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INTRODUCTION 

 
Over the past few decades, reduced order models (ROMs) have been involved in a rapid 

development within the framework of designing and modeling complex dynamic systems, whose 

applications reach out in many fields, such as engineering, biochemistry, computational fluid 

dynamics (CFD) and so forth. The cardiovascular system, by definition a highly elaborate dynamic 

system constituted by an intricate network of different living vessels, is the perfect field for the 

application of reduced order models: many image based three dimensional models, essentials for 

the study of patient specific blood flow features and disease pathogenesis, have been developed 

aiming at achieving a better understanding of blood flow and its interaction with vessel walls. 

However, the intrinsic non-linearities and the vast range of spatial and time scales characterizing 

cardiovascular system are such that the computational burden and the numerical instability have 

limited the application of full-order models to clinical scenarios, due to the prohibitive costs and 

times of the simulations. Thus, ROMs have paved their way towards medical applications and 

clinical practice and can be used in conjunction with 3D models, or replace them, in order to achieve 

faster and less computationally expensive analysis of blood flow in physiological or pathological 

conditions, supporting clinicians’ decisions regarding treatment and therapeutic actions. 

The main purpose of this thesis is to introduce the basic concepts and theories that lay at the basis 

of reduced order models for the cardiovascular system and to show some applications concerning 

both the analysis of blood flow in vessels form a purely haemodynamic point of view and the study 

of pressure distribution and flow rate in arteries in pathological conditions. 

The first chapter has the objective of recalling simple concepts concerning the cardiovascular 

system, blood flow characteristics in large arteries and some haemodynamic equations, which may 

be useful later in the discussion. 

The second chapter starts from the concepts regarding reduced order models for blood flow 

highlighted in this introduction and focuses on the description of the main features and fields of 

application of zero dimensional and one dimensional models, then hinting at more advanced 2D 

and multiscale models. 

Finally, in the third chapter, three applications of ROMs to the cardiovascular system and artery 

segments are presented. The applications are introduced in order of model dimensionality, starting 

with a 0D ROM and then continuing with a one dimensional and a more complex non-linear and 

parametrized model. The first article (Paragraph 3.1) aims at studying the changes in 

haemodynamics, especially regarding flow rate and pressure variations, at the time when acute 

ischemic stroke (AIS) occurs, the second is a non-clinical related 1D model (Paragraph 3.2) used 

to study the effect of different velocity profiles on the pulse wave propagation in aorta segments, 

while the latter (Paragraph 3.3) proposes a parametrized reduced order model with the objective of 

evaluating the severity of stenosis in the coronary artery disease. 

 

 

 



3 

 

 

CHAPTER 1  
  

1.1 THE CARDIOVASCULAR SYSTEM  
 

The cardiovascular system consists in a complex network of vessels which convey blood throughout 

the entire human body, in order to perform essential functions for human life, such as transporting 

nutrients and oxygen to tissues and organs, removing waste products like CO2, regulating pH, body 

temperature and the level of hormones present within blood [1]. The focal point of the 

cardiovascular system is of course the heart, an automatically-regulated muscular organ divided in 

four chambers (two atria and two ventricles) that acts as a pump to vehicle blood across the vessels 

to specific and precise destinations, under the action of electrical stimuli, which lead to the 

contraction and relaxation of the heart itself.   

 

The sequence of cardiac events during a normal heartbeat is defined as cardiac cycle: first atria 

contract and ventricles are relaxed, then ventricles contract and atria are relaxed, finally atria and 

ventricles are both relaxed. The contraction phase is called systole, while the relaxation phase is 

called diastole. 

 

 

For ease, the cardiovascular system can be divided into two main circuits (Figure 1): the pulmonary 

and systemic circulation (respectively PC and SC in abbreviated form). The first has the task of 

bringing oxygenated blood from the alveoli, located inside the lungs, to the left side of the heart 

through a series of vessels that increase dimensions and thickness at the time that blood is 

approaching to the heart (first venules, then two pulmonary veins), while deoxygenated blood is 

carried the opposite way, from the right side of the heart towards the lungs (blood leave the heart 

through the pulmonary artery and then convey in arterioles and capillaries, forming a tree-like 

structure). On the other hand, SC carries oxygenated blood from the left heart side throughout the 

whole body in order to supply organs and tissues (the main artery of the systemic circuit is the 

aorta), while deoxygenated blood is returned to the right heart side by a series of veins, which 

culminate in the vena cava [1].  

  

Figure 1: simplified structure of the 

cardiovascular circulation; pulmonary 

and systemic circulation. [8] 
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That being said, it is clear that arteries vehicle blood full of oxygen from the heart to the periphery 

of the body, while veins carry the carbon dioxide full fluid in the opposite sense, from the organs 

and tissues, where exchanges take place through capillaries, to the so called engine of the 

cardiovascular system. This difference in function is also reflected into the physical and structural 

difference that distinguish arteries from veins: by focusing just on SC, the mean pressure is much 

higher in arteries than in veins (the difference is around 85 mmHg), as well as the vessel wall 

thickness (arteries large for SC, veins small) and finally, in veins there are valves located along the 

limbs which are absent in arteries [2]. Arterial pressure is pulsatile, while arteriolar, venular and 

venous blood pressure are weakly pulsatile/almost constant. 

  

As stated by C.M. Colciago et al. in [3], far from being inert pipes that convey the blood to organs 

of the body, arterial vessels are complex living tissues with locally-variable elastic and viscoelastic 

mechanical properties, that can interact with blood flow and adapt to certain conditions depending 

on several factors, thus causing changes in the geometries and physical properties of the vessels (for 

example, it has been shown that lifestyle, genetics and age have an impact on this features). The 

next paragraph will focus on blood dynamics related to arterial vessels, as venous blood flow is 

neglected for the sake of the discussion. 

