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1. Introduction 
The aim of this work is to study the behaviour of a pulsatile pipe flow during its transition to 

turbulence. In the field of fluid dynamics, a pulsatile flow is a flow characterized primarily by 

periodic variations. It is also known as Womersley flow, from John R. Womersley (1907-1958), a 

British mathematician expert in flow profiles of blood in arteries.  

Examples of pulsatile pipe flow in everyday life are found in many fields, such as in the 

cardiovascular system, in industrial pumps, in engine coolant systems and in microfluidic devices. 

From this wide range of applications, it is therefore possible to understand the importance of 

studying this type of flow and understanding its characteristics, especially for what concerns the 

transition to turbulence. The knowledge of this specific topic is still particularly debated, as there is 

little consensus regarding the influence of some factors, e.g. the pulsation, on the transition 

threshold to turbulence.  

The first chapter of this work is meant to provide basic knowledge of the pulsatile pipe flow, thus 

considering some dimensionless parameters, i.e. the Reynolds, Womersley and Strouhal numbers, 

and the fluid dynamics equations that describe pipe flows. 

The second chapter is focused on the transition to turbulence of the flow in a rectilinear, cylindrical 

and smooth pipe. This part also considers instabilities and the different turbulence structures that 

may take place. A wide range of experiments support the theoretical dissertation, which in the end 

examines different aspects of the transition, e.g. transport phenomena, time related aspects and 

effects of waveform. 

The third chapter takes into account different configurations of the pipe, that vary from the ideal 

case. The first one considers a constriction in the pipe; then a change in curvature is analysed, 

followed by the compliant walls case; the last aspect that is examined is the effect of roughness. 

This entire part is discussed in parallel with the blood flow model and cardiovascular system 

applications.  
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2. Basics of pulsatile pipe flow 
There are several dimensionless parameters that govern the pulsatile flow behaviour, 

among which the most useful are: the Reynolds number, the Womersley number and the Strouhal 

number, which are exposed right below. After these, the equations that describe pipe flows are 

reported. 

 

2.1 Reynolds number 

The Reynolds number is an essential dimensionless parameter, helpful for the analysis of 

pulsatile flows, derived from the Navier Stokes equations. As it expresses the ratio of inertial forces 

to viscous forces, it is used to predict the onset of turbulence in fluid flow. Considering the axial 

velocity 𝑢, in the case of pulsatile flow it is generally composed by two components: the steady 

velocity component 𝑢𝑠 and the oscillatory component 𝑢𝑜. It is thus possible to define two 

parameters related to each velocity, 

the mean Reynolds number: 

𝑅𝑒𝑚 =
2𝑢𝑠𝑅

𝑣
 

and the oscillatory Reynolds number: 

𝑅𝑒𝑜 =
2𝑢𝑜𝑅

𝑣
 

where 𝑅 is the radius of the pipe and 𝜈 the kinematic viscosity. For what concerns a fluid flow in a 

pipe, if 𝑅𝑒 < 2300 the flow is laminar, whereas if 𝑅𝑒 > 2300 the flow is generally considered 

turbulent. 

It is also frequent to use the ratio 𝑅𝑒𝑜/𝑅𝑒𝑚, as it describes the ratio of oscillating and mean velocity 

component. 

 

2.2 Womersley number 

The Womersley number is defined by the following equation: 

𝛼 ≡ 𝑊𝑜 = 𝑅√
𝜔

𝜈
= 𝑅√

𝜔𝜌

𝜇
 

Where 𝑅 is an appropriate length scale (e.g. the radius of the pipe), 𝜈 the kinematic viscosity 

(remembering that 𝜈 = 
𝜇

𝜌
 , with 𝜇 dynamic viscosity, 𝜌 density) and 𝜔 the angular velocity of the 

oscillations which is tightly related to the frequency of oscillation (𝜔 =  2π𝑓 ). The Womersley 

number is a biofluid mechanics and dynamics parameter that expresses the relationship between 

the pulsatile flow frequency and the viscous effects, giving the ratio of transient inertial forces to 

viscous forces. The Womersley number arises in the solution of the linearized Navier Stokes 

equations for oscillatory flow (laminar and incompressible) in a tube.  
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When 𝛼 is smaller than 1, the frequency of pulsations is sufficiently low that a parabolic velocity 

profile develops during each cycle: the flow is almost in phase with the pressure gradient and the 

Poiseuille’s law would be a good approximation. For larger values of 𝛼, the velocity profile is 

relatively flat, and the mean flow lags the pressure gradient by about 90 degrees. The Womersley 

Number is therefore important in studying dynamic similarity when scaling an experiment. 

A bond between these two key parameters exists, as they are linked by the following equation, that 

involves the Strouhal number as well, which is discussed hereafter: 𝛼 = √2 ∗ 𝜋 ∗ 𝑅𝑒 ∗ 𝑆𝑡. 

 

2.3 Strouhal number 

The third dimensionless parameter is the Strouhal number, used to describe oscillating flow 

behaviour. It represents the ratio of inertial forces due to local acceleration of the flow to the 

inertial forces due to convective acceleration. In periodic flows, the Strouhal number is associated 

with the flow’s oscillations due to the inertial forces relative to the velocity changes due to 

convective acceleration of the flow field. It is defined as: 

𝑆𝑡 =
𝑓𝐿

𝑣
 

where 𝑓 is the frequency of oscillation, 𝐿 is the characteristic length (e.g. diameter of the pipe) and 

𝑣 is the velocity of the flow. 

Intermediate-high Strouhal numbers (St ≥1) mean that the flow is dominated by the oscillations, 

often associated with vortex shedding, while at low Strouhal numbers (St<<1) the fast moving fluid 

sweeps away the oscillations and the flow has basically a steady behaviour. 

 

2.4 Pipe flow equations and characteristics 

The Navier-Stokes equations for an incompressible fluid with constant properties in 

cylindrical coordinates are written as it follows: 

  

considering:  

 

and where: 
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The case of an infinite straight conduit with circular section and constant diameter is a case of 

parallel flow. Using cylindrical coordinates, with the axis z corresponding to the conduit axis, the 

solution will be in the following form, because of the axial symmetry: 

 

with boundary condition 𝑢(𝑅) = 0, with R is radius of the circular section. Consider also that the 

pressure has a dependence on the z coordinate (p=p(z)). 

With such boundary conditions, the continuity equation (1) is automatically satisfied, as well as the 

components of the momentum equation along r and theta. The equation (4) will become: 

 

Since the left term depends on r, and the right term depends on z, the equation is satisfied only if 

both terms are constant and equals, so: 

 

From the first one we obtain that 𝑝(𝑧) = 𝐶 − 𝐺𝑧, whereas the second one can be rewritten as:  

 

integrating it we obtain: 

 

In order to have a finite value of the velocity for 𝑟 = 0 we have that 𝐶1 = 0, and from the initial 

boundary condition we obtain: 

 

As 𝐺 = −𝑑𝑝/𝑑𝑧 , the velocity profile of the pipe flow in an infinite straight conduit with circular 

section and constant diameter, better known as Hagen-Poiseuille flow, is: 

 

The velocity profile has the shape of a paraboloid, with maximal velocity at the centre of the pipe 

(Figure 1). 
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Figure 1: Hagen-Poiseuille flow velocity profile 2D [18] 

This solution works effectively as long as the speed is restrained: being the other parameters equal, 

in particular, the corresponding Reynolds number have to be lower than 𝑅𝑒𝑐𝑟𝑖𝑡 = 2300. For higher 

values, this solution is no longer valid, as the flow is characterized by turbulence. [18] 
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3. Transition of pulsatile flow in straight pipe 

configuration 
Most fluid flows in nature and in everyday applications are subject to periodic velocity 

modulations. However, the consensus regarding the influence of pulsation on the transition 

threshold to turbulence is little: some studies predict a monotonic increase of the threshold with 

the frequency (i.e. Womersley number), others report a decreasing threshold for identical 

parameters and only observe an increasing threshold at low Wo. It is then clear why the 

mechanisms of transition of pulsatile flow are still under investigation and debate. 

Pulsatile flows are often at the verge of being turbulent, as cardiovascular flow confirms, with 

Reynolds numbers in the larger blood vessels in transitional regime. These turbulent fluctuations 

have been associated with a wide range of cardiovascular diseases. But, as non-Newtonian fluids, 

the physiological fluids are more complicated to study and fully understand, also because of their 

complex geometry that causes additional complications. Nevertheless, also the simplest case of 

transition in pulsatile flow of a Newtonian fluid in a straight pipe is not well understood. Where 

steady pipe flows are governed by the only Reynolds number, for pulsating flows it is necessary to 

consider all the followings: Reynolds number 𝑅𝑒𝑚, the ratio 𝐴 = 𝑅𝑒𝑜/𝑅𝑒𝑚 = 𝑢𝑜/𝑢𝑠 and the 

pulsation frequency, generally expressed by the Womersley number. [1] 

Before analysing the transition to turbulence, the following equation is needed: 

𝑢(𝑟, 𝑡) =
 𝑝𝑠

4𝜇
(𝑟2 − 𝑅2) +

 𝑝𝑜𝑅2

𝑖𝜇𝛼2 {1 −
𝐽𝑜(𝛼

 𝑟
𝑅 𝑖

 3
2 )

𝐽𝑜(𝛼𝑖
 3
2 )

} 𝑒𝑖𝜔𝑡 

It describes the axial velocity 𝑢 as function of 

radial position 𝑟 and time 𝑡 (figure 2). It is 

valid for an axisymmetric flow of an isotropic, 

incompressible, Newtonian fluid without 

external forces. In the equation, 𝑝𝑠 is the time 

independent pressure gradient, 𝑝𝑜𝑒𝑖𝜔𝑡 the 

time dependent pressure gradient. The first 

term is basically the classic parabolic 

Poiseuille flow, whereas the second one 

represents the effects of transient inertia, with 

 𝐽𝑜 a Bessel function. [2] 

 

3.1 Laminar flow 

Considering the measurements 

conducted by Trip et al [2] for both steady and 

unsteady flow, the range of mean Reynolds 

number considered is the one for which transition is expected (𝑅𝑒𝑚 = 2000 ÷ 3500). As the data 

has a consistent convergence for fifty recordings, that number will be considered as sufficient for 

the experiments, as shown in figure 3. 

