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Sommario	

	
I	fenomeni	turbolenti	sono	largamente	diffusi	in	natura	e	nei	contesti	tecnologici,	essi	non	sono	una	

prerogativa	del	solo	campo	aerospaziale,	ma	riguardano	i	più	svariati	rami	dell’ingegneria.	Per	fare	

qualche	esempio	basti	pensare	al	flusso	d’acqua	che	esce	dal	nostro	rubinetto	di	casa,	alle	correnti	

atmosferiche	e	oceaniche	o	al	flusso	d’aria	che	attraversa	le	pale	di	una	turbina.	

La	 prima	 esperienza	 scientifica	 sulla	 turbolenza	 risale	 alla	 fine	 del	 diaciannovesimo	 secolo	 e	 fu	

condotta	da	Osborne	Reynolds.	Essa	consisteva	nell’osservazione	visiva	dei	moti	di	un	filetto	fluido	

all’interno	di	un	tubo,	ciò	è	realizzabile	utilizzando	un	tubo	trasparente	collegato	ad	un	serbatoio	e	

servendosi	di	un	 colorante	per	distinguere	un	 certo	 filetto	 fluido	dal	 resto	del	 liquido.	Reynolds	

osservò	 che	 i	 fenomeni	 turbolenti	 si	 presentavano	 alle	 alte	 velocità,	 infatti	 la	 turbolenza	 è	

caratterizzata	da	un	alto	numero	di	Reynolds.	A	partire	da	questo	pionieristico	contributo	sono	stati	

fatti	 grandissimi	 passi	 in	 avanti	 nello	 studio	 della	materia,	 attualmente	 si	 usano	 sia	 simulazioni	

sperimentali	che	numeriche.	

Data	la	natura	caotica	del	fenomeno	l’approccio	naturale	per	lo	studio	di	questa	materia	è	di	tipo	

statistico,	 tuttavia	 questi	 tipi	 di	 studio	 possono	 rivelarsi	 estremamente	 complessi.	Nel	 seguente	

lavoro	si	presenta	un	approccio	differente:	utilizzando	il	visibility	algorithm	si	trasforma	una	serie	

temporale	 (in	 questo	 caso	 l’evoluzione	 temporale	 dell’energia	 cinetica)	 in	 un	 grafo.	

Successivamente,	attraverso	lo	studio	di	alcune	caratteristiche	topologiche	di	questo	grafo,	si	cerca	

di	arrivare	ad	una	interpretazione	fisica	del	fenomeno.	Questo	lavoro	si	basa	sull’ipotesi	che	alcune	

caratteristiche	fisiche	del	sistema	si	trasmettono	al	grafo.	Il	grande	vantaggio	di	uno	studio	di	questo	

tipo	è	che	si	possono	ricavare	alcune	informazioni	sulla	fisica	del	problema	utilizzando	un	algoritmo	

di	semplice	implementazione.	

Nel	 capitolo	 1	 si	 descrive	 in	 generale	 il	 fenomeno	 della	 turbolenza,	 descrivendone	 le	 principali	

caratteristiche	e	dando	particolare	importanza	alla	turbolenza	omogenea	e	isotropa.	

Nel	capitolo	2	si	riporta	una	introduzione	sulla	teoria	dei	grafi,	si	danno	le	principali	definizioni	e	

notazione	e	si	descrivono	gli	indici	che	verranno	poi	utilizzati	nella	trattazione.	

Nel	capitolo	3	si	parla	del	visibility	algorithm	e	si	fornisce	una	possibile	implementazione	con	Matlab,	

cercando	di	sottolineare	i	passaggi	critici	(il	codice	completo	è	riportato	in	appendice	A).	

Nel	capitolo	4	si	descrive	il	database	dal	quale	si	attingono	i	dati	per	il	seguente	studio,	si	tratta	del	

John	 Hopkins	 Turbulence	 Databases.	 Esso	 è	 costituito	 di	 più	 parti,	 ma	 viene	 descritta	 più	 nel	

dettaglio	esclusivamente	la	parte	che	concerne	una	simulazone	numerica	di	un	flusso	turbolento	

omogeneo	ed	isotropo.	Si	forniscono	infine	le	coordinate	dei	punti	che	saranno	successivamente	

presi	in	considerazione.	

Nel	 capitolo	 5	 si	 studiano	 le	 caratteristiche	 dei	 grafi	 ricavati	 dai	 due	 punti	 descritti	 nel	 capitolo	

precedente,	 infine	si	 comparano	 i	 risultati	ottenuti	per	 i	due	diversi	punti	e	si	 cerca	di	dare	una	

interpretazione	fisica	ai	dati	ottenuti.	
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Introduction	
	
Turbulent	phenomena	are	largely	diffused	both	in	nature	and	technological	context,	they	are	not	a	
prerogative	 of	 the	 aerospace	 area,	 but	 they	 concern	 so	 many	 branches	 of	 engineering.	 Some	
examples	can	be:	water	flow	that	goes	out	from	a	water	tap,	atmospheric	and	oceanic	currents	and	
air	flow	through	the	blades	of	a	turbine.	
The	 first	 scientific	 experience	 on	 turbulence	was	made	 by	Osborne	 Reynolds	 in	 the	 nineteenth	
century.	Using	glass	pipes	connected	to	a	reservoir,	he	observed	the	flow	pattern	in	the	pipes	at	
various	speeds	of	water	by	injecting	a	thin	steam	of	dye	in	the	main	stream.	He	found	out	that	at	
low	velocities	the	dye	filament	travelled	straight	and	parallels	to	the	walls	of	the	tube,	instead	at	
high	velocities	 it	diffuses	over	 the	whole	depth	and	 loses	 its	 identity.	The	 former	 is	 the	 laminar	
condition,	whereas	the	latter	is	the	turbulent	condition.	In	fact,	turbulence	is	characterised	by	high	
Reynolds	 number.	 Since	 this	 pioneering	 contribution,	 considerable	 developments	were	 done	 in	
understanding	the	nature	of	turbulence,	nowadays	physical	and	numerical	simulation	are	largely	
used	in	the	study	of	this	subject.	
Due	 to	 the	 chaotic	 nature	of	 the	phenomenon,	 a	 statistical	 approach	 is	 the	natural	method	 for	
studying	 turbulence,	 but	 these	 studies	 can	 be	 extremely	 difficult.	 In	 this	 work	 another	 kind	 of	
approach	is	presented:	using	the	visibility	algorithm	a	time	series	(in	this	case	the	temporal	evolution	
of	the	kinetic	energy)	 is	transformed	in	a	graph,	then,	studying	some	topological	 features	of	the	
graph,	a	physical	interpretation	of	the	phenomenon	is	given.	This	work	is	based	on	the	hypothesis	
that	some	physical	characteristics	of	the	system	are	transferred	to	the	graph.	The	great	advantage	
of	this	kind	of	study	is	simplicity	of	visibility	algorithm.	
Chapter	 1	 is	 an	 introduction	 on	 turbulence:	 its	 main	 properties	 are	 described	 and	 particular	
importance	is	given	to	the	isotropic	and	homogeneous	turbulence.	
Chapter	2	deals	with	the	graph	theory:	at	first	the	main	definitions	and	notations	are	given,	then	
the	indices	useful	for	the	forward	analysis	are	described.	
In	 chapter	 3	 the	 visibility	 algorithm	 is	 defined	 and	 a	 possible	 implementation	 with	 Matlab	 is	
presented,	giving	particular	emphasis	 to	the	crucial	points	 (complete	Matlab	code	 is	 reported	 in	
appendix	A).	
In	chapter	4	the	John	Hopkins	Turbulence	Databases	are	described,	they	are	composed	by	many	
parts,	 but	 only	 the	 numerical	 simulation	 of	 an	 isotropic	 and	 homogeneous	 turbulent	 flow	 is	
described	in	detail.	Then	the	coordinates	of	the	two	points	subsequently	studied	are	given.	
In	chapter	5	the	characteristics	of	the	two	graphs	obtained	from	the	two	points	described	in	the	
previous	 chapter	 are	 studied.	 Eventually	 obtained	 results	 are	 compared	 and	 a	 physical	
interpretation	is	given	to	these	data.	
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Chapter	1	
	
