantified by a dimensionless parameter called Darcy friction factor (equation
(7)) which changes with the Reynolds number following Hagen-Poiseuille law (if
the flow is laminar) and Blasius one (if the flow is turbulent and the pipe is
smooth).
Thanks to their experiments, observing turbulent dynamics, Samanta, de Lozar
and Hof (2011) [28] provided a well-defined link between the Hagen-Poiseuille and
the Blasius law (respectively blue dashed line and red dashed line in Fig.21b)
They demonstrate that in the transitional regime the friction factor strongly
depends on initial conditions as well as experimental imperfections, using two
different obstacles: a small and a big obstacle (see Fig.21b, black stars and red
squares). Furthermore, they investigate the dependence of f on initial conditions

Figure 21: a) Friction factor as a function of the perturbation period. For Re ≤
2300, it is evident the presence of a maximum, i.e. the biggest density fraction of
puffs. For Re ≥ 2400 this maximum is no more distinguishable and this indicates
that a fully turbulent flow state is approached. b) Friction factor as a function
of Reynolds number using different perturbation types as indicated in the legend.
Here we can clearly see a link between the Hagen-Poiseuille law (blue dashed line)
and the Blasius law (red dashed line). From ref. [28].
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and the puff interaction in spatially intermittent flows by applying periodic per-
turbations to the flow at a fixed position of the pipe used for the experiment. For
small injection frequencies each perturbation results in a single puff, the rate of
puff generation is in synchrony with the rate of injected perturbation and so the
puff spacing is identical to the spacing preselected by the perturbation. However,
for higher frequencies, new generated puffs interact and annihilate each other as
supported by a previous study. This result is supported by Hof et al. (2010) [29],
who found out that when puffs are located too close to each other the downstream
puff decays.

As we pointed out in Chapter 2, turbulent structures propagates thanks to
a self-sustained process, i.e. an amplification mechanism that constantly feeds
energy from the mean shear into the turbulent eddies and vice versa. New vor-
tices are generated through a nonlinear effect, such as inflectional instability.
Indeed, across the interface the velocity profile adjusts from the upstream lami-
nar parabolic shape to the average turbulent profile. This adjustment gives rise
to inflection points in the velocity profile, fulfilling Rayleigh’s inflection point
criterion6, thus suggesting a hydrodynamic instability which drives the turbulent
dynamics. So, when an upstream puff appears the inflection point behind the
original puff is distorted and it is no longer capable of generating other vortices.
Eventually the downstream puff decays if the distortion is strong enough.

The understanding of this process can be exploited to eliminate turbulence in
spatially intermittent flows as we will explain in the following section.
In Fig.21a, it is displayed the friction factor as a function of the perturbation
period. Starting from the right (big periods, small frequencies, large spacing)
the friction factor is found to first increase with frequency and then reaches a
maximum at the optimum puff spacing. Beyond this point the perturbed regions
start to interact resulting in a lower density/packing fraction puffs.
While the maximum packing fraction is clearly differentiated for Re < 2300, the
curves becomes flatter when increasing the Reynolds number until the point that
the curves are almost flat (Re = 2500). The fading of the maximum indicates
that a fully turbulent flow state is approached.
The maximum packing fraction data provide an upper bound for the friction
factor for a given Reynolds number, shown by the green triangles in Fig.21b.

5.2 Turbulence control strategies

It has been experimentally demonstrated for pipe flow that appropriate distor-
tions to the velocity profile lead to a complete collapse of turbulence and subse-

6Rayleigh’s inflection point criterion: a necessary condition for instability is that the
basic velocity profile should have an inflexion point
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quently friction losses are reduced by as much as 95%.
Generally, the flatter the velocity profile the more the streak vortex interaction
is suppressed, and in the limiting case of a uniformly flat profile the lift up mech-
anism breaks down entirely. Hence, the fully turbulent state can be destabilized
by forcing the velocity profile, i.e. blunting it to a more plug-like form.
Recent strategies employ feedback mechanisms to actively counter selected veloc-
ity components or vortices. Such methods usually require knowledge of the full
turbulent velocity field and can be applied exclusively in computer simulations.
In experiments the required detailed manipulation of the time dependent velocity
field is, however, currently impossible to achieve.