Figure 2: The sinusoidal axial velocity u and the definition 
of the mean velocity, the oscillatory velocity, the frequency, 

and the period T [2] 
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Figure 3: The mean velocity as function of the number of images used [2] 

It is a reason of interest to compare the velocity profiles of laminar steady, oscillatory, and pulsatile 

flow with the theoretical shape. An example of these instantaneous profiles is given by figure 4, 

where the mean component (x), the oscillating component (.) and their sum (o, ‘pulsatile’) are 

shown for both laminar and turbulent case. For the laminar case, the continuous lines indicate the 

theoretical behaviour derived from the equation (5). 

 

Figure 4: Left: Measured and theoretical steady 𝑢𝑠 (x), oscillatory 𝑢𝑜 (.) and pulsatile 𝑢𝑚 (o) velocity profiles of a laminar 
pulsatile flow (α=10, 𝑅𝑒𝑚=2160 and 𝑅𝑒𝑜=610). Right: Measured steady 𝑢𝑠 (x), oscillatory 𝑢𝑜 (.) and pulsatile 𝑢𝑚 (o) velocity 

profiles of a turbulent pulsatile flow (α=10, 𝑅𝑒𝑚=3160 and 𝑅𝑒𝑜=610) [2] 

Notice that for the turbulence case, the velocity distribution is more uniform as a result of more 

efficient momentum transport due to eddies. [2] 

 

3.2 Transition of steady flow 

According to Trip et al studies [2], the transition of steady flow is examined first. The 

turbulence intensity is measured for a range of mean Reynolds number from 2000 up to 3500 and 

it is again the statistical average over fifty realizations. Considering the volumetric flow rate 

controlled, the mean Reynolds number is corrected for the temperature dependence of the 

kinematic viscosity. 
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Figure 5 shows the turbulence intensity based on the radial and axial velocity. The error bars 

denote the standard error of the mean. For the axial component, a large overshoot at 𝑅𝑒𝑚 = 2388 is 

marked. 

 

Figure 5: Normalized intensity of turbulence at the centreline. Axial (O) and radial (X) components are shown separately [2] 

The mean velocity component of turbulent flows appears to be smaller than laminar flows, because 

of the better efficiency in the momentum transfer. The intermittent nature of the transitional 

regime leads to having the ensemble average of the mean velocity biased and it results with the 

increase of the velocity fluctuations. It is to be noticed that the overshoot does not have a clear 

value for the intermittency. To avoid it a solution would be looking at the radial velocity 

component, for which the mean component is equal to zero for both the laminar and turbulent flow 

state. For this reason, the only radial component of the velocity is used to study the transition to 

turbulence in this chapter. 

Up to 𝑅𝑒𝑚 ≈ 2400, the normalized intensity of turbulence is around 1%. The flow is still considered 

laminar, and this little turbulence intensity is mainly due to measurements errors and small 

fluctuations in the pump output. In the so-called transitional regime (𝑅𝑒𝑚 ≈ 2400 − 2800) the 

turbulence intensity rises: in this region, puffs occur randomly and increasingly in time. For 𝑅𝑒𝑚 >

2800, the turbulence intensity is approximately 3%. [2] 

Note that the turbulence intensity is defined as follows: 

 

Where 𝑢 is a reference velocity and 𝑢′, 𝑣′, 𝑤′ are the turbulent fluctuations of the velocity and are 

function of the axial, radial and azimuthal position. 

  

3.3 Transition of unsteady flow 

Because of the intermittent nature of the flow, a direct calculation of the turbulence 

intensity is not representative of the reality. A possible approach is to subtract the line average in 

the axial direction for each fluctuating velocity field: 

 

(6) 

(7) 
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This solution is only possible if the turbulent structures (i.e. puffs) have a comparable size with the 

width of the field of view, condition that in general is fulfilled. Considering typical puffs dimension, 

the error connected to this aspect is very small. Subtracting the line average allows to correct the 

velocity fluctuations as well as the pump fluctuations. 

In Trip et al. [2] studies the measurements for the unsteady flow case are conducted over a range of 

mean Re numbers 𝑅𝑒𝑚 for a single velocity amplitude (i.e. 𝑅𝑒𝑜 ≈ 610) and four different 

Womersley numbers (𝛼 ≈ 10 − 25).  The measurements of their studies are reported in table 1 and 

figure 6. 

 

Table 1: Measurements of unsteady pulsatile flow, f is the frequency of pulsation, Tt is the frequency of the measurements, 
u'/D is an estimate of the reciprocal value of the turbulence integral timescale [2] 

From figure 6 it is evident that no clear differences can be observed for the different pulsatile flows, 

reason why a single fit is plotted. This confirms that the influence of pulsation is limited to 

Womersley numbers below 10, as reported by Stettler and Hussain [4]. The intensity graph has a s-

like shape, which resembles the graph of the intermittency as a function of Reynolds number, 

reported as well by Yellin [5] with flow visualization. This seems to confirm the idea [2] that the 

increase in puff number causes the smooth increase in turbulent intensity.  

 

Figure 6: Turbulence intensity at centreline as function of mean Re for five different Womersley numbers [2] 

Within the transitional range of Reynolds number, the influence of different values of  𝑅𝑒𝑚 on the 

turbulence intensity is analysed (figure 7). A single spike in the turbulence intensity is observed for 

𝑅𝑒𝑚 = 2232 at 𝑡/𝑇 ≈ 8, whereas for the rest of the observation the intensity is zero (laminar flow). 

Increasing the mean Reynolds number, the number of spikes increases along with the persistence 
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in time of the turbulence intensity. At 𝑅𝑒𝑚 = 2761 the intensity is around 3% for the entire 

observation (fully developed turbulent flow).  

The observed spikes are due to inlet conditions and indicate the presence of a turbulent puff. From 

table 1 it is evident that a puff is captured in more instantaneous velocity fields for higher 

Womersley numbers. Differently from the steady case, for the unsteady cases the total 

measurement time is longer than the survival time of the individual puff. [2] 

 

Figure 7: Turbulence intensity as function of t/T for four different mean Re, oscillatory Re of  610 and Womersley number of 25 
[2] 

The presence of puffs is confirmed by visualization using Iriodin flakes (figure 8). For both steady 

and unsteady transitional flow, a series of images is recorded with 10 Hz of frame rate, with the aim 

of capturing the passage of a puff. For both cases, the typical structure of a puff is recognizable in 

figure 8: conical tail of turbulence at the centreline downstream side of the puff and initial 

turbulence at the wall at the upstream side. 

The figure allows some considerations on velocity fluctuations in radial direction as well (measured 

with PIV). The velocity data appears to show a smaller puff, but this is caused by large velocity 

fluctuations in the core of the puff, compared to the ones in its downstream tail. [2] 

 

 

 Figure 8: Visualization of a puff for unsteady (A) and steady (B) flows. Velocity fluctuations in radial 
direction (C). Phase-locked regime (D). Flow direction is from right to left. Horizontal axis is 

compressed in relation to vertical axis [2] 
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Considering a fixed mean Reynolds number 𝑅𝑒𝑚 ≈

2700, the influence of oscillatory Reynolds number is 

analysed (figure 9). Apparently, the turbulence 

intensity increases with 𝑅𝑒𝑜, but it must be 

considered the fact that the temperature was not 

constant during the measurements, leading to a slight 

increase in 𝑅𝑒𝑚. This causes the increase in intensity. 

Therefore, the turbulence intensity is not a function 

of the oscillating Reynolds number, which suggests 

that the transition behaviour is not influenced by it as 

well. [2] 

 

 

 

3.4 Phase-Locked turbulence 

Always according to Trip and al. [2] work, the phase-locked turbulence is a completely 

different phenomenon from the random occurrence of puffs. A good explanation of this event is 

that the entire flow bursts into turbulence and then partially relaminarizes. The parameters of the 

two measurements are reported in table 2. In general, up to a Womersley number of 25, phase-

locked turbulence is expected for mean Reynolds above 2700 and oscillatory Reynolds above 1400. 

 

Table 2: Measurements of unsteady pulsatile flow [2] 

     

Figure 9: Turbulence intensity as a function of 
oscillatory Reynolds number [2] 

Figure 10: u' and v' as function of time over the radial 
position r (R pipe radius), Rem=4000, Reo=1610, Wo=15 [2] 

Figure 11: u' and v' as function of time over the radial position 
r (R pipe radius), Rem=5000, Reo=4000, Wo=20 [2] 
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To understand the occurrence of turbulence of the phase of pulsatile flow, a look at turbulence 

characteristics over the pipe radius as function of phase is needed (figure 10 and 11). 

For both cases a small bump is shown around r=3/4R, caused by reflection of light in the raw PIV 

images and that can be slightly reduced with image background reduction. The magnitude of the 

turbulence fluctuations near the centre is comparable. Near the wall it starts to increase at 

maximum acceleration: this increase continues until maximum deceleration is reached. This is 

consistent with the concept of transport and is also observed for radial component, which increases 

as the axial velocity fluctuations increase towards the centre. 

For the intensity of the entire pipe, the turbulence intensity is integrated over R, the pipe radius. 

What is observed is that the intensity decreases during the accelerating phase and increases during 

the deceleration (figure 12 and 13). Just before the deceleration stops, a maximum is reached and is 

then followed by a constant phase. Both cases confirm that the turbulence intensity maintains the 

same phase lag of the velocity. Reasons behind this behaviour might be that during deceleration 

the flow has inflection points in the velocity profiles, condition that probably leads to unstable flow. 

 

 The possibility of relaminarization during the acceleration probably depends on the oscillating 

frequency, since it takes some time for turbulence to decay. For the cases examined here, the flow 

does not completely relaminarize. This can be explained by the turbulence integral timescale, 

which is of the same order of magnitude as the frequency of the pulsation (table 2). Simply stated, 

there is not enough time for turbulence to decay completely. 

 

3.5 Transition to turbulence experiments 

In this section the experiments concerning transition to turbulence and puffs survival 

lifetime, conducted by Xu et al. [1], are reported. The experiments were carried out in straight rigid 

pipes with a circular cross section. The various set-ups differed in the pipe diameter and length. 