 

1.2 BLOOD AND HAEMODYNAMICS 
 

Blood is the fluid that flows inside the cardiovascular system pumped by the heart towards organs 

and tissues, in order to carry out essential metabolic functions. As far as haemodynamic is 

concerned, blood can be defined as a viscous and inhomogeneous fluid, characterized by 

corpuscular elements aggregating or separating in specific conditions, that give an inconstant 

contribution to the fluid dynamic response of the cardiovascular system [1]. Blood viscosity is not 

fixed and varies depending on the vessel dimension and flow rate (circulation can be characterized 

by three types of flows, namely laminar in arteries, arterioles and veins, turbulent in the left ventricle 

and single file flow in capillaries [4]). The fact that blood viscosity is variable with shear rate makes 

this fluid non-Newtonian: even if at low shear rate, blood shows a non-Newtonian behaviour 

(particles tend to form aggregates), nevertheless, in large arteries with diameter larger than 0.3 cm, 

it is widely accepted to assume a Newtonian behaviour [5]. 

  

Furthermore, arterial pressure and flow rate are pulsatile, unsteady, thus the interaction between 

blood flow and the vessel wall gives rise to mechanical stimuli such as stress exchange and, with 

time, can also lead to a reduction in the resistance to fatigue of the elastic fibres [3]; these are 

important risk factors that have to be kept in mind when modelling the cardiovascular system. 

Indeed, some studies have highlighted that friction forces related to viscosity, despite being much 

smaller in intensity than pressure, play a significant role in the development of atherosclerosis [7].  
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Focusing back on the pulsatile nature of arterial pressure, the latter ranges from diastolic pressure 

value to systolic value, however, maximum and minimum levels, as much as pressure waveforms, 

vary with the distance from the heart (Figure 2): moving away from the heart, pressure signals delay 

(due to arterial walls elasticity and fluid dynamic nonlinearities) and increase in amplitude, 

propagating as a wave at finite speed (pulse wave speed) [8]. 

 

 

Moreover, it is clear that arteries lack of uniformity in both geometrical and mechanical properties, 

thus, at each discontinuity site along the vessels, pulse wave is partially reflected, which causes 

asynchrony between aortic pressure and flow rate in systole [8]. Pulse wave transmission and 

reflection phenomena can be studied through 1D reduced order models (see Paragraph 2.3). 

 

Dealing with blood flow in arteries, where it is accepted the hypothesis of laminar flow and 

Newtonian fluid, the resistance opposed by the vessel wall to the stream can be estimated 

considering Poiseuille’s law: 

  

∆𝑄 =
𝜋∆𝑝𝑟𝑣

4

8𝜇𝑙𝑣
 

  

where ΔQ is the mean flow rate, Δp the pressure drop, rv and lv are the tube radius and length, 

respectively, and μ is the fluid viscosity. Poiseuille’s law can also be rewritten as follows: 

 

∆𝑝= 𝑅 ∆𝑄 

 

being R the hydraulic resistance. In terms of an electric-hydraulic analogy, Poiseuille’s law in fluid 

dynamics can be seen as Ohm’s law for electrical circuits. Although Poiseuille’s law hypothesis are 

not satisfied in general, being blood non-Newtonian, pulsatile and developing not in perfect 

cylindrical tubes, it can still be applied to approximate blood stream in arteries [6] and can be used 

in 0D models for blood flow (see Paragraph 2.2).  

  

 

 

Figure 2: pressure waveforms at multiple sites at the same time 

along a canine aorta. [8] 

(1) 

(2) 
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1.3 NAVIER-STOKES EQUATIONS 
 

As well as other fluid systems, blood flow in the cardiovascular system complies with the laws of 

mass conservation and momentum balance, derived from the formulation of unsteady Navier-

Stokes equations, which establish a connection between the main parameters of a moving fluid, 

such as pressure, density and velocity. Given an open bounded domain, unsteady Navier-Stokes 

equations for a Newtonian and incompressible fluid read as follows [9]: 

 

 

{
∇ ∙ �⃗� = 0

𝜌
𝜕�⃗� 

𝜕𝑡
+ �⃗� ∙ ∇�⃗� = −∇𝑝 + 𝜇∇2�⃗� + 𝜌𝑔 

 

 

Being �⃗�  the velocity vector, ρ blood density, μ blood dynamic viscosity and 𝑔  the g-force vector. 

 

 

Approximately, an arterial vessel can be considered as a cylinder, although it has been already said 

that vessels are flexible and can interact with blood flow by altering their geometry (this implies the 

necessity of additional boundary conditions that strongly influence the blood flow dynamic [10]); 

in cylindrical coordinates, being �⃗� = 𝑢𝑟𝑒 𝑟 + 𝑢𝜃𝑒 𝜃 + 𝑢𝑧𝑒 𝑧, Navier-Stokes equations can be written 

in the form: 

 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) +

1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝜕𝑢𝑧
𝜕𝑧

= 0 ; 

 

𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃

−
𝑢𝜃
2

𝑟
+ 𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 (∇2𝑢𝑟 −

𝑢𝑟
𝑟2
−
2

𝑟2
𝜕𝑢𝜃
𝜕𝜃

) + 𝑔𝑟 ; 

 

𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝜃𝑢𝑟
𝑟

+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

= −
1

𝜌𝑟

𝜕𝑝

𝜕𝜃
+ 𝜈 (∇2𝑢𝜃 −

𝑢𝜃
𝑟2
+
2

𝑟

𝜕𝑢𝑟
𝜕𝜃

) + 𝑔𝜃 ; 

 
𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈∇2𝑢𝑧 + 𝑔𝑧 ; 

 

 

As far as reduced order models are concerned (see Chapter 2 for ROMs), solutions for Navier-