Counterintuitively, the return to laminar motion is accomplished by initially
increasing turbulence intensities or by transiently amplifying wall shear. In this
Section, we present some methods which can be used to relaminarize turbulence
by applying appropriate perturbations (see Kühnen et al., 2018 [30,31]).

To achieve a similar effect in experiments one way is to increase the turbulence
level by vigorously stirring a fully turbulent pipe flow (Re = 3500), employing
four rotors located inside the pipe. As the highly turbulent flow proceeds further
downstream it surprisingly does not return to the normal turbulence level but
instead it quickly reduces in intensity until the entire flow is laminar. (see Fig.22,
red circle).

In a second experiment, turbulent flow (Re = 3100) is disturbed by injecting
fluid through 25 small holes (0.5 mm diameter) in the pipe wall. When the
perturbation is actuated downstream fluctuation levels drop and the centre line
velocity returns to its laminar value. In this case, the kinetic energy required
for relaminarization (including the actuation and the drag increase in the control
section) is only 2.6% of the energy saved because of the drag decrease in the
remainder of the pipe and the net power saving amounts to 45% (see Fig.22,
purple triangle).

In another experiment Kühnen et al. [30] attempted to disrupt turbulence
(Re = 5000) by injecting fluid parallel to the wall in the streamwise direction.
Unlike for the previous case, this disturbance does not result in a magnification
of cross-stream fluctuations, but instead increases the wall shear stress and hence
also the friction Reynolds number, Reτ . Even though this local increase in shear
stress, this control is more effective as a net power saving of 55 % and more can
be achieved (see Fig.22, black squares).

In order to test a possible connection between the initial flat velocity profile
and the subsequent turbulence collapse, computer simulations has been carried
out. In these simulations, volume force was added to the full Navier-Stokes
equations. Unlike in the experiments where the disturbance is applied locally
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and persists in time, here the forcing is applied globally. Upon turning on the
forcing with sufficient amplitude, a net energy saving is already obtained in the
presence of the forcing (in experiments the saving is achieved downstream of the
perturbation location). As we can see in Fig.22 (green triangles) in this case the
energy saving is up to 95%.

In the last experiment carried out by Kühnen et al. (2018) [30] profiles has
been flattened by a local change in the boundary conditions, since body forces
like that used in the simulations are not available in practice (at least not for
ordinary, non-conducting fluids). For this purpose one pipe segment is replaced
by a pipe of slightly (4%) larger diameter which is pushed over the ends of the
original pipe and can be impulsively moved with respect to the rest of the pipe.
The impulsive acceleration of the near wall fluid leads to a flattened velocity pro-
file. This last method can be considered the most efficient, as it can be obtained
a drag reduction up to 90%.

In summary it has been shown that fully turbulent flow can be destabilized by
appropriate perturbations. As a consequence the entire flow becomes laminar,
drastically reducing friction losses and key to relaminarization is a rearrange-
ment of the mean turbulent profile that inhibits the vortex streak interaction.

Figure 22: Drag reduction as a function of Re. For the injection perturbation a
maximum drag reduction of ∼ 70% was reached whereas for the moving wall and
volume forcing 90 and 95% were achieved respectively. From ref. [30]
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6 Conclusions

The past decades have seen much progress in our understanding of the transition
to turbulence in shear flows without linear instabilities.
In this report, we have tried to summarize and explain all the recent findings, in
a way as clear as possible.
Our main sources, covering a very long period (from 1970s to 2018), have allowed
us to realize how much progress has been made and also how many questions are
still needed to be answered.
We have analyzed the entire "life" of the fundamental turbulent structures and
we have highlighted the strong dependence on Reynolds number, which charac-
terizes every aspect of the flow structure and can be thought as the guideline for
the entire process.
One way to summarize the different processes and transitions is the sequence
of Reynolds numbers shown in Fig.23. It will be interesting to explore similar
sequences and processes in other flows.