Turbulent	Flows	
	
When	the	Reynolds	number	exceeds	a	certain	limit,	disturbances	are	amplified.	When	amplification	
is	large,	disturbances	break	down	into	chaotic	motion.	Repeated	breakdown	of	disturbances	leads	
to	completely	chaotic	sustained	motion,	commonly	known	as	turbulence.	
It	 is	 difficult	 to	 give	 a	 precise	 definition	 of	 turbulence.	 Hinze	 defined	 turbulence	 as	 follows:	
“Turbulent	fluid	motion	is	an	irregular	condition	of	flow	in	which	various	quantities	show	a	random	
variation	with	time	and	space	coordinates	so	that	statistically	distinct	averages	can	be	discerned”[2].		
The	lateral	movement	of	fluid	particles	in	the	case	of	laminar	flow	is	due	to	molecular	diffusion,	so	
it	is	very	small.	Instead,	in	turbulent	flows,	this	movement	can	be	caused	also	by	the	presence	of	an	
eddy,	which	is	a	large	group	of	fluid	particles	characterised	by	high	value	of	vorticity.	During	its	life	
an	eddy	can	change	its	shape,	stretch	and	rotate	or	brake	into	two	or	more	eddies.	
If	one	were	to	focus	attention	at	a	point	in	flow	field,	passage	of	small	and	large	eddies	through	this	
point	 would	 induce	 velocity	 fluctuations	 of	 small	 magnitude	 and	 large	 frequency,	 and	 large	
magnitude	and	small	frequency.	
The	turbulent	flow	is	described	by	the	Navier-Stokes	equations,	but	the	deterministic	solution	of	
this	problem	is	very	hard	to	find	due	to	the	presence	of	non	linearity,	so	it	is	usually	studied	with	
statistical	 and	 computational	methods	 or,	 like	 in	 the	 present	work,	with	 the	 complex	 networks	
theory.	
	

1.1	Characteristics	
	
Turbulence	is	a	chaotic	phenomenon,	which	has	some	important	characteristics:	

• The	 presence	 of	 fluctuations	 both	 spatial	 and	 temporal,	 which	 make	 the	 flow	 three-
dimensional	and	not	steady;	

• Three-dimensional	behaviour	even	if	the	initial	conditions	are	two-dimensional.	Transition	
from	laminar	to	turbulent	flow	starts	with	small	two-dimensional	vibrations,	that	grow	and	
become	vortices,	which	warp	and	move	due	to	mutual	induction;	

• The	 non	 linear	 motion	 become	 more	 important	 for	 high	 Reynolds	 number,	 in	 fact	 the	
convective	term,	which	is	non	linear,	assumes	more	relevance	and	the	viscous	term	is	not	
able	 to	 dull	 the	 fluctuations.	Due	 to	 this	 characteristic	 a	 small	 perturbation	 in	 the	 initial	
conditions	can	involve	a	big	one	in	the	solution,	which	become	bigger	and	bigger	while	time	
is	going	on.	

• The	presence	of	three-dimensional	fluctuations	of	vorticity;	
• This	phenomenon	has	a	wide	range	of	scales.	The	biggest	eddies	have	the	dimension	of	the	

overall	turbulent	region	and	they	contain	the	major	part	of	the	kinetics	energy,	while	the	
dimension	 of	 the	 smallest	 ones	 depends	 on	 the	 Reynolds	 number,	 the	 higher	 is	 Re	 the	
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smaller	 are	 the	 eddies,	 in	 fact	 the	 ratio	 between	 the	 two	 scales	 has	 the	 same	 order	 of	
magnitude	of	the	Reynolds	number.	Thanks	to	the	vortex	stretching	there	is	a	transfer	of	
energy	from	the	bigger	scales	to	the	smaller	scales,	until	the	gradient	of	velocity	becomes	so	
high	(because	of	the	conservation	of	the	angular	momentum)	that	the	viscous	stresses	cause	
the	dissipation	of	kinetics	energy;	

• The	diffusivity	is	very	strong	because	fluctuations	cause	a	rapid	mixing	of	mass,	momentum	
and	heat,	higher	than	in	the	laminar	case,	in	which	the	diffusivity	is	only	due	to	molecular	
agitation.	

• The	dissipation	is	strong	too,	because	of	the	viscous	stresses	in	the	small	eddies.	
To	sum	up	turbulence	is	a	chaotic	flow	characterized	by	three-dimensional	vorticity,	non	linearity	
and	high	values	of	diffusivity	and	dissipation.	
	