Stokes equations can be obtained only for simple geometries and non-complicated axisymmetric 

domains; for example, assuming an 1D blood flow field along the direction z, Navier-Stokes 

equation system previously written reads as 

 

 

{
 

 
𝜕𝑢𝑧

𝜕𝑧
= 0 ;

  
𝜕𝑢𝑧

𝜕𝑡
+ 𝑢𝑧

𝜕𝑢𝑧

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧

𝜕𝑟
)] + 𝑔

𝑧
 ;

 

 

(3) 

(5) 

(4) 
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CHAPTER 2 

 

2.1 REDUCED ORDER MODELS (ROMs) FOR THE CARDIOVASCULAR 

SYSTEM 

 

Nowadays, when approaching the study of complex phenomena and the analysis of dynamical 

systems,  modelling and numerical simulations have become crucial tools for the control and design 

of parametrized systems [11]. Unfortunately, especially in the field of computational fluid 

dynamics, the nonlinearities intrinsically present in the systems, the uncertainty affecting the values 

of the parameters and the wide range of spatial and time scales makes the simulation of a full-order 

model (FOM) extremely expensive in terms of computational cost (e.g. simulations regarding blood 

flow through the heart chambers require the solution of systems of partial differential equations 

(PDEs) with up to 106 degrees of freedom, which can take several hours of simulation [12]; 

advanced computing architectures are also needed).  

The limitations highlighted in the simulation of full-order models lead to the necessity of finding 

new data-driven techniques in order to develop lower-order models which can be used in 

conjunction with FOMs: in this way, faster and cheaper analysis can be performed, preserving the 

most important features of the FOM without sacrificing the accuracy of the general physical 

behaviour of the analysed system [13].  

Therefore, reduced order models (ROMs) allow to decrease the computational burden derived from 

FOMs, providing reliable, accurate and fast numerical simulations. More than for other branches of 

engineering and applied sciences, performing accurate computations in a short amount of time, 

minutes, rather than hours, or even days, is crucial when dealing with problems arising from life 

sciences, like, for example, in the simulation of the cardiovascular system [12]. 

It is no wonder that the numerical modelling of the cardiovascular system based on reduced order 

models has experienced a strong development in recent years and is now becoming a paradigm in 

healthcare technology, not only due to the physical and geometrical complexity of the subject, but, 

above all, it has paved the way for clinical application, aiming at shedding light on the pathogenesis 

of cardiac and vascular diseases [14] and overcoming the main limitations of in-vivo studies, which 

are typically invasive, expensive and not easy to carry out [15]. Moreover, numerical simulations 

can study the behaviours of quantities which cannot be measured directly, such as the wall shear 

stress [12] on vessels lumen, a factor often linked to pathologies like atherosclerosis and 

thrombogenesis. This is meant to enable quantitative analysis in several virtual scenarios in order 

to support clinicians’ decisions and to enhance diagnostic practices based on medical imaging [12]. 

Over the past several years, many researchers have developed numerous and different models for 

the designing of the cardiovascular system, answering both clinical and fluid dynamic questions. 

The types of ROM vary depending on the final aim, the accuracy and reliability required and on the 

field of application, ranging from zero dimensional to three dimensional and multiscale models. In 

the following pages, some basic concepts are given regarding 0D, 1D, 2D and multiscale models, 

highlighting the main themes and fields of application, while in the next chapter (Chapter 3), 

applications of ROMs to case studies regarding blood flow in arteries are presented. 
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2.2 0D MODELS FOR THE CARDIOVASCULAR SYSTEM 

 

Zero dimensional models (0D), also referred to as lumped parameter models (LPM or LP), are 

simplified models developed to simulate the global haemodynamics of the whole circulation 

system: the main physical variables and parameters, such as flow rate, pressure and volume are 

supposed to have a uniform distribution at any time within each cardiovascular domain (vessels, 

organs and so on) [10]. Thus, the model resolution involves just a set of ordinary differential 

equations (ODEs), much more simply solvable than systems of PDEs arising from full-order 

models. 

As thoroughly explained by Shi et al. [10], in the context of 0D modelling, a hydraulic-electric 

analogy subsists: hydraulic impedance represents the combined effect of the frictional loss, vessel 

wall elasticity and blood inertia in the blood flow, whilst electric impedance represents the 

combination of the resistance, capacitance and inductance in the circuit. Moreover, blood flow is 

described by the continuity equation for mass conservation, Poiseuille’s Law for the steady state 

momentum equilibrium (see Paragraph 1.1), and the Navier-Stokes equation for the unsteady state 

momentum balance; similarly the electric flow in the circuit is governed by the Kirchhoff’s current 

law for current balance, and Ohm’s law for the steady state voltage-current relation. Thus, by 

representing the blood pressure and flow-rate with voltage and current, describing the effects of 

friction and inertia in blood flow and of vessel elasticity with resistance R, inductance L and 

capacitance C (related to storage properties of arteries) in the electric circuit respectively, the well-

established methods for analysis of electric circuits can be borrowed and applied to the investigation 

of cardiovascular dynamics [10].  

Although widely spread and utilized and characterized by a low computational cost, 0D models 

neglect peculiar aspects of haemodynamics, such as the propagation and reflection of pressure and 

flow waves, thus being unable to simulate the effect of high frequency components in the arterial 

impedance (venous pressure is also set to zero) [10]. 

The first model for the cardiovascular system which is considered the precursor of 0D models, also 

known as the two-elements Windkessel model (Figure 3a), was introduced by Otto Frank in [16]: 

it represents the systemic arterial tree by means of a resistance and a compliance (the resistance 

stands for the dissipative nature of vessels, while the compliance reveals the storage properties of 

large arteries). 