Figure 23: The various Reynolds numbers of pipe flow along the Reynolds number
axis (not to scale): energy stability ReE = 81.5; appearance of the first critical
states near ReECS = 773; first indications of turbulence in experiments near '
1600; critical Reynolds number from balance between splitting and decay ReDP '
2040; weak spreading of slugs above Re ' 2250; and finally transition to strong
spreading near Re = 2900. From ref. [19].

In Chapters 2,3 and 4, all the recent knowledge about transition to turbulence
in pipe flow has been collected: how turbulent patches rise, what their structure
is and how they spread, splitting or spreading, and eventually how they generate
turbulence.
Turbulence has been found in pipe despite the stability of the base laminar flow
and first takes the form of localized patches, which are transient (with a life-
time that goes to infinity asymptotically for Re→∞). Furthermore, it has been
pointed out the strong non-linear instability that characterize the process and can
be understood thanks to the dynamical system theory. Although much progress
has been made in our understanding of how turbulence in wall-bounded flows is
formed from unstable invariant solutions (travelling waves) at moderate Re, little
to no progress has been made in connecting this transitional regime to studies of
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high-Re turbulence. Explaining the origin of the fully turbulent state is a deci-
sive step towards connecting these regimes and paves the way for a bottom-up
approach to turbulence.
A critical aspect of the generation of puffs and slugs is the self-sustained pro-
cess, whose understanding has been fundamental in order to clarify the birth
mechanism and to develop methods useful to eliminate turbulence. As shown,
relaminarization can be achieved in a variety of ways, offering a straightforward
target for practical applications where potentially pumping and propulsion costs
can be reduced by 95% or more. The future challenge is to develop and optimize
methods that lead to the desired profile modifications in high Reynolds number
turbulent flows.
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A Appendix

EXPERIMENT DESCRIPTION

Here it is described the experimental apparatus used by Hof et al. in 2004 and
in 2006 (with some upgrades). This set-up forms the basis for the more recent
experiments, in which further technical improvements have been added.
A schematic of the experimental set-up is shown in Fig.24. Fully developed lam-
inar pipe flow (i.e., for which the velocity profile was parabolic) was generally
destabilized 350 pipe diameters from the inlet by means of injecting an impulsive
jet for 1.5 s (' 1.9D/U) through a hole of 1-mm diameter in the pipe wall. The jet
was injected orthogonally to the main flow with a volume flux of approximately
50% of the flux in the pipe. The so-created turbulent flow region was inspected 150

pipe diameters downstream of the injection point with a high-speed stereoscopic
particle image velocimetry (PIV) system. Here a cross-sectional plane of the pipe
is illuminated with a laser light sheet using a pulsed Nd:YLF (Neodymium-doped:
Yttrium Lithium Fluoride) laser and this plane is viewed with two 500 Hz cam-
eras positioned in forward scatter on opposite sides of the light sheet at 45 to the
observation plane. As found in previous observations a distance of 150D is more
than sufficient to allow all transients inflicted by the perturbation mechanism
to subside. For visualization purposes, the water was seeded with 10 µm tracer
particles that were neutrally buoyant and illuminated by the frequency-doubled
pulsed laser. The full three-component velocity field at about 2600 points in the
observation plane was reconstructed from the displacement of the tracer particles
between subsequent images recorded by the cameras. The passage of turbulent
structures was recorded in a series of 1000 contiguous measurements at sampling
frequencies between 60 and 500 Hz. A high degree of precision (figs. S4 to S8)
was achieved with the use of a test section that minimizes optical distortion and
an optimized calibration procedure to align the stereoscopic camera set-up.

Figure 24: Experimental apparatus. Water is pumped by way of a settling chamber
into a 26-m-long straight pipe that has a diameter of D = 4 cm. The settling
chamber as well as the inlet shape were designed to minimize disturbances from
the inlet. The entire pipe is thermally insulated to avoid heat convection, which
would distort the flow profile. From ref. [5].
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