1.2	Kolmogorov’s	hypotheses	
	

Kolmogorov	formulated	three	hypotheses:	
1. First	 Kolmogorov’s	 hypothesis	 (local	 isotropy):	 for	 high	 enough	 Reynolds	 number	 the	

turbulent	movement	of	the	small	scales	(l<<l0,	where	l0	is	the	length	scale	of	largest	eddies)	
are	statistically	isotropic;	

2. Second	Kolmogorov’s	hypothesis	(first	hypothesis	of	similarity):	for	high	enough	Reynolds	
number	the	statistical	physical	quantities	of	small	scales	(l<<lEI)	have	a	universal	form	defined	
by	viscosity	(ν)	and	energy	traded	between	the	big	and	the	small	scales	(ε);	

3. Third	Kolmogorov’s	hypothesis	(second	hypothesis	of	similarity):	for	high	enough	Reynolds	
number	the	statistical	physical	quantities	of	the	scale	l	with	lDI<l<lEI	have	a	universal	form	
defined	only	by	ε.	

	

	
Figure	1.1:	The	representation	of	the	ranges	of	the	Kolmogorov's	hypotheses	

Generally,	the	largest	eddies	are	anisotropic,	but	they	lose	this	feature	during	the	trade	of	energy	
between	the	big	and	the	small	scales,	this	phenomenon	happens	in	the	inertial	range	(lDI<<l<<lEI).	
They	 lose	also	 information	about	 their	geometry,	 so	 the	motion	of	 the	 small	 scales	 is	universal,	
which	means	that	it	is	similar	in	every	flows	that	have	high	Re.	If	ν	and	ε	are	known,	dimensional	
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scale,	 scale	 of	 velocity	 and	 temporal	 scale	 (Kolmogorov’s	 scales)	 can	 be	 defined,	 so	 that	 the	
dimensionless	quantities	can	be	built.	These	quantities	are	statistically	the	same	for	every	turbulent	
flow	with	high	Re.	Peculiarity	of	inertial	range	are	intermediate	eddies,	that	are	big	enough	not	to	
be	influenced	by	viscosity,	but	small	enough	to	be	in	the	range	of	universality.	
	

1.3	homogeneous	and	isotropic	turbulence	
	
The	homogeneous	and	isotropic	turbulence	is	a	flow	in	which	there	are	no	interactions	with	solid	
objects	and	there	is	no	a	mean	flow	of	velocity	imposed	from	the	outside.	
A	turbulent	 flow	 is	homogeneous	 if	 the	velocity	 field	doesn’t	change	due	to	a	 translation	of	 the	
reference	system	and	it	is	isotropic	if	it	doesn’t	change	due	to	a	rotation	of	the	reference	system.	
It	is	physically	realized	letting	a	fluid	pass,	with	a	constant	flow,	through	a	grid.	If	Reynolds	number	
is	 high	 enough,	 beyond	 the	 grid	 the	 flow	 becomes	 turbulent	 and	 it	 can	 evolve	 in	 a	 free	 space,	
generating	 the	 homogeneous	 and	 isotropic	 turbulence.	 Feeding	 the	 turbulence	 for	 a	 long	 time	
requires	a	source	of	energy	because	of	the	strong	dissipation	of	the	turbulence.	The	production	of	
energy	is	concentrated	in	the	big	scales	and	the	dissipation	in	the	small	ones.	In	this	case	the	source	
is	represented	by	the	flow	through	the	grid.	
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Chapter	2	
	
Graph	theory	
	
Many	 real	 systems	 from	 very	 different	 fields,	 for	 example	 chemical	 systems,	 social	 interacting	
species,	the	World	Wide	Web,	are	composed	by	a	large	number	of	highly	interconnected	units.	They	
can	be	represented	by	a	graph,	where	the	units	are	drawn	as	points	(nodes)	and	the	interactions	
between	them	as	edges.	The	analysis	of	many	different	networks	has	produced	an	important	result:	
real	networks	have	a	series	of	unifying	principles	and	statistical	properties	in	common,	for	example	
the	degree	distribution	can	exhibits	a	power	law,	they	have	relatively	short	path	between	any	two	
nodes	(small-world	property)	and	the	presence	of	a	large	number	of	short	cycles	or	specific	motifs.	
The	present	work	 is	based	on	the	hypothesis	 that	some	physical	behaviours	are	reflected	 in	 the	
topology	of	the	network,	so	the	analysis	of	the	graph	can	be	a	useful	alternative	to	a	more	classical	
statistical	study	for	knowing	more	about	turbulence.	
	
	
	

	
Figure	2.1:	a	neural	network	made	of	100	neurons	
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Figura	2.2:	An	example	of	social	network.	

	

2.1	Definitions	and	notations	
	
An	 unweighted	 (i.e.	 all	 the	 links	 have	 the	 same	 values,	 there	 is	 no	 priority	 in	 correlations)	 and	
undirected	(i.e.	the	links	don’t	have	direction)	network	can	be	regarded	as	a	graph	G=(N,E),	where	
N	is	a	set	of	nodes	and	E	a	set	of	edges.		
The	graph	can’t	contain	loops,	i.e.	links	from	a	node	to	itself,	or	multiple	edges,	i.e.	more	than	one	
connection	between	two	nodes.	
Two	nodes	joined	by	a	link	are	addressed	as	adjacent	or	neighbouring.	An	important	concept	is	the	
reachability	of	two	different	nodes,	a	walk	from	node	i	to	node	j	is	a	sequence	of	adjacent	nodes	
that	begins	with	i	and	ends	with	j.	Its	length	is	the	number	of	edges	in	the	sequence.	A	path	is	a	walk	
in	which	no	node	is	visited	more	than	once,	the	shortest	path	between	two	nodes	is	an	important	
characteristic	of	the	network.	
A	graph	is	“connected”	if	there	is	a	path	for	each	pair	of	nodes.	
A	subgraph	G’=(N’,	E’)	of	G	is	a	graph	such	that	N’	is	contained	in	N	and	E’	in	E.	If	G’	contains	all	the	
edges	of	G	that	join	two	nodes	in	N’,	G’	is	called	“subgraph	induced	by	N’”.	The	subgraph	of	the	
neighbours	of	a	given	node	i	(Gi)	is	the	subgraph	induced	by	the	set	of	the	nodes	adjacent	to	i	(Ni).	
It	can	be	used	a	matricial	 representation	of	a	graph,	 it	consists	 in	a	N	x	N	matrix	 (the	adjacency	
matrix)	whose	entry	aij	assumes	the	value	1	if	the	nodes	i	and	j	are	joined,	else	aij	=	0.	For	undirected	
graph	 it	 is	a	 symmetrical	matrix,	and	all	 the	 terms	on	 the	diagonal,	aii,	 are	 zero,	because	of	 the	
absence	of	loops.	
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Another	important	matrix	for	the	characterization	of	the	network	is	matrix	D,	in	which	the	entry	dij	
is	the	length	of	the	shortest	path	from	node	i	to	node	j.	It	is	symmetrical	for	undirected	graph.	
	