Defining the measurement length as the distance between the perturbation and the measurement 

point, so without considering the entrance length, there are three different set-ups.  

 

Figure 12: Turbulence intensity as function of time for 
Rem=4000, Reo=1610, Wo=15 [2] 

Figure 13: Turbulence intensity as function of time for 
Rem=5000, Reo=4000, Wo=20 [2] 
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3.5.1 Experiments set-ups 

The first one is composed of five glass tubes for a total length of 5.5 m, with inner diameter 

of D=10±0.01 mm. The dimensionless length is thus 550D (actual measurement length is 330D). 

The second set-up involves acrylic tubes with inner diameter of D=7.18±0.o2 mm and 

measurement length of 1300D. For the third case the pipes are again glass made (D=4±0.01mm) 

with the measurement length of 2250D. For all these cases, the various segments that formed the 

pipe were carefully aligned and a seamless fit was guaranteed. 

The pipe is connected to a reservoir via a trumpet-shaped convergence section (figure 14). The end 

of the pipe is connected to a Pneumax piston, 1.2 m long with a diameter of 40 mm, pulling the 

water through the pipe. The piston is connected to a linear traverse (HepcoMotion PSD120) moved 

by a stepper motor (Dunkermotoren BG65PI).  

The piston speed was controlled via a PC and was sinusoidally modulated to produce a pulsating  

flow. For the entire parameter regime under investigation the pipe flow was laminar unless being 

disturbed. The quality of the pipe facility was tested carrying out some PIV (particle image 

velocimetry) measurements for a pulsating flow at Reynolds number of 2000, Womersley number 

of 5, amplitude of 0.4 and absence of perturbation; these tests were in fully agreement with 

analytical predictions for laminar pulsating pipe flow. To create disturbances, a brief injection of 

fluid through a 1 mm hole in the pipe wall is needed. The ratio of the injection and pipe flow is 

around 2%, that allows the generation of a single puff at the injection point.                                         

To obtain a single puff (general length of 20D), the duration of injection is adjusted depending on 

the Womersley number to cover a specific phase of the sinusoidal motion. It was observed that 

variations in the phase of the injection turned out to have almost no effect on the transition 

threshold. On the other hand, the injection duration is relevant as long durations lead to multiple 

puffs.                                                                                                                                                                     

For visualization purposes, the water contained particles (fishsilver) and a light sheet and a camera 

were positioned at a distance L downstream from the perturbation point. The resulting images 

allow to distinguish immediately between laminar and turbulent flows (figure 15). Puffs as well are 

readily detectable by a change in the average grey scale level or by monitoring spatial fluctuations. 

  

Figure 15: Flow visualization images for laminar and turbulent flows [1] 

3.5.2 Results and discussion 

The parameters ranges used to perform the experiments are the following: Womersley 

numbers 1.5≤α≤22, amplitudes 0≤A≤0.7 and Reynolds numbers Re<3500 (the Reynolds numbers 

are calculated considering the steady component of the velocity). The flows appear laminar as long 

as they are not disturbed (figure 16a), but localized patches of turbulences can be detected for large 

enough Re (figure 16b). For fixed combinations of (α, A), the Reynolds number was varied to find a 

Figure 14: Sketch of the experiments set-up [1] 
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regime with strong perturbations enough to result in turbulent puffys. The probability of puffs 

survival over a fixed distance was then determined, as a function of Re. For individual puffs the 

 

Figure 16: Visualization samples of laminar flow observed in absence of external perturbations (a). When perturbed 
upstream, turbulence could be excited locally (b). From top to bottom the values of Re are: 3100, 2800, 2500,2500,2500. Flow 

from left to right [1] 

survival probability is defined as the ratio of number of survival cases and total number of runs (for 

each Re 150 runs were carried out). In steady pipe flow, the probability of surviving for a time t is 

only a function of Reynolds number: 𝑃(𝑅𝑒, 𝑡) = exp [−(𝑡 − 𝑡0)/𝜏(𝑅𝑒)] with 𝜏 is characteristic 

lifetime of a puff, 𝑡 is current timing of the experiment and 𝑡0 is the time for the initial formation of 

a puff (𝑡0 is measured to be around 100𝐷/𝑈). For a steady flow rate, survival probabilities are fully 

in agreement with Hof et al. 2008 experiments (red circles and black solid curve in figure 17a). The 

survival probability increases with Re, following a S-shaped curve. The probability P=1 is only 

asymptotically approached. The S-shaped curve is followed also at fixed amplitude A=0.4 and 

variable pulsation frequency. For low Womersley numbers the S curves are shifted to the right, 

resulting in a higher Re to observe puffs of appreciable lifetimes. For large Womersley numbers, 

survival probabilities are close to the steady pipe flow case and are unaffected by flow pulsation. 

The measurements at lower Womersley numbers had to be carried out in the set-ups with longer 

pipes, to guarantee a full oscillation cycle to puffs. Data show that transition thresholds keep 

increasing with decreasing Womersley numbers, even though there is a slow down for 𝛼 < 2.5 

(figure 17b). 

  

Figure 17: (a) Survival probability of individual puffs, as a function of Re, fixed A=0.4; (b) Reynolds number in function of Wo, 
for P=0.5 [1] 

The influence of the pulsation amplitude on transition was also tested: the experiments were 

conducted with fixed pulsation frequency and variable A. the S-shaped curves appear shifted to 

higher Re and the transition delay increases with pulsation amplitude (figure 18a).  For all the four 

frequencies tested, the transition threshold increases monotonically with pulsation amplitude 

(figure 18b). The transition delay is more evident for low frequencies (low 𝛼), whereas for large 

frequences the increase with amplitude is moderate. 
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Figure 18: (a) Survival probability of puffs with variable pulsation amplitudes. (b) Reynolds threshold values as a function of A 
[1] 

To sum up the results, puffs are the first turbulent structures that are generated in the subcritical 

regime of pulsatile pipe flow, and their lifetime provides an accurate measure of the transition 

threshold. The experiments conducted by Xu et al. lead to the idea that the transition to turbulence 

in pulsating pipe flow can be divided into three regimes:                                                                                                                              

(i) For 𝛼 > 12 (large frequency limit) the transition threshold is unaffected by flow pulsation: rate 

changes are too fast for turbulence to react.                                                                                                                

(ii) For 𝛼 < 2.5 the changes of Re are sufficiently slow for the generation of turbulent structures 

and their lifetime can be predicted by quasi-steady assumptions. During the faster part of the cycle, 

Re drops and turbulence reduces to puffs: it is a critical condition for the survival of turbulence.           

(iii) In the intermediate regime (2.5 < 𝛼 < 12), the transition threshold adjusts smoothly between 

the two limits. 

 

3.6 Nonlinear hydrodynamic instability experiments  

In this section further experiments conducted by Xu et al. [14] are reported. A nonlinear 

instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow 

rates is investigated. This scenario, characterized by shear stress fluctuations and flow reversal at 

each pulsation cycle, can affect blood vessels and thus be the responsible for a variety of 

cardiovascular diseases. The inner lining of blood vessels, the endothelium, is particularly sensitive 

to shear stresses.  

The experiments were carried out in a rigid straight pipe with a diameter D of 7mm and a total 

length L of 12 m. The fluid was pulled through a piston, with a resulting set-up similar (figure 19) to 

the previous experiments. The piston was sinusoidally modulated. 

 

Figure 19: Sketch of the pulsatile flow set-up [14] 
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3.6.1 Helical instability 

The first part of the experiments concerned puff turbulence, giving results in accordance 

with chapter 3.5: at sufficiently large Re all puffs would survive, with the puff transition depending 

on the pulsation amplitude (figure 20).  

When the pulsation amplitude surpasses 0.7, the puff trend stops, and the transition threshold 

moves to lower Re (measured on the mean flow speed). Instead of puffs, a regular, helical vortex 

pattern appears. This structure, unlike puffs, does not depend on the injection of a jet, but develops 

at a fixed pipe location during each cycle in the deceleration phase, and then decays during 

acceleration. With a further increase in the pulsation amplitude, the threshold moves to lower Re 

(figure 20). The instability branch can be continued also for lower amplitudes (A<0.7): puffs are 

not trigged, but instead the Reynolds number is increased up to the point where the helical 

instability appears naturally.  

 

Figure 20: Threshold for the onset of puffs is the red dotted line. That for the onset of the helical wave instability is given by the 
green one. Fixed Wo=5.6. The black curve shows the linear instability threshold which sets in at much higher Re than 

discussed [14] 

 

An inspection of the pipe showed that the pipe segment upstream the helical wave instability was 

slightly bent. By realigning the pipe, the instability switched to larger Re, while increasing the 

misalignment moved the threshold at lower Reynolds numbers.                                                                        

A comparison of puffs and helical instability is conducted at the same parameter values (Re, Wo, A) 

= (2200, 5.6, 0.85) and during the deceleration phase. In one case the pipe was aligned, and a puff 

was generated by an upstream injection perturbation; in the other case no puff was triggered, and 

the flow was perturbed by the upstream bent segment pipe. What happened is that the puff spreads 

in the downstream direction, while the upstream interface remains in the same location, whereas 

the helical instability spreads both down- and upstream (figure 21). This means that the helical 

instability is of absolute nature during a cycle phase, while a puff remains convective. The types of 

disturbance that trigger the helical instability are thus different from those triggering puffs. 
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Figure 21: Visualization of transition to turbulence in pulsating pipe flow. (a) Evolution of a puff. (b) Evolution of helical 
instability [14] 

The considered misalignment is only a fraction of the pipe diameter: in the cardiovascular system 

all blood vessels have deviations from the ideal straight pipe case of that order or larger. Another 

experiment was carried out with a shorter pipe segment but more strongly curved: the instability 

occurs at way lower Reynolds numbers and the threshold decreases with the amplitude. These 

results lead to think that the helical instability is a result of a perturbation of finite amplitude, like 

the instability to turbulence in steady flow. For the transition in steady pipe flow the threshold is 

double: Re and amplitude of the perturbation must be large enough. For helical instability it is 

triple: Re, amplitude of the perturbation and of the pulsation must be sufficiently large. 