 

 

 

 

 

 

The model well describes the decay of the systemic arterial pressure during diastole, but fails at 

reproducing what happens during systole, due to pressure’s high frequencies. Later on, many 

models were developed starting from the Windkessel circuit, e.g. the Westkessel model (Figure 3b) 

by Westerhof et al., which introduces another resistance in order to clarify the behaviour of blood 

Figure 3: (a) RC Windkessel model; (b) RCR Westkessel model. [10] 
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flow at high frequencies (these models are called mono-compartment models, as they represent the 

cardiovascular system as a unique block, while multiple compartment ones consider the global 

circulation as divided in various defined regions with peculiar properties).  

0D models are currently widely applied in various areas of cardiovascular studies, ranging from 

basic cardiovascular physiology research to astronautic medicine and design of artificial organs 

[10]; furthermore, zero dimensional models are used for the representation of the contractility of 

heart chambers, the functioning of the cardiac and venous valves, the distal coronary districts and 

for the simulation of Acute Ischemic Stroke [17]. 

 

2.3 1D MODELS FOR THE CARDIOVASCULAR SYSTEM 
 

Unlike 0D models, which neglect some important haemodynamic aspects, one-dimensional models 

enable to inquire into the propagation and reflection phenomena of pressure and flow rate 

waveforms [8], thus permitting the numerical study of the systemic arterial tree. Therefore, 1D 

ROMs for blood flow analysis in arterial vessels typically rely on a time domain based one-

dimensional wave propagation model, which can include the nonlinear convective acceleration term 

or not, depending on the purpose of the simulations. In general, one-dimensional models are derived 

from a reduced and simplified axisymmetric version of the Navier-Stokes equations (see Paragraph 

1.3), generating a system of hyperbolic PDEs often  accompanied by specific boundary conditions 

and other algebraic relations. Basically, nearly all 1D model proposed for the study of pulse wave 

transmission in arterial vessels are based on a similar derivation and the differences among these 

models are mostly in the boundary conditions applied and in the solution methods used, and whether 

nonlinear effects are considered for the different applications [10]. Another difference between 

these models concerns the artery vessel wall modeling, which can be implemented using a linear 

elastic or a linear viscoelastic material model. Various cross-sectional velocity profiles can be used 

to evaluate the nonlinear convection and diffusion terms present in the momentum equation of blood 

flow [18] (a modified flat velocity profile was used by Formaggia et al. [19], Steele et al. [20] 

resorted to a Poiseuille velocity profile, while Bessems et al. [21] proposed an approximate 

logarithmic velocity profile).  

Moreover, 1D models are usually formulated using flow rate, cross-sectional area of artery and 

pressure as the main variables and are solved numerically in time and space with a low 

computational cost compared to full-order models simulations. However, there are several 

complications in the study of one-dimensional pulse wave propagation, including the tapering of 

the vessel, which cause rapid variations in convective acceleration, vessel branching, nonlinear 

pressure/cross-sectional area relationships for the vessel wall and bending in the vessel wall itself 

[10]. Therefore, boundary conditions must be applied: the resolution of a 1D model for pulse wave 

transmission typically requires the imposition of three types of boundary conditions, one to each 

end of the considered vessel segment and one at each arterial junction (arteries are branched and 

connected to smaller arterioles, so it is impossible to trace all the vessel branching in the simulation 

and the model must be terminated at some point, depending on the specific aim of the study [10]). 

The boundary conditions at arterial bifurcations usually consist in the conservation of mass and 

total pressure, while at the upstream side of the vessel the conditions consist in periodic signals of 

the dependent variables [8] or can be derived from experimental data. As far as downstream 

conditions are concerned, in more recent studies has become popular the use of a simple or 
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otherwise non-complex 0D model, such as a two-element (RC) or three-element (RCR) Windkessel 

model, in order to clarify the pressure/flow relation at the outlet of the vessel [10].     

As previously mentioned, the principal application of one-dimensional models concerns the study 

of pulse wave transmission within arterial vessels and the differences among these models mainly 

consist in the choice of domain, wall mechanical properties, velocity profile, boundary conditions 

and numerical methods [8]. 

 

2.4 2D AND MULTI-SCALE MODELS FOR THE CARDIOVASCULAR SYSTEM 
 

Two dimensional models (2D) are obviously mostly based on the Navier-Stokes equations, which 

are strongly non-linear partial differential equations whose behaviour may be parabolic, hyperbolic 

or elliptic, depending on the nature of the problem studied [10]. Compared to 0D and 1D models, 

bi-dimensional ROMs consent to carry out more precise calculations of the pressure and flow fields 

in axisymmetric arterial vessels, although implying a higher computational burden, therefore are 

often applied for the analysis of small cardiovascular regions (coronary arteries, cardiac valves or 

small segments of vessels in presence of stenosis or other pathological conditions). Many models 

have been proposed in order to achieve a low-dimensional parametrization of the complex 

computational domain of the Navier-Stokes equations, creating for example reduced base (RB) 

constructions relying on the Proper Orthogonal Decomposition (POD) method. The main aim is to 

cross-sectionally average the Navier-Stokes equations to obtain 2D or quasi-1D PDEs equations, 

obviously more computationally expensive than ODEs and usually more prone to numerical 

stability [22]. 