2.2	Metrics	and	indices	[4]	
	
The	degree	ki	of	a	node	i	is	the	number	of	edges	incident	with	the	node.	
	
	 !" = $"%%∈' 	 	 	 	 	 	 	 	 (2.1)	
	
The	average	degree	of	a	network	is:	
	
	 !" = (

'
!"" = (

'
$"%"% 	 	 	 	 	 	 (2.2)	

	
The	degree	distribution	P(k)	is	the	probability	that	a	node	chosen	uniformly	at	random	has	degree	
k,	so	it	is	the	fraction	of	nodes	in	the	graph	having	degree	k.	
The	shortest	path	is	the	length	of	the	minimum	walk	between	two	nodes,	without	visiting	the	same	
node	more	than	once.	It	plays	an	important	role	in	the	transport	of	information	and	communication	
within	a	network,	since	the	transfer	of	information	is	faster	if	nodes	are	connected	with	short	path.	
The	diameter	is	the	maximum	value	of	shortest	paths:	
	
	 ) = max

"%
-"% 	 	 	 	 	 	 	 	 (2.3)	

	
The	average	shortest	path	(or	characteristic	path	length)	is	the	average	number	of	edges	along	the	
shortest	path	for	all	possible	nodes	in	the	network:	
	
	 -"% = (

' '.(
-"%"/% 	 	 	 	 	 	 (2.4)	

	
This	definition	diverges	if	there	are	disconnected	points	in	the	network.	This	causes	an	issue,	and	a	
way	 to	avoid	 the	divergence	 is	 to	 introduce	 the	efficiency	E,	which	 is	 an	 indicator	of	 the	 traffic	
capacity	of	a	network.	
	
	 0 = (

' '.(
(
123"/% 	 	 	 	 	 	 	 (2.5)	

	
The	betweenness	centrality	bi	is	a	measure	of	the	relevance	of	a	node,	in	fact	the	communication	
between	two	non-adjacent	nodes	depends	on	the	paths	connecting	them,	so	the	importance	of	a	
given	node	can	be	obtained	counting	the	number	of	shortest	path	going	through	it	and	calculating	
bi	(the	more	the	path	passing	through	the	node,	the	more	importance	is	given	to	the	node	itself).	
	

	 4" =
536 "

536%/7 	 	 	 	 	 	 	 (2.6)	



	 8	

	
where	njk	is	the	number	of	shortest	paths	connecting	j	and	k,	while	njk(i)	is	the	number	of	shortest	
path	connecting	j	and	k	and	passing	through	i.	
The	 clustering	 coefficient	 (or	 transitivity)	 measures	 the	 probability	 that	 two	 nodes,	 which	 are	
neighbour	of	a	given	node	i,	are	linked	together.	This	means	the	presence	of	triangles.	
	

	 8" =
9:2

72 72.(
=

;23;3<;<23,<

72 72.(
	 	 	 	 	 	 (2.7)	

	
Where	ei	is	the	number	of	edges	in	Gi	(the	subgraph	induced	by	the	node	i)	and	!" !" − 1 /2	is	the	
maximum	number	of	edges	that	Gi	can	have.	aij	and	ami	verify	that	nodes	j	and	m	are	both	neighbours	
of	i,	then	ajm=1	if	j	and	m	are	joined	by	an	edge.	
It	can	be	useful	to	calculate	the	average	clustering	coefficient.	
	
	 B = (

'
8"' 	 	 	 	 	 	 	 	 (2.8)	

	
The	modularity	 of	 a	network	 is	 a	measure	of	 the	 structure	of	 a	 complex	network	 for	detecting	
communities.	A	high	value	of	modularity	indicates	a	strong	division	into	groups.	Nodes	belonging	to	
the	 same	 community	 have	 a	 lot	 of	 connections	 between	 them,	 this	 implies	 a	 faster	 rate	 of	
transmission	of	information.	
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Chapter	3	
	
Visibility	algorithm	
	
3.1	General	properties	
	
The	visibility	algorithm	is	a	simple	computational	method	to	convert	time	series	into	graphs.	Every	
point	of	the	time	series	becomes	a	node	of	the	associated	graph	and	two	nodes	(ta,	ya)	and	(tb,	yb)	
are	connected	if	any	other	data	(tc,	yc)	between	them	fulfil	the	following	propriety:	
	
	 CD < CF + C; − CF

HI.HJ
HI.HK

	 	 	 	 	 	 (3.1)	

	
(C; − CF)/(	MF − M;)	is	the	gradient	of	the	straight	line	that	joins	the	two	data	a	and	b.	So	a	and	b	are	
linked	if	there	are	not	any	data	between	them	with	a	value	above	this	line,	(the	visibility	line	does	
not	intersect	any	intermediate	data	height).	
In	figure	3.1	is	represented	the	time	series	y=sin(t),	where	t	is	a	vector	with	ten	values	between	0	
and	2π,	with	the	same	gap	between	two	adjacent	values.	On	this	figure	the	edges	that	fulfil	 the	
visibility	algorithm	are	also	drawn.	The	edges	on	the	right	of	the	fourth	node	are	of	different	colours,	
in	order	to	create	less	confusion.	Then,	in	figure	3.2,	is	reported	the	graph	of	the	series	made	with	
Gephi.	 This	 is	 an	open-source	and	 free	 software	 for	 visualization	and	exploration	of	 all	 kinds	of	
graphs	and	networks.	It	can	be	downloaded	at	the	link	below1.	
	

	
Figure	3.1:	the	time	series	y=sin(t),	with	links	drawn	in	order	to	fulfil	the	visibility	algorithm.	

																																																								
1	https://gephi.org	
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Figure	3.2:	the	graph	of	the	series	y=sin(t),	made	with	Gephi.	