3.6.2 Blood flow 

For these experiments, blood is used as the 

working fluid: it has non-Newtonian properties and is a 

dense suspension of blood cells (red blood cells are 40% 

of the volume fraction). The set-up is scaled down, 

consisting of a pipe diameter of 4 mm. To trigger 

turbulence, a curved section was introduced 185D from 

the pipe inlet. Blood is opaque, which doesn’t allow to 

observe directly the flow structure: for this reason the 

differential pressure downstream the curved section is 

monitored. Like Newtonian flows, blood as well 

becomes unstable during the deceleration phase, with a 

considerable drag increase at 20D downstream the 

segment. During the acceleration the flow stabilizes 

again and returns to laminar conditions. The transition 

to turbulence for blood flow (orange symbols in figure 

22) occurs at lower Reynolds number than for water 

flows. For pulsation levels typical of the aorta 

(pulsation amplitude around 0.94), the Re threshold is 

around 800, way lower than the assumed 2000. 

3.6.3 Lumen constriction 

The cross sections of blood vessels are far away from the idealized circular case: protrusion 

may arise during wound healing or stenosis formation. It is thus important to study if helical 

instability can occur in such conditions.  The curved pipe segment is replaced by a straight section 

with a local constriction in the form of a spherical cap (up to D/4 in height). Helical pattern was 

found in this experiment during the deceleration phase (for W0=5, A=0.85 and increasing Re). The 

helical wave was first observed at 40D downstream the spherical cap, and then spreads going from 

35D to 55D. The robustness of the helical instability was tested by changing the waveform of the 

pulsating flow: the sinusoidal profile was replaced by the typical waveform in the aorta. The helical 

instability was observed again during deceleration and the flow relaminarized again as the flow 

accelerates. 

Figure 22: Onset of instability as a function of 
pulsation amplitude for water and blood. Red 
circles, Wo=5.6; green triangles, Wo=5.6; blue 

squares Wo=5.9; orange Wo=4 [14] 
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3.7 Further aspects 

In this section, some interesting aspects characterising pulsating pipe flow in the transition 

to turbulence are examined. 

3.7.1 Recirculating fluid 

Recirculating flow is a phenomenon that can occur in pulsatile conditions: it is 

characterized by a region of separation featuring retrograde flow, increased mixing and trapped 

fluid parcels. A Lagrangian approach to the pulsatile flow behaviour is here reported, with 

specifical reference to the Jeronimo and Rival [19] work on the lifespan of recirculating 

suspensions. Experiments are conducted for pure liquid and suspensions with volume fractions of 

Φ=5%, 10% and 20%. Lagrangian tracking and pathline extension techniques are used to quantify 

the depletion of the recirculating region, by analysing the trajectories of individual fluid parcels. 

Pulsatile flows with a varying concentration of hydrogel beads are compared at mean Reynold 

numbers of 4800, 9600 and 14400, while Strouhal numbers of 0.04, 0.08 and 0.15 and amplitude 

ratios are systematically varied. A so-called ‘depletion efficiency’ is calculated for each test case. 

In Jeronimo and Rival study, an idealized 

stenosis geometry is used to generate a 

large recirculating region within which 

the depletion efficiency of pulsatile flow 

is investigated. What happens for a 

pulsatile flow is that a vortex ring is 

generated, then grows, propagates and 

sheds, thus creating a recirculating zone. 

The depletion efficiency was evaluated 

with a set-up (figure 23) including the 

flow loop and idealized stenosis model (to 

ensure that turbulent flow conditions are 

fully developed, the onset of the pipe’s constriction is located 60D downstream the nearest corner). 

The working fluid was pumped from the reservoir with a programmable circumferential piston 

pump, controlled using LabView. Two-dimensional particle tracking velocimetry (2D PTV) was 

performed in a 1m long acrylic pipe with D=7.6cm housing the constriction, consisting in a 50% 

reduction of the diameter (reduction of 75% of the area). A high-speed complementary metal oxide 

semiconductor camera recorded the flow exiting the throat of the stenosis, with a frame rate up to 

2000 Hz. Lagrangian particle tracking of the liquid phase was performed in the downstream region 

by seeding the working fluid with neutrally buoyant 55 μm polyamide tracer particles (LaVision 

1108947). These particles are assumed to reliably follow the motion of the liquid.  

The results of this study show a substantial increase in depletion efficiency when pulsatility is 

introduced (figure 24), at all Reynolds number investigated. The primary depletion mechanism for 

pulsating flows is a periodic vortex, generated during the initial acceleration of each pulse. These 

vortex structures entrained and displaced large volumes of fluid and grow in strength with 

increasing amplitude. Strouhal number has no influence on the amount of the vorticity gained by 

fluid parcels, but high Strouhal number flow increases the depletion efficiency by a more frequent 

generation of vortices. This trend applies for both pure-liquid and suspension flows.  

To sum up, for what concerns the prevention of accumulation of trapped fluid within a 

recirculating region, the pulsatile flow is more advantageous than the steady flow. 

Figure 23: Cross sectional slice, showing the stenosis model [19] 
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Figure 24: Fluid parcels in the measurement domain are categorized according to their source and trajectory. Vortex 
formation and shedding is evident for pulsatile flow (on the right) and absent for steady flow (on the left). Both flows are 

compared at Re=4800, over the same length of time [19] 

3.7.2 Transport phenomena 

The second aspect concerning turbulent pulsatile flows that is here examined is the one 

about the transportation mechanism of single solid particles in pulsating pipe flow. The work by 

Fujimoto et al. [20] investigates this topic, with the aim of understanding how the pulsating nature 

of the flows influences the motion, distribution and overall phenomena of solid particles. Their 

study employs both experimental and theoretical approaches to achieve a comprehensive 

understanding of these topics. In particular, the experiments were carried out with a vertical lifting 

pipe made of transparent plastic, of a total length of 2870mm, inner diameter varying from 18 to 

22 mm. The working fluid was water at room temperature, and it was supplied at the bottom of the 

lifting pipe: as a result, it flows upwards, discharging at the top, and then returning at the reservoir. 

Pulsating flow is generated with an electromagnetic valve, that dictates how water is supplied by 

being controlled with a digital timer. The solid particles used are spherical alumina particles with 

diameter between 3 and 5 mm. The data is collected through two digital cameras that record 

particles motion. The experimental data and the numerical simulations resulted into three main 

aspects: 

(i) the particle is lifted upward along the pipe wall in steady upward flows because of the 

vertical velocity profile of the liquid in radial direction. In pulsating upward flows, the 

particle has an up-and-down motion. Because of the occurrence of reverse flow near the 

pipe wall, the particle was located near the pipe wall and then near the centre axis; 

(ii) the numerical simulations revealed that the liquid velocity profile is almost flat near the 

centre axis in pulsating pipe flow with small 𝐶𝑟𝑎𝑡𝑖𝑜 (ratio of constant volume flow rate to 

the total volume flow rate, values between 0 and 1; if 𝐶𝑟𝑎𝑡𝑖𝑜=1 the flow is steady). With 

increasing 𝐶𝑟𝑎𝑡𝑖𝑜 the flow approaches steady-state distribution; 
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(iii) the critical minimum flux for transporting single particles depends on the pulsating 

pattern. 

Figure 25 shows the typical motion of an alumina particle in a steady flow and in a pulsating 

upward flow. 

  

Figure 25: Typical motion of an alumina particle in a steady flow and in a pulsating upward flow [20] 

3.7.3 Time-delayed characteristics 

 A study was conducted by Xu et al. [17] to investigate time-delayed characteristics of 

turbulence in pulsatile pipe flow, using direct numerical simulations. The topic of interest is the 

paradoxical phenomenon where the amplitude of the oscillating wall shear stress in turbulent flow 

is smaller than in laminar flow under same pulsation conditions. The focus is on the temporal 

variations of wall shear stresses and flow dynamics to provide insights into the delayed response of 

turbulence in the buffer layer, that suggests a turbulence-induced drag reduction opposite to that 

in the steady flow. This delay in response plays a crucial role in reducing the amplitude of the wall 

shear stress in comparison to laminar stress. 

It is shown that the delayed response of turbulence in the buffer layer generates a large magnitude 

of the radial gradient of the Reynolds shear stress near the wall, counteracting the effect of the 

oscillating pressure gradient and thus reducing the amplitude of the wall shear stress. This delayed 

response consists of two processes: the delay in the development of near-wall streaks and the 

subsequent energy redistribution from the streamwise velocity fluctuation to the other two co-

existing components. An examination of the energy spectra reveals that the near-wall streaks are 

stretched in SW direction during acceleration phase, and then break up into small-scale structures 

in the deceleration phase, along with an enhanced dissipation transforming the turbulent kinetic 

energy into heat. 
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Figure 26 depicts the temporal evolution of instantaneous space-averaged wall shear stress 𝜏𝑤: the 

red solid lines represent the laminar values. Four different cases are reported: (a) and (b) low-

amplitude cases (A=0.1), (c) and (d) high-amplitude cases (A=0.4). For low-amplitude cases all the 

curves are evenly dispersed, while for high-amplitude cases local scattering of the curves can be 

observed. Such a localized scattering of the wall shear stress curves indicates that the delayed 

response of turbulence in the drag-reducing phase is an intense event, characterized by 

randomness as well. The higher the pulsation amplitude, the more intense the turbulence response. 

 

Figure 26: Temporal evolution of instantaneous space-averaged wall shear stress [17] 

3.7.4 Effects of waveform 

Moron et al. [16] carried out some experiments to study the effects of waveform on the 

transition to turbulence. The approach to study these effects starts with the definition of the 

waveform itself, 

which is done by 

fixing only tree 

parameters. First, 

six control points 

(black stars in 

figure 27) are 

defined, giving an 

idea of the 

skeleton of the 

generic waveform. 

The position of 

these points is 

linked to the three 

key parameters 

(𝑡𝑎𝑐, 𝑡𝑑𝑐 and 𝑡𝑚), that are independent from the mean velocity and don’t affect it at all. A cubic 

spline is then defined so to capture the position of the control points.  