 
As stated by Shi et al. [10], the cardiovascular system is a closed network in which subsist strong 

interactions between its components, therefore, the mere application of a single reduced order model 

like 0D for describing the global circulation dynamics, 1D or 2D for studies on local flow features, 

is not sufficient in order to obtain full information on vascular response. In order to address the 

requirement of high accuracy and ability to simulate the interaction among cardiovascular organs 

[10], multi-scale models are developed by coupling different ROMs, thus managing to represent in 

a more complete way the cardiovascular system and blood flow. To create a multiscale 

mathematical model of blood flow is sufficient to combine at least two models of different 

dimensions (the most frequently employed models are 0D and 1D, whose union can provide 

boundary conditions for advanced 3D or full-order models); although the fundamental utility of 

multi-scale models, with the increasing of the number of single ROMs jointed, a problem 

concerning the stability of this method arises: in the solution of multi-scale problems, generally the 

single scale models are still calculated as they were in the independent studies, whilst at the 

interfaces special care is required in the handling of the boundary conditions to ensure that the 

problem is well-posed in the mathematical sense. Because the blood flow in most 

physiological/pathological conditions is subcritical, one boundary condition needs to be set for each 

side of every multi-scale model considered [10]. This obviously increase the complexity of the 

model development.  
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CHAPTER 3 
 

In this chapter, some applications of reduced order models of blood flow and cardiovascular system 

are shown, starting from a 0D model and then focusing on a 1D and a parametrized reduced order 

model. 

 

3.1 APPLICATION OF A LUMPED PARAMETER MODEL (0D) FOR THE 

SIMULATION OF ACUTE ISCHEMIC STROKE (AIS) 

 

Acute ischemic stroke (AIS) is defined as the acute condition of occlusion of a cerebral artery and 

since blood can flow no more through that artery, a region of the brain suffers of blood perfusion 

loss. One of the main risk factors related to AIS is considered to be a Hypertensive Condition (HC), 

that is to say a chronic situation in which systolic blood pressure exceeds the value of 130-140 

mmHg depending on age, sex, smoke, weight and personal health [17]. HC on long terms leads to 

a modification in arterial radius, vessel thickness, Young modulus and thus changes vessel 

impedance [23]. Due to its sudden occurrence, AIS is not observable the right moment it occurs, so 

information about instantaneous changes in hemodynamics is limited. Hemodynamic instantaneous 

changes in occluded human arteries when AIS takes place are quantitatively assessable only via 

animal models or, in the last decade, via computational models [17]. 

An integrated 0D, or Lumped Parameter model, from now on abbreviated as LP, of the 

cardiovascular system with the aim of simulating an AIS and describing instantaneous changes in 

haemodynamics has been proposed by L. Civilla et al. in [17]: as stated by the authors, “LP models 

may be suitable to describe the cardiovascular system during AIS, in which the time window of 

interest is limited to the very first seconds after the occlusion, and thus wave reflection and 

transmission effects are not considered”. Regarding the simulations, three different regimens, 

namely physiological, HC and AIS regimen, have been considered.  

In the integrated LP model of the cardiovascular system, heart chambers have been modelled with 

elastance systems with controlled pressure inputs, heart valves have been modelled with static 

binary (open/closed) pressure-controlled valves and eventually, the vasculature has been modelled 

with resistor-inductor-capacitor (RLC) direct circuits and have been linked to the rest of the system 

through a series connection (viscous resistance, fluid inertance and vessel wall elasticity have been 

taken into account). After simulating physiological conditions, HC has been simulated by changing 

pressure inputs and constant RLC parameters. Then, AIS occurring in arteries of different sizes 

have been simulated by considering time-dependent RLC parameters due to the elimination from 

the model of the occluding artery; instantaneous changes in hemodynamics have been evaluated by 

Systemic Arteriolar Flow (Qa) and Systemic Arteriolar Pressure (Pa) drop with respect to those 

measured in HC [17].  

 

3.1.1 MODEL IMPLEMENTATION 

 

As mentioned above, the integrated Lumped Parameter model of the cardiovascular system 

developed by Civilla et al [17] includes four heart chambers, as well as four heart valves, both 
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described by simple governing equations, such as mass conservation and relations for pressure P 

and flow Q through the valves and chambers, and Systemic Circulation (SC) and Pulmonary 

Circulation, implemented as a direct resistor-inductor-capacitor (RLC) circuit that takes into 

account vessel viscous resistance, fluid inertance and vessel wall elasticity. Moreover, large arteries 

have been modelled with RLC circuits, while arterioles/capillaries with a simple resistor and, 

finally, veins with RC circuits. 

Subsequently, the LP model has been implemented in a closed-loop electrical circuit in MATLAB 

SIMULINK R2019b (Figure 4a) and the Simscape Electrical™ package has been used to 

implement the electrical analogue.  

 

 

Figure 4: a) SIMULINK implementation of the integrated lumped parameter model of the 

cardiovascular system. Heart chambers and valves in grey boxes, vessels are represented with 

their extended electrical analogue apart from systemic arteries (red box). Current and voltage 

sensors have been inserted to measure flows and pressures downstream to the aortic valve and 

systemic arteries; net of voltage measurements has been implemented (in red) to measure 

pressures downstream to systemic components. b) Implementation of systemic arteries for 

physiological and hypertensive condition regimens and for the acute ischemic stroke regimen. 

c) Anatomical representation of the vascular situation (reproduced from Servier smart medical 

art) [17]. 
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Model implementation has been obtained by linking in series heart chambers, valves, SC and PC 

[17]. Clearly, the modelling of systemic arteries and the values of the main parameters and input 

data varies depending on the regimen under which the simulations are conducted (physiological, 

HC or AIS): for physiological and HC regimens, systemic arteries consist in RLC circuits, but the 

constant parameters used are different, while for AIS, RLC circuits are based on time dependant 

parameters. As stated by Civilla et al. [17], parameter values for physiological conditions were taken 

from the study led by Korakianitis et al. [24] and values for HC and AIS regimens were derived 

based on an analogy between humans and rats, describing R, L and C elements with the following 

equations: 

𝑅 =
8 𝑙 𝜇

𝜋 𝑟4
  ;   𝐿 =

9 𝑙 𝜌

4 𝐴
  ;   𝐶 =

3 𝑙 𝜋 𝑟3

2 𝐸 ℎ
 

 

in which l is the length of the lumped artery/vein, r is its radius, E is its elastic modulus, h is its 

thickness, A is the cross section, μ is the kinematic viscosity of blood, considered as 4·10-3 (Pa·s), 

and ρ is blood density, considered constant and equal to 1060 (kg/m3) [17]. According to Civilla et 

al. [17], the length of the occluding artery l is the parameter that most influences anatomical 

variability with respect to internal radius, vessel wall thickness and parameters present in the 

equations previously written. As such, length l has been assumed as the main parameter able to 

determine the gravity of an AIS.  