	

3.2	Properties	and	implementation	
	
In	this	work	the	implementation	of	the	visibility	algorithm	to	build	adjacency	matrix	A	is	done	with	
Matlab,	(macro	 is	reported	in	appendix	A).	This	program	also	calculates	some	important	 indices:	
average	degree,	degree	distribution,	average	path	length,	diameter	and	clustering	coefficient.	
To	build	the	adjacency	matrix	is	important	to	consider	some	properties	of	the	visibility	algorithm,	
that	make	the	calculation	faster.		
First	of	all,	the	graph	obtained	with	this	method	is	undirected,	so	the	adjacency	matrix	is	symmetric,	
it	can	be	built	only	the	triangular	matrix	(in	this	case	the	superior	triangular	matrix	is	built).	Then	
there	are	no	loops,	so	the	values	on	the	diagonal	are	all	zeroes.	The	graph	is	always	connected,	in	
fact	each	node	sees	at	least	its	nearest	neighbours,	left	and	right,	this	means	that	all	the	terms	of	
the	adjacency	matrix	on	the	left	or	on	the	right	of	the	diagonal	are	1.	For	these	reasons	the	“for	
cycle”	that	sounds	out	the	line	of	the	matrix	starts	from	i=1	and	ends	with	i=(N-1),	where	N	is	the	
number	of	nodes	and	the	size	of	the	matrix,	in	fact	A	is	initialized	to	zero	and	the	only	term	of	the	
last	line	that	needs	to	be	calculated	is	the	one	on	the	diagonal,	which	is	0.	Instead	the	“for	loop”	
that	sounds	out	the	columns	starts	with	j=i+2,	the	terms	on	the	diagonal	and	its	nearest	terms	are	
known	a	priori.	
To	verify	if	a	pair	of	nodes	are	joined	the	introduction	of	an	auxiliary	variable	c	is	needed,	at	first	it	
assumes	the	value	1,	that	means	that	the	two	nodes	are	supposed	to	be	connected,	then	a	third	
“for	cycle”	controls	if	there	is	no	visibility	between	the	nodes,	if	so	c	is	put	equal	to	zero	and	the	
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cycle	is	interrupted.	The	reason	of	the	choice	of	initializing	c	to	1	is	the	fact	that	two	nodes	can	be	
supposed	to	be	neighbours	unless	the	contrary	in	proved,	but	is	not	true	the	vice	versa.	
At	the	end	of	all	of	these	iterations	the	adjacency	matrix	is	calculated.	
The	next	step	of	the	macro	is	to	build	matrix	D	that	contains	the	length	of	the	path	between	all	pairs	
of	nodes.	This	can	be	done	referring	to	the	fact	that	the	entry	(i,	j)	of	matrix	Ak	is	equal	to	the	number	
of	walks	of	length	k	from	node	i	to	node	j.	Initially	D	is	posed	equal	to	A,	in	fact	for	every	pair	of	
nodes	joined	by	an	edge	the	length	of	the	path	is	1,	then	a	“for	loop”	from	k=2	to	k=(N-1),	which	is	
the	maximum	length	possible	for	a	path,	analyzes	one	by	one	the	matrices	Ak	to	find	all	the	entries	
that	fulfil	the	following	properties:	

• )",% = 0,	if	it	is	not	zero	it	means	that	a	path	between	the	nodes	i	and	j	was	already	found;	
• O",%7 ≠ 0,	if	this	is	true	there	is	at	least	a	walk	of	length	k	between	the	nodes	i	and	j;	

if	both	the	properties	are	respected	it	can	be	said	that	)",% = !.	
It	is	important	to	proceed	increasing	k,	and	not	decreasing	it,	because	it	must	be	found	the	length	
of	the	path,	which	is	the	shortest	walk	that	joins	a	pair	of	nodes.	
Another	issue	of	the	program	is	to	calculate	the	average	path	length	and	the	diameter	of	the	graph,	
which	are	respectively	the	mean	and	the	maximum	value	of	terms	of	matrix	D.	
The	degree	of	the	node	i	is	calculated	summing	all	the	entries	of	a	line	or	a	column	of	matrix	A,	the	
average	degree	is	simply	the	mean	value	of	the	degree	of	all	the	nodes.	
The	 maximum	 degree	 is	 also	 calculated	 because	 it	 is	 useful	 for	 the	 calculation	 of	 the	 degree	
distribution,	which	is	a	vector	whose	number	of	components	is	equal	to	this	value.	The	first	“for	
cycle”	defines	the	value	i	of	the	degree,	while	the	second	one	sounds	up	the	vector	that	contains	
the	degree	of	all	the	nodes	to	find	the	number	of	nodes	which	has	degree	equal	to	i.	
The	 local	 clustering	 coefficient	 ci	 is	 calculated	 using	 the	 equation	 (2.7).	 It	 is	 important	 to	 pay	
attention	to	the	fact	that	 if	the	degree	of	the	node	i	 is	1,	ci	diverges,	but	 if	a	node	has	only	one	
neighbour	its	ci	is	0,	this	is	why	Matlab	code	uses	an	“if”	command	to	control	if	the	degree	is	equal	
to	1.	
Eventually	all	the	graphics	are	plotted:	time	series,	degree	distribution,	degree	of	each	node	and	
local	 clustering	 coefficient.	 The	degree	distribution	 is	managed	using	 functions	 “histogram”	and	
“ksdensity”,	that	evaluate	the	density	estimate	at	rispectively	20	and	50	points	covering	the	range	
of	the	data.	
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Chapter	4	
	
JHTDB	database	
	

4.1	Description	of	the	database	
	
The	data	used	in	the	present	work	are	taken	from	the	Johns	Hopkins	Turbulence	Databases	(JHTDB).	
It	 contains	 four	 kind	 of	 turbulence	 fields:	 a	 homogeneous	 and	 isotropic	 turbulence,	 a	 forced	
magneto-hydro-dynamic	turbulence	(MHD),	a	channel	flow	and	a	homogeneous	buoyancy	driven	
turbulence.	All	these	flows	are	obtained	from	a	direct	numeric	simulation	(DNS);	this	means	that	
the	Navier-Stokes	equations	are	solved	numerically	without	the	use	of	a	turbulence	model.	All	the	
temporal	and	spatial	scales	are	solved,	 from	the	 integral	scales	to	the	dissipative	scales,	starting	
from	appropriate	initial	conditions	and	boundary	conditions.	This	method	is	the	simplest	approach	
to	the	turbulence	problem,	but	it	has	some	limitations.	Due	to	the	complexity	of	the	Navier-Stokes	
equations	it	can	not	be	used	to	solve	every	kind	of	flow.	Then	it	needs	very	high	calculation	power,	
making	 the	 simulation	 very	 expensive,	 but,	 in	 the	 last	 years,	 thanks	 to	 the	 development	 of	
technology	which	leads	to	producing	powerful	computers,	it	is	largely	used	in	research.	
From	 JHTDB	 database	 the	 velocity	 components,	 the	 pressure	 and	 the	 magnetic	 field	 can	 be	
downloaded.	
	