Figure 27: Definition of the generic WF: temporal evolution of the bulk velocity over one pulsation period. 
The black stars denote the six control points; the solid lines represent the 30 Fourier mode approximation 

of the spline that passes through these points [16] 
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Four different waveforms were defined in the experiments. They are all characterised by an 

acceleration phase, with a slope set by the parameter 𝑡𝑎𝑐 (note that the total duration of the 

acceleration is 2𝑡𝑎𝑐 long). The bulk velocity remains in a high-velocity phase for the time span 𝑡𝑚 −

𝑡𝑎𝑐 − 𝑡𝑑𝑐. Then the pulsation enters a deceleration phase, where the slope is again linked to the key 

parameter 𝑡𝑑𝑐 (total duration of acceleration is 2𝑡𝑑𝑐). The bulk velocity now enters a low-velocity 

phase for the rest of the period 𝑇. The parameter 𝑡𝑚 also sets the maximum 𝑅𝑒 of the flow as 

𝑅𝑒𝑚𝑎𝑥 = 𝑅𝑒
𝑇

𝑡𝑚
. For 𝑡𝑚 = 𝑇/2 the waveform is symmetric and the high- and low- velocity phases 

have the same duration. 

From the experiments of Moron et al. it was found that the helical perturbations, reported in 

section 3.6, are linked to the instantaneous linear instability of the laminar velocity profile in 

pulsatile pipe flow. This instability is due to the presence of inflection points in the laminar profile 

and their characteristics. Moron er al. found that for the instability to grow, two requirements must 

be fulfilled. The first one is the existence of inflection points that satisfy the Fjørtoft criterion and 

instantaneously make the laminar profile unstable for a sufficiently long fraction of the period. This 

requirement is satisfied for Wo>3 and A>0.5. The second is that the laminar profile evolves slower 

than the perturbations, which is satisfied for Wo<17. In the range of Re investigated, these two 

requirements mean that the laminar profile is highly susceptible to the growth of the perturbations, 

during the fraction when inflection points occur. This happens typically during the deceleration 

phase, when the helical perturbations present an outstanding energy growth.  

The waveform of the pulsation can change the characteristics of such inflections point, in particular 

their lifetime and radial span. For waveforms with longer low-velocity phases (smaller 𝑡𝑚) , the 

inflection points have a longer lifetime, thus resulting in more time for the perturbations to grow. 

In addition, the more abrupt the acceleration and the deceleration are (smaller 𝑡𝑎𝑐 and 𝑡𝑑𝑐), the 

higher the chances for perturbations to grow. This has a result that by simply knowing the 

waveform and the flow parameters, it is possible to estimate the growth of perturbations for a 

certain pulsatile pipe flow, with no need of computing the velocity profiles.  

The waveform also influences the turbulence survival once the turbulence is triggered. In contrast 

to what was found for the role on the perturbation growth, flows driven by waveforms with small 

𝑡𝑚, 𝑡𝑎𝑐 and 𝑡𝑑𝑐, promote turbulence decay. This suggests that, in the non-linear regime, the 

waveform has additional effects, e.g. waveforms more susceptible to perturbations growth are more 

prone to cause relaminarisation once the flow is turbulent. 
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4. Transition of pulsatile flow under different 

configurations 
In this chapter the transition to turbulence of pulsatile pipe flow is still examined, but for 

configurations differing from the ideal straight, circular pipe, that was investigated in the previous 

section. Some of the configurations here presented have already been slightly discussed above, but 

here are studied with a deeper look. In particular, the influence of the following factors is 

examined: constricted pipes, curved pipes, compliant walls and roughness. Their discussion is 

treated with a constant reference to cardiovascular flow and possible medical applications. But 

first, an introduction on blood flow behaviour in arteries [21] and the influence of turbulence on it 

are presented. 

 

4.1 Cardiovascular system and turbulence  

The cardiovascular system has two primary functions: nutrient and waste transportation 

throughout the body. The blood is distributed through a network of vessels. The arteries adapt to 

varying flow and pressure conditions by enlarging or shrinking depending on the hemodynamic 

demand. Blood, being a complex mixture of cells, proteins, lipoproteins and ions, is very viscous, 

approximately four times more than water. As already mentioned in section 3.6.2, blood does not 

exhibit a constant viscosity at all flow rates and is especially non-Newtonian in the microcirculatory 

system. However, in most arteries, blood behaves in a Newtonian way: the viscosity can be 

assumed constant (4 centipoise).                                                                                                                       

Blood flow and pressure are unsteady. The cyclic nature of heart pump creates pulsatile conditions 

in the vessels: the heart ejects and fills with blood in alternating cycles (systole, when blood is 

pumped out, and diastole, no blood is ejected). Pressure and flow have specific pulsatile shapes 

that are different in the parts of the arterial system. The blood pressure is pulsatile in most arteries, 

without going to zero during diastole. In some arteries, the flow can be zero or even reversed 

during diastole. The typical Reynolds number range of blood flow in the body varies from 1 in small 

arterioles to approximately 4000 in the aorta, the largest artery. Reynolds number and Womersley 

number are good parameters to understand blood flow, even though they do not consider certain 

features of biological flows: vessel wall elasticity, non-Newtonian viscosity, slurry particles, body 

forces and temperature.                                                                                                                                      

Several pathologies may arise from an 

excessive or uncontrolled response to a 

hemodynamical stimulus. Long-term 

hypertension produces a generalized medial 

thickening of blood vessels. Thick and stiff 

arteries restrict blood flow and do not 

respond to the normal physiologic 

fluctuations in blood flow. Stenoses may 

arise and occlusion may happen, especially 

in small diameter vascular grafts. High 

shear conditions may overstimulate platelet 

thrombosis, causing a total occlusion. If 

vascular grafts are too large in diameter, 

wall shear stress is abnormally low, and an 

intimal thickening may be stimulated 
Figure 28: Atherosclerotic intimal thickening vs wall shear stress in 

human carotid arteries [21] 
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(figure 28). Atherosclerosis forms over decades in localized sites of some arteries, where the mean 

wall shear stress is very low, oscillating between positive and negative directions.  

Turbulent pulsatile flow can lead to one of the most catastrophic diseases that can affect the Aorta: 

aortic dissection, which is the combination of a tear in the inner layer of the aortic wall 

communicating with a false channel (dissection) cleaved through the media layer of the aortic wall. 

Tear and dissection appear in the aorta when the stresses on the wall rise beyond the elastic limit. 

With numerical simulations it is possible to predict what conditions determine the level of 

dissection that will occur. Results from the study of Khanafer and Berguer [22] on aortic wall 

dissection are here reported. They investigated a FSI (fluid structure interaction) model within a 

three-layered aortic wall under turbulent pulsatile flow condition as related to aortic dissection. 

When the bulk flow starts to decelerate, the 

velocity in centreline of the lumen 

decreases as well until the flow is reversed. 

It is accepted that the intimal tear occurs 

when the stress on the wall during the 

cardiac cycle exceeds the mechanical 

failure strength of the wall. The effect of 

flow dynamics on the aortic wall stress 

distribution is investigated in terms of Von 

Mises stress. 

 

As shown in figure 29, the stress 

distributions are discontinuous at the 

interface between layers because of the 

difference in the mechanical properties: the jump in the stress value between intima and media 

layers is higher than media and adventitia (the external one) layers. The stresses are highest in the 

media layer and lowest in the intima layer. 

Turbulence kinetic energy and frequency are maximum at peak flow condition and are confined to 

a narrow region along the wall of the lumen. Cyclic turbulent stresses in flowing blood may cause 

damage to red blood and endothelial 

cells. The smallest turbulent eddies, 

which are a function of the kinematic 

viscosity of blood and turbulent 

dissipation rate, can mechanically 

damage the blood cells and the 

components of the arterial wall.                                                                                                  

The numerical approach also showed that 

the difference in the elastic properties of 

different layers of the aorta wall may 

contribute to the occurrence of dissection 

in the media layer, where the wall 

stresses are larger. Figure 30 shows that 

as the elasticity of the media layer 

increases, wall stress increases. Peak Von 

Mises stress is found to increase by 6% at 

peak flow condition, from E=6MPa to 

E=8MPa. 

Figure 29:  Variation of the Von Mises wall stress across the wall 
of a descending aorta at various periods of the cycle [22] 

Figure 30: Effect of varying the elasticity of the media layer on the Von Mises 
wall stress distribution [22] 
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4.2 Constricted pipe 

Hemodynamics is a very important research topic for its implications in cardiovascular 

diseases. Atherosclerosis, in particular, is a disease that is characterized by the formation of 

plaques that narrow the arterial lumen, thus resulting in the hardening of the arteries. Localized 

atherosclerotic constrictions in arteries, known as arterial stenoses, are found predominantly in the 

internal carotid artery which supplies blood to the brain, the coronary artery which supplies blood 

to cardiac muscles, and the femoral artery which supplies blood to the lower limbs [25]. Blockage 

of more than 70% (by area) of the artery is considered clinically significant as it presents significant 

health risks for the patient: the narrowing of the coronary arteries can stop the profusion of blood 

to the lower parts of the myocardium and possibly lead to myocardial ischemia, myocardial 

infarction and sudden cardiac death [28]. Complete closure of the artery can occur if a blood clot 

becomes lodged in the stenosis, and this can lead to a stroke or a heart attack. Moderate stenoses 

should as well be monitored as they can have long-term health consequences. First, the presence of 

a constriction results in head losses which can reduce the blood supply through the artery and also 

impose additional load on the heart. It is found that these pressure losses are significant when the 

internal diameter is reduced beyond about 50%. Second, the fluctuations in the blood flow 

downstream of the stenosis can damage and weaken the internal wall (intima) of the artery. The 

variability in wall shear can prevent endothelial cells of the intima from aligning in the direction of 

the flow, thereby making the intima more permeable to the entry of harmful blood constituents. 

Fluid dynamics of post-stenotic flow also plays a key role in the diagnosis of arterial disease: 

periodic shedding of vortices downstream of the constriction causes arterial murmurs. Through the 

analysis of the sound spectra of the arterial murmurs it is thus possible to predict the severity of the 

stenotic occlusion. 