In their study, Civilla et al. [17] considered a series of ten occluding independent arteries (A1-A10), 

whose different lengths were assumed based on the anatomical values derived from precedent 

studies and simulated blood flow within the arteries in all the three regimens, focusing closely on 

the differences in haemodynamics during the transition from HC conditions to AIS regimen. The 

following table (Table 1) shows the values used during the simulations of the main parameters of 

the ten arteries in AIS regimen, namely length (l), radius (r), thickness (h), elastic modulus (E) and 

R, L, C values calculated with the equations mentioned above: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: values for model parameters for AIS regimens, considering ten different 

occluding arteries. [17] 

(6) 
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3.1.2 SIMULATIONS AND RESULTS 

 

After conducting the simulation of the physiological conditions during 5000 cardiac cycles, 

simulations of HC and AIS took place and lasted 20 s (10 for one and for the other regimen); as 

stated by Civilla et al. [17], change from HC to AIS regimen has been simulated as an instantaneous 

event and change in model parameters values has been simulated with a step function at time equal 

to 10 s. For both physiological and HC regimens, Aortic Pressure (AP) and Cardiac Output (CO) 

have been computed at the outlet of the aortic valve by means of a voltage and a current sensor. 

Systemic Arteriolar Flow (Qa) and Systemic Arteriolar Pressure (Pa) are assumed as output of the 

model, and the difference between Qa at HC at the last peak before AIS occurrence and Qa at the 

first peak after AIS occurrence has been indicated as ΔQa. Analogously, the difference between Pa 

at HC at the last peak before AIS occurrence and Pa at the first peak after AIS occurrence has been 

indicated as ΔPa. The values of Qa and Pa have been measured only in AIS regimen with current 

and voltage sensors downstream with respect to systemic arteries. Those measurements were then 

used to compute ΔQa and ΔPa [17]. The values of ΔQa and ΔPa obtained after the simulation are 

listed in Table 2 for all ten arteries A1-A10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation carried out by Civilla et al. [17] allows to compare the values of systolic, diastolic 

and mean blood pressure in physiological, HC and AIS conditions, as well as Aortic Pressure (AP) 

and Cardiac Output (CO). As explained by the authors, the values of systolic and diastolic blood 

pressure get closer to the mean value as smaller vessels are considered, following a 

physiological trend, as it is shown in Figure 5, while AP and CO in HC are higher than those 

in the physiological regimen (Figure 6).  

Table 2: variation in Systemic Arteriolar Flow (ΔQa) and Systemic 

Arteriolar Pressure (ΔPa) for the considered ten occluding arteries. [17] 
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Cardiac output at closed valve is maintained at 0 ml/s per cycle in both physiological and HC 

regimens; the peak it reaches in physiological regimen is 980.50 ml/s, while in HC it is higher 

and reaches 1049.70 ml/s. In physiological condition, systolic and diastolic AP reach 118.90 

mmHg and 76.30 mmHg respectively; in HC systolic and diastolic AP reach 137.90 mmHg and 

87.70 mmHg, respectively [17]. 

Figure 5: Systolic, diastolic and mean BP measured for every 

element of the systemic circulation for the physiological regimen 
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Moreover, by reference to Table 2, it is shown that the average ΔQa after the ischemia is 0.38 ml/s 

per cycle, with maximum and minimum variations respectively of 0.04 ml/s and 1.93 ml/s. These 

values correspond to a 0.3% loss in Qa peak from before to after occlusion. For Pa the results are 

similar, with a mean value of variation of 0.39 mmHg per cycle and minimum and maximum 

variations of 0.04 mmHg and 1.98 mmHg per cycle. When considering only arteries shorter than 

10 cm, the average loss for Qa and Pa is respectively of 0.59 ml/s and 0.61 mmHg per cycle, this 

one corresponding to 0.5% of the simulated hypertensive peak [17].  

The small dimensions of the occluding artery during AIS lead to a small loss of Qa and Pa with 

respect to the HC regimen, thus these results highlight that it is so hard to detect an AIS simply by 

measuring drops of pressure or blood flow. Basically, the results about the magnitude of ΔQa and 

ΔPa point out the difficulty of experimentally evaluate hemodynamics when an AIS occurs [17]. As 

regards to the results obtained in the physiological regimen in terms of systolic, diastolic and mean 

blood pressure, these are coherent with real values and with data extrapolated from literature. In 

particular, Figure 6a shows that the aortic pressure curve is more or less close to the one derived 

from the study of Stergiopulos et al. [25], although lacking the characteristic dicrotic notch and 

some oscillations; instead, the trend of CO is slightly different in shape (Figure 6b) since it does 

not replicate the retrograde incision in flow, being the motion of the valves modelled as 

instantaneous; moreover, the peak value of CO obtained with simulation is higher than the 

experimental value, probably due to flow velocity reduction from aortic valve to the ascending 

aorta, where the pressure has been measured [25]. In the HC regimen, the higher systolic blood 

pressure implies a higher CO (this value can be affected by errors within parameter data, being 

based on assumptions derived from animal models, as stated in Paragraph 3.1.1).  