	

	
Figure	4.1:	a	representation	of	vorticity	of	the	forced	turbulent	flow,	take	from	the	JHTDB	web	site	
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The	domain	of	the	field	is	a	cube	2π	x	2π	x	2π	and	the	velocity	or	pressure	values	are	reported	on	a	
spatial	grid	with	10243	nodes.	The	viscosity	is	ν	=	0.000185.	The	timestep	is	Δt	=	0.0002,	but	the	
storing	time	interval	is	0.002,	finally	the	simulation	time	interval	is	t	∈	[0,2048],	obtaining	the	1024	
timesteps	available,	the	total	time	of	the	simulation	is	about	one	large	eddy	turnover	time.	
The	main	characteristics	of	the	isotropic	field	are	reported	in	the	table	below:	
	

Distance	between	nodes	 - =
2Q
1024

= 6.142×10.V	

Total	kinetic	energy	 0HWH =
1
2
X ∙ X∗

7
= 0.695	

Dissipation	 ]!9X ∙ X∗
7

= 0.0928	

Taylor	micro-scale	
_ =

15]`9

a
= 0.118	

Taylor-scale	Reynolds	number	 bcd =
`_
]
= 433	

Kolmogorov	lengthscale	
f =

]V

a

( g

= 0.00287	

Kolmogorov	timescale	
ij =

]
a

( 9
= 0.0446	

Integral	scale	
k =

l
2`9

0 !
!

-! = 1.376	

Large	eddy	turnover	time	 mn = k
`′ = 2.02	

Table	4.1:	characteristic	of	the	turbulent	flow	

	
To	 obtain	 data	 from	 the	 database	 an	 authorization	 token	 is	 needed,	 obtainable	 asking	 the	
permission	 to	 the	database	administrator,	 this	 is	useful	 for	knowing	 the	number	of	users	of	 the	
different	services	available.	
On	the	web	site	there	is	a	simple	interface	from	which	the	user	can	chose	one	of	the	four	kind	of	
flow	available,	the	field	(pressure	or	velocity),	the	starting	coordinates	(temporal	and	spatial)	and	
the	size	of	the	cutout.	
Files	downloaded	from	the	database	are	saved	in	Hierarchical	Data	Format	(extension	.h5).		
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Figure	4.2:	the	interface	of	data-cutout	service	

	

4.2	Obtaining	data	
	
In	this	work	the	time	series	of	two	points	of	a	homogeneous	and	isotropic	turbulence	are	analyzed.	
From	the	database	are	 taken	all	 the	1024	 time	values	of	 the	velocity,	 then	 the	kinetic	energy	 is	
calculated:	
	
	 	 p = (

9
(`9 + r9 + s9)	 	 	 	 	 	 (4.1)	

	
where	u,	v,	w	are	the	three	components	of	the	velocity	vector.	
The	choice	of	the	two	points	is	based	on	another	work2,	in	which	a	cutout	of	the	isotropic	turbulence	
of	 the	 JHTDB	 database	 is	 analyzed	 with	 the	 complex	 network	 theory,	 using	 a	 procedure	 that	
converts	the	spatio-temporal	data	in	a	spatial	network.	In	particular,	this	work	focus	on	the	study	
of	two	points	of	the	network:	a	node	with	high	degree	centrality	value	(HDC)	and	a	node	with	low	

																																																								
2	“Nuove	osservazioni	sulla	caratterizzazione	spaziale	di	flussi	turbolenti	attraverso	la	teoria	delle	
reti	complesse”	by	Giovanni	Iacobello,	magistral	thesis.	
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degree	centrality	value	(LDC).	The	coordinates	are	(385,	401,	508)	and	(372,	387,	510)	respectively	
for	HDC	and	LDC	node.	High	values	of	ki	indicate	regions	with	similar	instantaneous	vorticity,	this	
means	that	there	are	turbulent	patterns	coherently	moving	over	the	acquired	time	scale	TL.	The	
domain	of	this	study	is	a	sphere	with	radius	equal	to	Taylor	micro-scale,	that	is	the	characteristic	
dimension	of	the	smallest	dynamically	significant	eddies	of	the	flow.	It	is	the	intermediate	length	
scale	at	which	fluid	viscosity	significantly	affects	the	dynamic	of	turbulent	eddies	of	the	flow.	Length	
scales	which	are	larger	than	Taylor	micro-scale,	the	integral	range,	are	not	strongly	influenced	by	
viscosity,	while	below	the	Taylor	micro-scale	there	is	the	dissipation	range.		
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Chapter	5	
	
Network	analysis	and	physical	interpretation	
	
In	 this	 chapter	 the	 two	networks	built	with	 the	visibility	algorithm	applied	 to	 time	 series	of	 the	
kinetic	energy	of	the	HDC	and	the	LDC	nodes	are	analyzed,	using	the	indices	described	in	chapter	2.	
Distinct	features	of	a	time	series	can	be	mapped	onto	networks	with	distinct	topological	features,	
so	the	resulting	networks	inherit	characteristics	of	the	time	series	and	this	series	can	be	investigated	
from	a	complex	network	perspective.	Thanks	to	this	assumption	a	physical	 interpretation	can	be	
given	to	the	results	obtained.	
	

5.1	HDC	network	analysis	
	
Starting	from	the	HDC	node,	below	is	reported	the	graphic	of	the	time	series.	
	

	
Figure	5.1:	the	graphic	of	the	HDC	energy	time	series	

	
The	time	series	is	converted	in	a	graph	with	the	visibility	algorithm,	then	the	graph	is	drawn	with	
Gephi	(figure	5.2).	Nodes	change	their	colour	from	white	to	red	due	to	their	degree	(red	means	high	
degree).	
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Figure	5.2:	graph	of	the	time	series	of	HDC	point	

	
The	average	degree	of	the	graph	is	<k>	=	159.176	
Degree	distribution	is	reported	in	figure	5.3.	It	is	evident	that	the	majority	of	nodes	have	a	degree	
minor	than	250,	while	there	are	only	a	few	nodes	with	very	high	degree	(more	than	600).	
	

	
Figure	5.3:	degree	distribution	P(k)	of	HDC	point	
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In	 figure	5.4	 is	 represented	the	degree	associated	to	every	node	of	 the	graph.	 It	 is	 important	to	
remember	that	the	visibility	algorithm	converts	every	point	of	the	time	series	into	a	node	and	there	
is	a	gap	of	2	between	two	consecutive	times	stored.	The	number	associated	to	a	node	is	the	value	
of	time	related	to	the	node	itself	(at	time	2	corresponds	node	2,	at	time	4	the	node	4,	etcetera...).	
	