Direct numerical simulation and large-eddy simulation have been used to study pulsatile flow in a 

channel with a one-sided semicircular constriction over a range of Reynolds number from 750 to 

2000 [25]. Please note that channels have a similar behaviour to pipes. When subjected to pulsatile 

flow, the studied geometry reproducing stenosis produces complex turbulent flow, rich in vortical 

structures and large recirculating regions. The aim is to understand the dynamics of flows 

downstream of severe arterial constrictions. With a fixed Strouhal number of 0.024, along with the 

chosen Reynolds number, the blood flow in the larger arteries of the human cardiovascular system 

is simulated. Examination of the vortex dynamics indicates that the dynamics of the flow 

downstream is dominated by two shear layers, one of which separates from the lip of the 

constriction and the other from the lower wall. Mean flow and pressure distribution computed over 

a number of cycles indicate a relatively large mean recirculation region on the side of the 

constriction, and the size of it reduces with increasing Re.  There is a significant drop in the 

pressure across the constriction because of the increased mixing induced by the shear layers 

downstream of the constriction. The mean recirculating zones are associated with low values of 

skin friction. The mixing of these 

regions increases with increasing Re 

[26]. For what concerns these 

regions, it is interesting to measure 

particle residence time (PRT) [31].  

PRT is a path-dependent quantity 

that highlights regions of 

recirculation and stagnation by 

tagging fluid parcels in a Lagrangian 

framework. It is potentially an 

invaluable tool for a wide range of 

Figure 31: PRT is visually described by the particle pathline that enters a 
measurement domain (dashed box) at t1 and exits at tn. The pathline's 
colour represents the instantaneous growth of the particle's PRT as it 

remains in the domain [31] 
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fluid scales, including biomedical, environmental and industrial flows. For the medical field, PRT is 

of particular interest to study thrombosis growth and atherosclerosis. PRT is defined as the length 

of time a fluid parcel remains within a region of interest, normalized by the periodic motion of the 

flow, such that PRT = (𝑡𝑛 − 𝑡1)/𝑇 (T period of the unsteady waveform), in reference to figure 31. 

Figure 32 (multimedia view) shows the movement of fluid exiting the stenosing, at St=0.15 and 

λ=0.50, over a single pulse. The colour labels make a clear distinction between particles that form a 

jet exiting the stenosis throat and those that have slowed or changed direction in the recirculating 

region. With each pulse, a large influx of fluid circulates back into the domain from downstream, 

displacing low velocity particles. As figure 32 shows, during the initial acceleration phase of each 

pulse and at each mean Reynolds number, a large vortical structure forms, sweeping particles from 

the jet deep into the recirculating region. The creation of a vortex ring with each pulse is a 

fundamental feature of pulsatile flow through a stenosis (discussed also in 3.7.1). As the flow 

decelerates, the vortical structure rolls up and an influx of downstream fluid displaces high-PRT 

blue particles. As the mean Reynolds number increases, the fluid recirculating from downstream, 

does not penetrate as far toward the stenosis wall. As a result, there is less fluid flushed from the 

Figure 32: Trajectory-labelled particles at five phase angles compared at different mean Re. Particles are colored based on their 
trajectory over the recording time and how they interact with the shear layer and recirculating region. Jet flow from left to right [31] 
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domain with each pulse at high 𝑅𝑒𝑚 and there are more stagnant high PRT particles at the end of 

the cycle. To calculate the PRT, particle track lengths within the measurement domain are used. 

Figure 33 compares the instantaneous PRT, normalized by period, of pulsatile flow at each of the 

three mean Reynolds numbers, for the same values of figure 32 (the particles are the same). It is 

possible to differentiate between particles that remain within the domain (blue - high PRT), which 

are confined to the jet (black - low PRT) or are mixed into the recirculating region (red - dependent 

on flow conditions). The average PRT of particles remaining in the domain increases substantially 

with the Reynolds number. What also is observed is: a decrease in PRT with the increase of mean 

jet velocity; an increase in PRT with Strouhal number, at every combination of 𝑅𝑒𝑚 and λ; 

increased PRT correlated to augmented mixing from the jet into the recirculating zone and to 

increase amplitude ratio. These results suggest that elevated heart rates and strong velocity 

gradients, promote recirculation and stenotic growth. 

 

Figure 33: The same particles from figure 32 are labelled by their instantaneous PRT. The PRT grows as a particle remains in 
the measurement domain [31] 
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To sum up, in a pulsatile flow, the alternating phases of acceleration and deceleration promote 

particle flush out and stagnation, respectively, and result in shorter mean PRT. However, isolating 

the particles that have passed through the stenosis show more mixing across the shear layer and 

longer PRT in the unsteady case. 

Coming back to the general discussion about downstream flow of the constriction, in order to 

characterize its complex dynamics, flow variables must be decomposed into a phase average and a 

fluctuation. The phase average is directly associated with the flow pulsation, including the time-

mean and low-frequency portion of the variation. The fluctuation contains only the high-frequency 

portion. As the Reynolds increases, vortex structures become more energetic, leading to an increase 

in the turbulent kinetic energy. Another consequence is the increasing dissipation, that tends to 

diminish the turbulent kinetic energy faster for higher Reynolds number cases. By examining wall 

pressure fluctuations, it appears that the highest intensity occurs 3-4D downstream. In this region 

also the fluctuation of wall shear stress is the highest, thus having implications for the localization 

of arterial pathologies. The frequency spectra corresponding to the pressure fluctuations have 

reported that in the region occupied by the separated upper shear layer, the pressure spectra also 

exhibit a clear peak corresponding to the periodic vortex formation. Further downstream, the 

pressure spectrum indicates a break in slope at roughly the frequency corresponding to the 

characteristic frequency of the lower shear layer. Wall pressure fluctuation spectra show that there 

is a sharp break in the slope at a frequency corresponding to the shear-layer frequency. This has 

implications for the analysis of arterial murmurs. If the hypothesis that arterial murmurs are 

primarily caused by wall pressure fluctuations, then, according to these results, the signature of the 

shear-layer frequency should clearly be present in the frequency spectrum of the arterial murmurs. 

For what concerns transition to turbulence, the frequency spectra corresponding to the streamwise 

velocity indicate that even at the highest Reynolds number of 2000, the flow up to the region where 

the separated shear layers attach to the channel walls is at most transitional in nature. Downstream 

of this region, as the shear layer undergoes transition, the vortex structures associated with the 

shear layers experience complex interactions among themselves and the wall. This finally results in 

a turbulent flow which exhibits a well-defined inertial subrange, at least for the higher Reynolds 

numbers. At Reynolds number lower than 1000, no inertial subrange is observed, suggesting that 

in this range, there is never a full transition to turbulence. The influence of constriction on the 

transition to turbulence in pulsatile pipe flow is large. Constrictions induce high shear stress, 

vortex formation, flow separation, and instabilities, which interact with the oscillatory nature of 

pulsatile flow to promote early transition to turbulence. Understanding these mechanisms is 

crucial for applications in engineering and biomedical fields, where managing flow stability can 

help the design of systems and medical interventions. 

An experimental study of transitional pulsatile flow with stenosis was carried out using time-

resolved PIV and a MEMS wall-shear stress sensor, at mean Reynolds number of 1750 and 

Wo=6.15 by Ding et al. [29]. The stenosis was modelled by a sinusoidal function, representative of 

pathology specimens. The pulsatile velocity profile used is close to a patient-specific velocity 

profile, where the maximum velocity is found at t/T=0.06 (figure 34). The most of basic elements, 

if not all, of blood flow that are associated with the vascular disease can be found in such a simple 

flow configuration, which include the transition to turbulence, relaminarization, unsteady flow 

separation, shear layers, flow reattachment, recirculation regions and wall-shear stress 

fluctuations. At the start of the pulsatile cycle, a strong shear layer develops from the tip of the 

stenosis, increasing the flow separation region. The flow at the throat of the stenosis is always 

laminar due to acceleration, which quickly becomes turbulent through a shear-layer instability 

under strong adverse pressure gradient. At the same time, a recirculation region appears over the 

wall opposite to the stenosis, moving downstream in sync with the movement of the reattachment 
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point. The shear-layer weakens as the flow decelerates later in the cycle, which is accompanied by 

an upstream shift of the reattachment point. The behaviour of pulsating flow during the 

acceleration phase of both 25% and 50% stenosis cases is similar to that of the steady flow. 

However, the transition to turbulence is more dominant for the 50% stenosis. With an increase in 

stenosis to 75%, the accelerating flow is directed toward the opposite wall, creating a wall jet. The 

shear layer from the stenosis bifurcates: one moves with the flow separation region toward the 

upper wall; the other moves with the wall jet toward the bottom wall. The wall-shear stress always 

takes the maximum value at the throat of stenosis, although no fluctuations are observed there due 

to local flow laminarization. Immediate downstream of stenosis, however, the wall-shear stress is 

temporarily reduced as the stenotic flow is entrained into the flow separation region. Low wall-

shear stress fluctuations are found at two post-stenotic locations: one immediately downstream of 

the stenosis over the top wall (stenosis side) and the other in the recirculation region on the bottom 

wall (opposite side of the stenosis). The latter can only be found for the 25% and 50% stenosis. No 

recirculation region on the bottom wall is found for the 75% stenosis.  

 

Figure 34: Phase-averaged pulsatile flow at the mean Reynolds number of 1750 with 75% stenosis. Peak Reynolds number is 
3200 at t/T=0.06. The contour maps of streamwise intensity is presented here. Blue lines indicate flow separation and 

recirculating regions [29] 
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4.3 Curved pipe 

 Curved pipes influence as well turbulent pulsatile pipe flows, because of their unique 

geometry and the resulting flow dynamics. When a fluid flows through a curved pipe centrifugal 

forces have to be taken into account as they cause secondary flows, that are not present in straight 

pipes. The secondary flows appear as two counter-rotating vortices, thus overlapping the primary 

axial flow. The interaction between primary and secondary flows is very complex and leads to a 

variety of effects on the flow.  