The fact that hemodynamic variations due to AIS resulted from the lumped parameter model 

introduced by Civilla et al. [17] are very small with respect to HC, surely underlines the difficulty 

of spotting major instantaneous changes in blood flow when AIS occurs just by focusing on the 

pressure and flow drop. However, as stated by Civilla et al. [17], a correlation can be highlighted 

between the length of the occluding artery and the inverse of arteriolar pressure drop: a linear 

regression analysis has been performed in [17] between the reciprocal of ΔQa and the length of the 

occluding artery, l (the same has been conducted with ΔPa
-1 and l). The results are shown in Figure 

7. Shorter arteries lead to higher drops in arteriolar pressure, but since their magnitude is very low, 

the reliability of the linear regression has to be verified with further studies. In fact, a longer 

occluding artery leaves more cells without perfusion than a smaller one, making more damages. 

That could be used to link the severity of AIS to the length of the occluded artery [17].   

Figure 6: Aortic pressure (a) and Cardiac output (b) for the physiological (APP and 

COP) and the hypertensive condition regimens (APHC and COHC) compared with the 

experimental trends proposed by Stergiopulos et al. [25] 
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3.2 APPLICATION OF 1D MODEL FOR THE STUDY OF BLOOD FLOW IN 

ARTERIES WITH THREE DIFFERENT CROSS-SECTIONAL VELOCITY 

PROFILES  
 

As previously mentioned in Paragraph 2.3, one dimensional models have been used for many 

decades to study arterial hemodynamics due to their relative ease of application to a larger arterial 

network and ability to supply more accurate boundary condition to the higher dimensional models 

[18]. Moreover, as opposed to 0D models, one dimensional ones are suitable to study pulse wave 

propagation through arterial network, thus giving a better understanding on haemodynamics and 

disease pathogenesis. 

This section will now focus on the study led by Hasan et al. [18], concerning the modeling of a 

single artery and arterial network with a 1D ROM, which considers three different cross-sectional 

velocity profiles used in the calculation of the nonlinear convective force and the frictional force, 

namely modified flat, parabolic and the one derived from the work of Bessems et al. in [21]. Clearly, 

blood flow behaviour in a single artery and in arterial network has been studied using a time domain 

based one-dimensional wave propagation model, derived from 1D axisymmetric Navier-Stokes 

equations; furthermore, the mechanical behaviour of arterial walls was approximated by means of 

both linear elastic and linear viscoelastic material models. Numerical simulations and analysis are 

carried out in two separate cases, the first considering a single and isolated artery (aorta), while the 

latter studies pressure and flow rate variations due to the three velocity profiles within aorta, 

idealized as an arterial network composed by 20 small and large size arteries and branches. 

Therefore, in summary, as stated by Hasan et al. [18], the present study is aimed at investigating 

the effect of approximate cross-sectional velocity profile functions (modified flat, parabolic and 

logarithmic, proposed by Bessems [21]) on the flow characteristics for elastic and viscoelastic 

arterial wall constitutive laws [18]. 

 

Figure 7: association of ΔQa (a) and ΔPa (b) with the length of the occluding artery. [17] 
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3.2.1 MODEL IMPLEMENTATION 

 

The one dimensional wave propagation model considers blood flow along the axial direction with 

constant pressure across a cross-section of the artery; the 1D Navier-Stokes equations describing 

the wave propagation of a laminar, axisymmetric, incompressible and fully developed flow read as 

follow [18]: 

𝜕𝐴

𝜕𝑡
+
𝜕𝑞

𝜕𝑧
= 0 

𝜕𝑞

𝜕𝑡
+
𝜕

𝜕𝑧
(𝛿1

𝑞2

𝐴
) +

𝐴

𝑝

𝜕𝑝

𝜕𝑧
= 𝐴𝑓𝑧 +

2𝜋𝑅

𝜌
𝜏𝑤 +

𝜂

𝜌

𝜕2𝑞

𝜕𝑧2
 

 

being A(z, t) the lumen cross-sectional area, q(z, t) the average flow rate, p(z, t) the average pressure 

over the cross-section at a distance z from the inlet of the domain; fz is the axial component of the 

body force, η is fluid dynamic viscosity, ρ is constant fluid density, t is the time, R is the lumen 

radius and z is the axial space coordinate [18]. In addition, τw is defined as the wall frictional force 

and can be estimated using different velocity profile functions: in the case of the modified flat 

velocity profile 𝛿1 = 1, so 𝜏𝑤 = −
3𝜂

𝑅

𝑞

𝐴
, while for the parabolic velocity profile 𝛿1 = 

4

3
, so 𝜏𝑤 = −

4𝜂

𝑅

𝑞

𝐴
. 

Different is the case of the logarithmic velocity profile derived from Bessems et al. [21], which 

depends on three parameters, i.e. local flow rate (q), pressure gradient 
𝜕𝑝

𝜕𝑧
 and Womersley number α 

(in this case 𝛿1 ranges from 1.058 to 1.065). The following figure (Figure 8) shows the three 

velocity profiles abovementioned at time t = 0.115 s and at location z/L = 0.5 of the aorta.  

 

As reported by Hasan et al. [18], in order to solve the system of Navier-Stokes equations presented 

earlier, it is needed one more equation in the form of relation between stress and strain for artery 

wall: first linear elastic, then linear viscoelastic models and their constitutive equations are 

Figure 8: comparison of Bessems, modified flat and parabolic velocity 

profiles at z/L = 0.5 of aorta at t = 0.115 s. [18] 

(7) 

(8) 
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considered with the aim of modelling the mechanical behaviour of the artery’s wall. In the linear 

elastic model, the artery is considered to be made up of isotropic and homogeneous material and 

the relationship between hoop stress σθθ and strain εθθ is based on the assumptions that there is no 

axial deformation (εzz ≈ 0) and the radial normal stress is negligible (σrr << σθθ). The linear 

viscoelastic material model, instead, is a three-parameter based standard linear solid model (Zener 

model) involving two linear elastic springs and a dashpot [18]. In the latter case, the relationship 

between hoop stress and strain is more elaborate and includes parameters such as τσ and τε, 

respectively strain relaxation time and stress relaxation time. 