	
Figure	5.4:	a	graphic	where	is	reported	the	value	of	the	degree	for	every	node	of	the	graph	

	
Comparing	this	graphic	with	figure	5.1	it	can	be	seen	that	the	peaks	are	situated	at	the	same	points.	
This	is	not	surprising,	considering	the	fact	that	a	peak	of	the	time	series	has	a	large	visibility	on	the	
other	nodes	and	covers	the	nodes	next	to	it,	in	fact	after	a	peak	on	this	graphic	there	is	a	strong	
decrease	of	degree.	
The	 diameter	 and	 the	 average	 shortest	 path	 are	 respectively	 D	 =	 7	 and	 <d>	 =	 2.602,	 it	 is	 not	
necessary	to	introduce	the	efficiency,	due	to	the	fact	that	the	graph	does	not	have	disconnected	
points,	so	<d>	is	not	divergent.	
The	average	clustering	coefficient	is	<c>	=	0.642	and	the	local	clustering	coefficients	are	reported	in	
figure	5.5,	they	have	very	variable	values.	There	is	an	alternation	of	regions	with	high	values	of	ci	
and	regions	with	low	values.	A	low	value	means	that	the	nodes	are	more	independent	one	from	
each	other,	while	the	presence	of	a	large	number	of	triangles	involves	having	a	strong	transitivity.	
The	strong	variability	of	this	index	probably	involves	a	strong	division	in	cluster	of	the	graph.	
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Figure	5.5:	a	graphic	where	is	reported	the	local	clustering	coefficient	for	every	node	of	the	graph	

	
In	order	to	have	a	better	knowledge	of	the	division	in	communities	of	the	graph,	the	modularity	is	
studied	with	Gephi:	Q	=	0.321	
There	 are	 9	 communities.	 In	 the	 graphic	 below	 is	 reported	 how	many	 nodes	 each	 community	
contains.	

	
Figure	5.6:	a	graphic	of	the	size	of	every	community	of	the	graph	
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5.2	LDC	network	analysis	
	
The	time	series	and	the	correlated	graph	are	reported	below.	

	
Figure	5.7:	the	graphic	of	the	LDC	energy	time	series	

	
Figure	5.8:	graph	of	the	time	series	of	LDC	point	
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The	average	degree	of	the	graph	is	<k>	=	277.16	
In	figure	5.9	is	reported	the	degree	distribution.	There	are	a	lot	of	nodes	with	a	value	of	degree	less	
than	200.	There	is	also	a	large	group	of	nodes	with	degree	near	300.	Very	few	nodes	have	a	very	
high	degree	(more	than	800).	
	

	
Figure	5.9:	degree	distribution	P(k)	of	LDC	point	

	
The	next	graphic	associates	at	every	node	its	own	degree.	Considerations	on	this	figure	are	the	same	
of	the	ones	made	in	the	previous	chapter.	

	
Figure	5.10:	a	graphic	where	is	reported	the	value	of	the	degree	for	every	node	of	the	graph	
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The	diameter	and	the	average	shortest	path	are	respectively	D	=	7	and	<d>	=	1.875	
The	average	clustering	coefficient	is	<c>	=	0.687	and	the	local	clustering	coefficients	are	reported	in	
figure	5.11,	the	graphic	has	quite	a	continuous	form	in	the	first	part,	then,	in	the	last	part,	the	values	
are	more	variable.	

	
Figure	5.11:	a	graphic	where	is	reported	the	local	clustering	coefficient	for	every	node	of	the	graph	

The	modularity	is	Q	=	0.26	
There	 are	 5	 communities,	 in	 the	 graphic	 below	 is	 reported	 how	many	 nodes	 each	 community	
contains.	

	
Figure	5.12:	a	graphic	of	the	size	of	every	community	of	the	graph	
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5.3	Comparison	and	physical	interpretation	
	
In	order	to	give	a	physical	interpretation	to	the	results	discussed	in	the	previous	two	paragraphs,	it	
is	important	to	compare	the	data	obtained	for	the	two	points.	In	the	table	below	are	reported	the	
main	topological	features	of	the	two	networks.	
	

	 HDC	 LDC	

Average	degree	 159.176	 277.16	

Diameter	 7	 7	

Average	path	length	 2.602	 1.875	

Clustering	coefficient	 0.642	 0.687	

Modularity	 0.321	 0.26	

Number	of	communities	 9	 5	

	
	
The	average	degree	of	HDC	point	is	lower,	this	means	that	there	are	fewer	connections	in	its	graph.	
A	probable	cause	of	this	behaviour	may	be	the	presence	of	more	perturbations	in	the	motion	of	the	
fluid	particles,	which	involves	in	rapid	fluctuations	of	the	kinetic	energy.	This	decreases	the	visibility	
between	 nodes.	 Perturbations	may	 be	 caused	 by	 the	 continuous	 formation	 and	 breakdown	 of	
vortical	structures.	
Both	 the	 graphs	have	 some	nodes	with	 a	 very	high	degree,	 as	 seen	 in	 chapter	 5.1	 these	nodes	
correspond	to	peaks	in	the	time	series,	which	have	a	high	value	of	kinetic	energy.	At	these	points	
there	is	a	strong	influence	of	fluid	particles	with	a	 large	value	of	kinetic	energy	on	particles	with	
lower	value.	
The	diameter	is	equal	for	the	two	points;	it	does	not	give	information	about	the	difference	between	
HDC	and	LDC	point.	Due	to	the	conceptual	similarity	of	the	diameter	and	the	average	path	length	
(they	are	both	related	to	the	path	length	between	nodes)	also	the	second	index	is	not	taken	into	
account.	
The	clustering	coefficient	of	HDC	point	is	lower,	so	its	graph	has	a	smaller	number	of	triangles	and	
the	nodes	are	more	 independent.	Also	this	 fact	can	be	explained	with	the	presence	of	vortexes:	
perturbations	make	the	closure	of	triangles	harder.	
A	similar	conclusion	can	be	obtained	studying	the	modularity,	which	is	higher	for	the	HDC	point.	A	
high	value	of	Q	means	a	strong	division	in	communities,	in	fact	the	HDC	graph	has	more	groups	with	
smaller	population.	The	presence	of	vortexes	causes	often	perturbations	of	the	system	dynamics	
and	as	a	results	the	successive	states	lose	connectivity.	
In	the	following	figure	are	reported	the	graphics	of	local	clustering	coefficients	for	the	two	points:	
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Figure	5.13:	on	the	left	the	graphic	of	the	local	clustering	coefficient	of	the	HDC	point,	on	the	right	
the	same	graphic	of	the	LDC	point	