One of the primary consequences of flow in curved pipes is the development of Dean vortices, 

named after W.R. Dean (1896-1973). This type of 

vortices arises because of the centrifugal force on the 

fluid flowing through the curve, causing fluid particles 

near the pipe wall to move radially outward and those 

near the centre to move inward (figure 35). The result 

is a pair of counter-rotating vortices, causing 

alterations in the velocity profile. The core is 

surrounded by a thin Stokes layer on the wall (figure 

36) [38]. If the curvature is significant, the axial 

velocity distribution is entirely altered by the 

secondary flow, and a considerable increase in 

resistance is observed. The extent of the above inviscid 

core increases with further increase in the Womersley 

number. This secondary flow increases the complexity 

of the turbulence within the pipe, by interacting with 

the oscillatory nature of the primary flow. This 

interaction may lead to an increase in turbulent 

intensity and energy dissipation, especially during the deceleration phase, thus increasing the 

likelihood of transition to turbulence. The pulsatile nature of the primary flow can amplify the 

centrifugal effects: the consequence is a more pronounced secondary flow and greater mixing.                                                                                                 

An additional difference from straight pipes is that separation and reattachment points in curved 

pipes: in this last case, flow separation occurs generally at the outer wall of the bend because of the 

adverse pressure gradient that the centrifugal forces 

induce. The flow reattaches further downstream, 

generating recirculation regions and complex vortical 

structures. These regions create difficulties in 

determining overall pressure drop and energy losses. 

Experimental results show that essentially fully 

developed conditions for oscillatory flow in curved 

pipes are achieved within about 90° through the 

curve, while for large Womersley numbers, regions 

with strong secondary streaming are observed at the 

inlet of the curved section. 

The influence of curved pipes on the transition to turbulence of pulsatile pipe flow is still an 

unexplored area [33]. It was shown that the flow in a curved pipe can remain laminar for 

substantial higher values of the Reynolds number, compared to a straight pipe. This is because the 

curvature has a stabilizer effect on the flow. 

Moving to the context of biomedical applications, curvature of arteries, accompanied by pulsatile 

blood flow, may result in the development of disturbed flow patterns, typically involved in the 

Figure 35: A schematic of the Dean vortices as 
sectional streamlines [38] 

Figure 36: Schematic diagram of the streamlines in the 
plane of the cross section [38] 
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development of atherosclerosis. This disease forms in regions with low wall shear stresses, 

characteristic of the segments downstream of curved and bended arteries. On the other hand, 

localized zones of high shear stress can also occur, resulting in mechanical damage to endothelial 

cells of the arteries, leading to other vascular diseases. 

Figure 37 [33] shows the contour plots of the velocity fields obtained through reconstruction, with 

cross section 0.2D, Re=24000, W0=41, γ=0.4 (defines curvature). Five pulsating flow fields are 

shown for the corresponding phase angles indicated (1-5) in the centreline signal of the streamwise 

velocity. Streamwise velocity scaled by the bulk speed is shown as the background contour map, 

whereas the in-plane components are shown as the vectors. The flow structured were captured 

during one pulsation cycle and four main patterns are found: during acceleration and deceleration 

the flow pattern resembles the one of steady flow with two symmetrical vortices observable; at the 

peak of the acceleration weak secondary motion exists, while at the end of the deceleration phase 

the vortices overtake the whole cross section, but with the centres located at the centreline of the 

pipe. 

 

Figure 37: Contour plots of the velocity fields corresponding to five phase angles [33] 

 

4.4 Compliant walls 

The nature of flow patterns in rigid and compliant asymmetric constricted pipes for a range 

of dimensionless parameters typical of human arteries is here investigated. The peak Reynolds 

number range is Re=300-800 and Womersley number W0=6-8. The considered pulsation 

frequency is 1.2-2.4 Hz. In the experiments conducted by Usmani and Muralidhar [24], rigid 

models are made of glass, whereas the compliant arterial models are made of silicone elastomer, 

both resembling a diseased vasculature. Asymmetric stenosis experiences localized transition to 

turbulence with instability occurring in the shear layer. The model is mounted with the axis 
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vertical, which is also the primary flow direction. From PIV imagery it is possible to obtain 

temporal distribution of stream traces, wall shear stress and the oscillatory shear index (OSI). 

For the rigid model (figure 38), a considerable variation over the pulsation cycle is observed. For 

Re=300, flow remains attached during systolic phase. At peak flow, the instantaneous Reynolds 

number is high resulting in an adverse pressure gradient over the constriction: the result is a small 

region of flow separation downstream of the throat. As deceleration starts, the adverse pressure 

gradient strengthens, streamlines pass smoothly over the throat with an attached vortex in the 

concavity. The vortex grows as the flow decelerates. Flow reversal carries the vorticity upstream 

and another starting vortex is formed above the constriction. It is then washed away as soon as the 

flow starts accelerating again. On the side without the constriction, the flow remains fully attached. 

For the rigid tube the wall deformation was smaller than the pixel resolution of the camera, thus 

resulting in non-deformable wall.  For walls less thick deformation can be studied: for 3 mm wall 

thickness, deformations are small and their variation is almost proportional to the wall loading 

itself; for 1.5 mm wall thickness, large deformations can be observed. This is the case of compliant 

models, characterised by fluid-forces producing time-dependent wall deformation that, in turn, 

alters the flow itself. For small-amplitude wall displacement, fluid flow and wall movement can be 

expected to be correlated in time, the correlation diminishing with increasing amplitude. At 

Re=300, wall displacement amplitude is less than 5% of the pipe diameter, while the peak wall 

velocity amplitude is 5-10% of that of the main flow. These are small but large enough to bring in 

noticeable changes in the flow pattern. Figure 39 shows flow in compliant walls characteristics. 

Differences from the rigid case arise from velocity changes related to the cross-sectional area when 

the walls move inward and outward the cycle. Wall velocities serve to energize the fluid and weaken 

vortex strength. Vortices are transported more readily in a compliant model compared to the rigid.  

During the systolic phase (phase A), the wall moves outward, resulting in lower velocities, smaller 

adverse pressure gradient and attached flow. Beyond the peak phase, the wall moves inward, and 

larger velocities strengthen the adverse pressure gradient beyond the constriction. Flow separates 

from the wall at phase B, increasing in size during deceleration phases (from C to E). The vortex 

grows, covering most of the post-stenotic region (E), accompanied by further inward movement of 

the wall. During flow reversal, vortices are weakened and washed away (F). The vortex at the 

constriction breaks into two and moves upwards (G). A downward vortex is subsequently 

generated, that will be washed away. 

At Re =800 wall displacement and velocity are greater, vortex strength and size are lower, and 

vortex movement is enhanced. At this Re, the differences with the rigid case are more evident. A 

comparison of the velocity profiles of these two cases is presented in figure 40. Solid lines show 

profiles for a compliant model, while dotted lines correspond to the rigid case. An increase in 

diameter of the compliant wall (A) is accompanied by lower velocities when compared to the rigid. 

Velocities in the compliant model increase with an increase in the local Reynolds number (phase 

B), nut still lower than rigid case. The deceleration phase begins, the wall starts to contract, and 

velocities start to increase (D). The flow decelerates to near zero before it reverses at phase F. Up to 

phase G, flow is in the upward direction accelerating. Between G and I, flow disturbances are 

identified. 
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Figure 38: Stream traces during pulsatile flow in asymmetric rigid constriction at (a) Re=300 and (b) Re=800 [24] 

 

Figure 39: stream traces obtained during pulsatile flow in an asymmetric flexible constriction of 3 mm thickness; (a) Re=300, 
(b) Re=800 [24] 

 

Figure 40: Velocity profiles at various time instants during pulsatile flow in asymmetric rigid and flexible constriction; Re =800 
[24] 
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4.5 Roughness effects 

Within the scope of aortic valve stenosis, in addition to the restriction in the flow due to an 

incomplete opening of the aortic valve, calcification of the aortic valve deforms the shape of its 

leaflets. This introduces roughness [36] on the surface of the walls bounding the flow. The bumpy 

and irregular nature of the leaflets changes the flow field and can enhance the turbulence and the 

fluctuations. The nature of the deformed surface can be investigated by the analysis of the spectral 

content of the sound signals captured from these flows. The sound signals themselves are not a 

direct measure of turbulence, but surface pressure is related to turbulence intensity, and the wall 

pressure fluctuations that gives rise to audible sounds are influenced by the core region of 

turbulent flows. 

Roughness on the surface of a wall-bounded flow has an impact on the mean velocity profile and 

statistics. In a turbulent boundary layer, a mesh-type surface roughness decreases the magnitude of 

the streamwise velocity fluctuations while enhancing the wall-normal fluctuations and thus 

redistributing energy. The wall-normal component of fluctuations is reduced near the wall when 

the roughness elements are cylindrical in their shape. Except in the very near wall area, the 

pressure transport term does not have significant changes. The result of enhanced roughness in a 

physiologically relevant setting would indicate that the increase in drag within the system would 

require greater work to overcome the friction, regardless of the exact shape or nature of the 

roughness itself. The work of Byers et al. [36] investigates the influence of surface roughness 

through the changes in acoustic spectral content. 

The acoustic spectrum shows which frequencies present contain greater amounts of energy. Higher 

order statistics are capable of defining new features that can be identified by signal analysis: one 

such measure is bicoherence. It provides a normalized measure of frequency coupling between two 

frequencies 𝑓1 and 𝑓2 in a flow. Bicoherence is a normalization of the bispectrum, where Fourier 

transform of a time varying signal and complex conjugate of the Fourier transform appear. 

Identification of frequencies of interest in the sound signal using bicoherence provides greater 

insight into which frequencies are a result of the modified geometry in the flow field. 

Four different roughness scenarios are introduced, ranging from smooth to a relative roughness of 

0.0486 based on the diameter. These span three different restriction severities ranging from 

moderate (56% restricted) to severe (82% restricted) based on the American Society of 

Echocardiography rating of aortic stenosis. The flow is driven with a ViVitro Labs ‘superpump’ 

pulsatile pump that operates at 1.17 Hz. The pulse shape is set to a waveform that mimics the pulse 

of a heart. Also, the geometry of the valve opening and the volume flow rate are similar to regular 

human heart conditions. Reynolds numbers match the ones encountered in most human heart 

conditions, corresponding to 5407, 6554, 8214 and 9831. Because large vessels are taken into 

account, blood flow is approximated with a Newtonian behaviour: it is thus possible to use water 

for the experiments. The roughness is introduced to the inner surface of the narrowing by utilizing 

sandpaper grit roughness elements and gluing with a thin general purpose cyanoacrylate glue. Note 

that when adding the roughness, a finite thickness is introduced to the walls, slightly increasing the 

overall restriction. The RMS sizes for each are 80 grit (ε = 0.250 mm), 100 grit (ε = 0.150 mm) and 

120 grit (ε = 0.125 mm). Sound signals are acquired with a Biopac contact microphone placed over 

the restriction with the gain set to 200 and a low pass filter at 5 kHz and high pass filter at 0.05 Hz. 

For each experiment five independent one-minute trials were collected. In order to compare the 

different cases, a normalization is mandatory. 

From the results, it is apparent that changing the severity of the restriction has a significant impact 

on the distribution of energy in the power spectrum (figure 41a). The forcing frequency and the 
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first few harmonics are quite prominent: there are two prominent peaks of energy around 30 Hz 

and 100-200 Hz. For the highest restriction, the spectral shape has shifted significantly. For a given 

restriction and surface roughness, the distribution of energy remains consistent across all 

frequencies. The lower frequencies have broadly the same distribution of energy across all 

Reynolds numbers (figure 41b). 

                    

Figure 41: (a) Normalised power spectrum for fixed Re=5407, smooth case in 56%, 69% and 82% restrictions. (b) Normalised 
power spectrum for different Re in a smooth case for a 56% restriction [36] 

Figure 42 shows a fixed restriction of 56%, a fixed 

Re=5407 and changing surface roughness. As the 

roughness changes, the spectral shape does not 

change. However, it appears that the roughness 

disrupts the low frequency regions and the higher 

frequencies, but a prominent peak at 100 Hz 

remains. The smallest of the three roughness 

elements (120 grit) enhances the relative energy 

content below 100 Hz in comparison to the smooth 

case. The two larger roughness elements more closely 

match the smooth case, with disruptions in the 

spectral shape at higher frequencies by a few Hz.  

As roughness is introduced, the spectral content is 

altered, and in some cases drastically, still less than 

what happens with the introduction of restrictions. 

For the 56% restriction cases, the introduction of the 

smallest roughness element caused the spectrum to 

flatten out across all frequencies, with the prominent 

bands differing from the smooth 56%. As the relative roughness height is increased, the spectrum 

shifts back towards the baseline. A sensitive dependence on the geometry is thus evident. The effect 

of roughness at higher Reynolds number is less evident probably because of the larger flow rates. 

 

 

Figure 42: Normalised power spectrum for fixed Re and 
restriction, with changing roughness [36] 
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4.6 Model of aortic stenosis (transition and turbulence) 

In this section, the computational modelling and analysis of haemodynamics in a simple 

model of aortic stenosis by Zhu, Seo and Mittal 

[27] is reported, with particular focus on 

transitional and turbulence regimes. The study is 

motivated by considerations on heart murmurs 

and cardiac auscultations and is carried on 

through numerical simulations of a simple aorta 

with stenosis. The aorta is modelled as a curved 

pipe with a 180° turn, and three different stenoses 

with area reduction of 50%, 62.5% and 75% (figure 

43) are discussed. A uniform steady inlet velocity 

with a Reynolds number of 2000 is used for all the 

cases. The post stenotic flow is dominated by the 

jet that originates from the stenosis as well as the 

secondary flow induced by the curvature: they 

both contribute significantly to the flow 

turbulence. 

The studied flow lies in the transitional region, the transitional and turbulent characteristics will be 

now discussed. Figure 44a shows the turbulent kinetic energy (TKE) distribution at θ=60° for the 

case of 62.5% stenosis. The high-TKE region forms a bridge-like shape with two ends near the 

anterior and posterior surfaces of the aorta. In 44b and c, the TKE distribution is overlapped with 

the mean streamwise and azimuthal vorticity components in that location. The Dean vortices 

partially overlap with the two ends of the TKE distribution, indicating the contribution from 

stochastic fluctuations within the secondary flows to the TKE. The secondary flows wrap around 

the jet and force it into the shape of a crescent (figure 44c). It must be noted that this specific angle 

is where the periodic vortex shedding transitions into more stochastic flow behaviour, accounting 

for the high TKE. 

 

Figure 44: (a) TKE distribution, (b) TKE and streamwise vorticity, (c) TKE and mean azimuthal vorticity [27] 

 Figure 45 shows the spatial evolution of TKE for stenosis of 50%, 62.5% and 75%, plotted at 

different angles, to illustrate its spatial evolution. At the initial stage of the jet, the flow is still 

laminar, thus resulting in low TKE for θ<35°. It also stands out the fact that for 50% stenosis, 

vortex shedding is less intense: the TKE is not noticeable until θ=55°. It can also be observed that 

the high-TKE region moves closer to the outer wall and the anterior/posterior surface as the 

severity of the stenosis increases. It is worth mentioning that the TKE in figure 45 is non-

dimensionalized by the mean jet velocity. If it were non-dimensionalized by the inlet velocity, the 

TKE intensity for 75% stenosis would appear to be much stronger than the other two under the 

same contour level.  

Figure 43: Schematic of the modelled aorta with an 
axisymmetric 75% stenosis. The dashed line represents 

the geometric centreline of the modelled aorta [27] 
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Figure 45: non-dimensionalized TKE for the three cases plotted at different angles, to illustrate its spatial evolution [27] 

To sum up the results of this modelling, the turbulence is always preceded by the discrete-

frequency vortex shedding. In the curved pipe model, the secondary flow induced by the curvature 

also contributes significantly to the total energy of turbulence. This is especially evident for the 

50% stenosis, where the TKE resulting from the shear layer breakup is significantly lower than that 

from the secondary flow.  
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5. Conclusions 
Transition from laminar to turbulent pulsatile flow has for long captured, and still does, the 

curiosity of fluid dynamicists, not only because it is a fascinating topic of unique mathematical 

challenge, but also because of its wide range of application in several fields, ranging from the 

industrial role to the medical sector. For what concerns the latter, a tight bond between some of the 

most common cardiovascular diseases and pulsatile flow turbulence exists. It is thus undeniable 

the importance of studying this type of flows and the benefits that can derive from the fully 

understanding of its mechanisms are numerous. Many aspects of the behaviour of pulsatile pipe 

flows are still under investigation and debate. A summary of the results discussed in the different 

chapters of this work is here reported. 

From experimental evidence, for what concerns pulsatile flows in an ideal cylindrical pipe, it is 

possible to divide the transition to turbulence in three regimes, depending mainly on the 

Womersley number:                                                                                                                                                            

(i) for Wo>12 the transition threshold is unaffected by flow pulsation, as the rate changes are too 

fast for the turbulence to react.                                                                                                                                       

(ii) for Wo<2.5 the changes of Re are slow enough to generate turbulent structures, whose survival 

is critical during the acceleration phases of the cycle.                                                                                                                          

(iii) in the intermediate region the transition thresholds vary between the two limits. 

In the subcritical regime, two different types of turbulent structures can be observed: localized 

puffs and helical instabilities. The differences between these two are found in: the different 

amplitude that allows their generation, the direction of spreading and the triggering disturbances. 

In addition, helical instability depends on the presence of inflection points in the laminar flow. It is 

experimentally proved that the waveform of the pulsation has a direct influence on the 

characteristics of such points. For waveforms with longer low-velocity phases, the perturbations 

have more time to grow. Moreover, the more sudden are acceleration and deceleration, the higher 

are the changes for the perturbations to grow. Paradoxically, these waveform characteristics 

promote turbulence decay.                                                                                                                                                   

It is also found that the turbulent pulsatile flow has a beneficial effect for depletion efficiency, 

meaning that is more effective than a steady flow in the prevention of accumulation of trapped fluid 

in recirculating zones. Another characteristic is the delayed response of turbulence in the buffer 

layer, influencing the amplitude of the wall shear stress, that results lower than the laminar case. 

For what concerns cardiovascular system, blood flow can be studied as a pulsatile pipe flow. Even if 

it's a non-Newtonian fluid, in most arteries it behaves like a Newtonian one. The cyclicity in 

cardiovascular system is given by the heart pumping cycle (systole and diastole). Considering blood 

flow in arteries as an example, different configurations can be analysed.                                                                           

Constricted pipes, that can be found in the cardiovascular diseases of stenosis and atherosclerosis, 

are characterised by a vortex region post-constriction, that result in turbulence at a certain 

threshold. Constrictions also induce high shear stresses, flow separation and instabilities.                        

The vessels of the cardiovascular system ore most of the times not in a straight line, thus resulting 

in curved configurations. In curved pipes the centrifugal force due to curvature plays a role: for 

pulsatile flows it results in the formation of a pair of counter-rotating vortices, that affect velocity 

profiles. A secondary flow is observed, influencing turbulence intensity and energy dissipation.      

Another characteristic of cardiovascular vessels is that their walls are not rigid, at least not if a 

person is in good health: this is the case of pipes with compliant walls. Non rigid walls lead to 

possible wall displacement, thus influencing flow pattern. Wall velocities energize the fluid and 

weaken vortex strength, resulting in a faster transportation of vortices.                                                          

Sometimes, it may happen that the aortic valve calcifies thus deforming the shape of its leaflets. 
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This brings surface roughness effects in the game. It is found that it has an impact on the mean 

velocity profile. In a turbulent layer, it decreases the magnitude of the streamwise velocity 

fluctuations and redistributes energy. Experiments show that roughness disrupts low frequency 

region and the high frequency one. In general, the introduction of roughness flattens the power 

spectrum curves. 

For what concerns future developments in the study of pulsating pipe flow the trend is towards 

advanced numerical simulations to gain deeper insights into the complex, time-dependent 

behaviours of fluid dynamics under pulsating conditions. Numerical simulations, in particular 

those employing computational fluid dynamics and high-fidelity turbulence models, will play a 

crucial role in improving the understanding of the interaction of factors such as frequency, 

amplitude, and flow regime. Where experiments have difficulties in capturing some flow 

characteristics, such as transient phenomena and localized turbulent structures, numerical 

simulations allow a detailed analysis of them. On the other hand, numerical methods must be 

continually validated against experimental data to ensure accuracy. Regarding experimental 

techniques, improvements, such as the use of advanced non-invasive measurement tools (e.g., 

particle image velocimetry and laser Doppler anemometry), can enhance the precision and 

resolution of data collection. Nevertheless, experiments still face limitations such as high costs, 

complexity in capturing high-frequency pulsations, and difficulties in achieving ideal boundary 

conditions. As a consequence, a synergistic approach that combines both numerical simulations 

and experimental validations is essential for advancing the understanding and applications of 

pulsating pipe flow.  
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