	
The	form	of	the	last	part	of	the	graphic	(characterized	by	the	presence	of	a	lot	of	peaks)	calculated	
in	the	LDC	point	is	similar	to	the	form	of	the	other	graphic.	Probably	during	the	last	times	of	the	
simulation	vortexes	are	comparing	in	the	LDC	point.	This	hypothesis	is	supported	by	the	presence	
of	 many	 peaks	 in	 the	 graphic	 of	 the	 degree	 in	 this	 step	 of	 time,	 that	 can	 be	 interpreted	 like	
perturbations.	
In	conclusion,	the	HDC	point	is	characterized	by	the	presence	of	many	fluctuations	of	 its	energy,	
maybe	caused	by	a	continuous	formation	and	breakdown	of	vortical	structures.	This	means	a	low	
connectivity	of	the	network.	While	LDC	point	has	lower	energy,	but	more	constant,	which	increases	
connectivity.	
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Conclusions	
	
In	 the	present	work	 two	points	of	a	 forced	 isotropic	 turbulent	 field	have	been	studied	with	 the	
complex	network	tools.	At	first	the	visibility	algorithm	has	been	applied	in	order	to	transform	the	
time	series	of	kinetic	energy	into	a	graph,	then	its	topology	has	been	analyzed.	The	aim	of	the	study	
was	 to	 find	 out	 correlations	 between	 the	 physical	 characteristics	 of	 the	 turbulent	 field	 and	 the	
indices	used	for	studying	the	topology	of	the	network.	
Vortical	structures	promote	in	fast	fluctuations	of	the	kinetic	energy,	and	this	in	turn	decreases	the	
visibility	between	the	nodes	of	the	graph.	
The	 results	 obtained	 suggest	 that,	 to	 find	 out	 a	 point	which	 has	 been	much	 influenced	 by	 the	
presence	of	vortical	structures	during	the	time	of	the	simulation,	we	have	to	search	for	point	with	
precise	characteristics:	

• low	average	degree	value;	
• low	clustering	coefficient	value;	
• high	modularity;	
• the	presence	of	many	communities.	

The	diameter	and	the	average	path	length	are	not	much	useful	for	this	aim.	
Eventually,	 the	 local	 clustering	 coefficient,	due	 to	 its	 feature	 to	be	 “local”,	 can	give	 information	
about	 the	temporal	evolution	of	 the	phenomenon,	 for	example	 it	can	suggests	 the	birth	of	new	
vortexes	at	a	certain	time.	
Thus	 some	 physical	 behaviours	 can	 be	 analysed	 using	 the	 visibility	 algorithm	 and	 the	 complex	
networks	theory.	This	method	can	be	useful	because	of	its	simplicity,	since	we	can	get	information	
about	the	system	without	using	the	statistical	approach.	
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Appendix	A	
	

Implementation	of	visibility	algorithm	
	
diametro=0; 
path_medio=0; 
C=0; 
grado=zeros(1,N); 
grado_medio=0; 
  
%% MATRICE ADIACENZA 
A=zeros(N); 
for i=1:(N-1)  
    A(i,i+1)=1; 
    for j=(i+2):N 
        c=1; 
        for m=(i+1):(j-1) 
            if X(m)>=X(i)+(X(j)-X(i))*((m-i)/(j-i)) 
                c=0; 
                break; 
            end 
        end 
        A(i,j)=c; 
    end 
end 
for i=2:N 
    for j=1:(i-1) 
        A(i,j)=A(j,i); 
    end 
end 
 
%% MATRICE DELLE LUNGHEZZE 
D=A; 
for k=2:(N-1) 
    B=A^k; 
    for i=1:(N-1) 
        for j=(i+2):N  
            if D(i,j)==0 && B(i,j)>0 
                D(i,j)=k; 
            end 
        end 
    end 
end 
for i=2:N 
    for j=1:(i-1) 
        D(i,j)=D(j,i); 
    end 
end 
 
%% DIAMETRO E PATH MEDIO 
somma=0; 
for i=1:N 
    for j=1:N 
        somma=somma+D(i,j); 
        if D(i,j)>diametro 
            diametro=D(i,j); 
        end 
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    end 
end 
path_medio=somma/(N*(N-1)); 
 
 
 
%% GRADO DEI NODI 
  
K=zeros(1,N); 
for i=1:N 
    somma=0; 
    for j=1:N 
        somma=somma+A(i,j); 
    end 
    K(i)=somma; 
end 
grado(1,:)=K;  
somma=0; 
grado_max=0; 
for i=1:N 
    somma=somma+K(i); 
    if K(i)>grado_max 
        grado_max=K(i); 
    end 
end 
grado_medio=somma/N; 
  
%% DEGREE DISTRIBUTION  
P=zeros(1,grado_max); 
for i=1:grado_max 
    for j=1:N 
        if K(j)==i 
            P(i)=P(i)+1; 
        end 
    end 
end 
   
%% CLUSTERING COEFFICENT 
c=zeros(1,N); 
  
for i=1:N  
    somma=0;  
    for j=1:N 
        for m=1:N 
        somma=somma+A(i,j)*A(j,m)*A(m,i); 
        end 
    end 
    if K(i)==1 
        c(i)=0; 
    else  
    c(i)=somma/(K(i)*(K(i)-1)); 
    end 
end 
somma=0; 
for i=1:N 
    somma=somma+c(i); 
end 
C=somma/N; 
 
%% GRAFICI 
  
% serie di tempo 
time=0:2:2046; 
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figure 
plot(time,X) 
xlabel('time') 
ylabel('kinetic energy') 
title('TIME SERIES') 
  
% degree distribution 
degree=1:1:grado_max; 
figure 
plot(degree,P); 
xlabel('degree (k)') 
ylabel('number of nodes') 
title('degree distribution') 
 
grado_min=K(1); 
for i=2:N 
    if K(i)<grado_min 
        grado_min=K(i); 
    end 
end 
k_vettore=linspace(1,grado_max,50); 
[g]=ksdensity(K,k_vettore); 
figure 
plot(k_vettore,g,'r') 
xlabel('degree (k)') 
ylabel('density') 
title('DEGREE DISTRIBUTION') 
hold on 
pdf_k=histogram(K,20,'Normalization','pdf'); 
  
% grado dei nodi 
figure 
plot(time,K) 
xlabel('nodes') 
ylabel('degree') 
  
% local clustering coefficient 
figure 
plot(time,c) 
xlabel('nodes') 
ylabel('c') 
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