Moreover, the 1D wave propagation model is completed by adding specific boundary and initial 

conditions: at the inlet of the domain, a known flow rate (Figure 9) is prescribed, while the outlet 

boundary condition is coupled with a three element based zero-dimensional Windkessel model to 

account for the effect of downstream part of the arterial network. Windkessel model consists of two 

resistance R1, R2 and compliance C.  

 

The flow rate and pressure relationship at the outlet of the domain is given by the following equation  

𝑞 (1 +
𝑅1
𝑅2
) + 𝐶𝑅1

𝜕𝑞

𝜕𝑡
=
𝑝 − 𝑝𝑜𝑢𝑡
𝑅2

+ 𝐶
𝜕𝑝

𝜕𝑡
 

and initial conditions are set as follows: 

𝑞(𝑧, 0) = 0,   𝐴(𝑧, 0) = 𝐴𝑑 ,   𝑝(𝑧, 0) = 𝑝𝑑 

being pd the diastolic pressure and Ad the area of the Aorta at pressure pd.  

 

3.2.2 SIMULATIONS AND RESULTS 

 

As previously mentioned by Hasan et al. [18], simulations are carried out in two different cases: 

aorta modeled as a single arterial segment and considered as a complete arterial network. Focusing 

on the first case (a single arterial segment is discretized in space using ten quadratic finite elements), 

aorta is represented as a straight cylindrical vessel of length L = 24.137 cm, diameter D = 2.4 cm at 

Figure 9: flow rate at the inlet of Aorta for input parameters mentioned in 

paragraph 3.2.2. [18] 

(9) 
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the diastolic pressure pd = 9.5 kPa and a constant wall thickness h = 1.2 mm and both elastic and 

viscoelastic constitutive laws are used to model the artery. The main parameters regarding blood 

and wall properties and Windkessel parameters used for the numerical simulations are given in 

Table 3. 

 

 

 

 

Pressure and flow rate curves, obtained as the result of the simulations using linear elastic model 

for the three velocity profiles, are then compared with 3D results by Xiao et al. [26], obviously more 

precise, arising from a more complex and a higher-order model. The confrontation of results for the 

case of Bessems [21], modified flat and parabolic profiles and Xiao’s 3D analysis in different 

locations of aorta is shown in Figure 10 for the elastic model and in Figure 11 for the viscoelastic 

one. 

As stated by Hasan et al. [18], in the case of the linear elastic model, the relative errors in terms of 

pressure and flow rate are calculated with respect to Xiao et al. [26] 3D results: the error associated 

with the Bessems velocity profile is lower as compared to errors associated with modified flat and 

parabolic velocity profile functions; the smaller error prediction can be attributed to the flow 

dynamics considered by Bessems et al. [21] in the derivation of velocity profile, resulting into better 

estimation of convection (δ1) and viscous terms [18]. Furthermore, it can also be concluded that the 

assumption of Bessems velocity profile is more accurate as opposed to parabolic velocity, which is 

less accurate. In both elastic and viscoelastic models, differences in the average relative error 

associated with flow rate/pressure prediction using the three different velocity profiles fall within 

0.5% at all measuring locations (the maximum relative error is highest for parabolic velocity 

profile). It can also be inferred from Figures 10 and 11 that the linear viscoelastic model predicts 

lower flow rate and pressure compared to the linear elastic model for the set of parameters used in 

the simulation. [18]  

 

 

 

 

Table 3: blood, artery properties and Windkessel parameters used in aorta simulation; 

Ev and βv are respectively the elastic modulus of the springs belonging to the viscoelastic 

part of the Zener model and the coefficient of viscosity of the dashpot. [18]  
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Figure 10: Comparison of results obtained at inlet, midpoint and outlet by using Bessems [21], 

modified flat and parabolic velocity profiles in case of elastic model of the arterial wall. [18] 
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Finally, the root mean square value, that is the difference in the pressure prediction between the 

material models, is greatest for Bessems profile and is smallest for the modified flat profile, while 

in the case of flow rate prediction, just the opposite trend is observed.  

Regarding instead the second case proposed by Hasan et al. in [18], i.e. the simulation carried out 

in an arterial network, aorta is idealized as a complete network consisting of an aorta segment and 

its main branches, as shown in Figure 12 [18].  

For the sake of simplicity, all branches are considered straight small cylinders and curvatures 

of the arteries are neglected; the arterial network is modeled using 200 finite elements and 420 

nodes (10 one dimensional elements per branch) [18]. As it has already been done in the first 

case previously analysed, flow rate and pressure variation with time at different locations 

predicted using Bessems, modified flat and parabolic velocity profiles are compared with 3D 

results of Xiao et al. [26] (in Figure 13) for the elastic arterial model. The flow characteristics 

Figure 11: comparison of results obtained at inlet, midpoint and outlet by using Bessems [21], 

modified flat and parabolic velocity profiles in case of viscoelastic model of the arterial wall. [18] 

Figure 12: complete aorta network with 20 aorta segments and main branches. [18] 
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prediction for the viscoelastic material model using Bessems, modified flat and parabolic 

velocity profiles are compared in Figure 14. Moreover, in the case of elastic arterial model, 

relative errors of pressure, and flow rate at different locations are calculated with respect to 3D 

results of Xiao et al. [26]: it is found that for most of the cases, the error associated with the 

Bessems velocity profile is lesser as compared to those associated with modified flat and 

parabolic velocity profile functions. Here too, smaller error prediction is attributed to flow 

dynamics considered by Bessems et al. [21] in the derivation of velocity profile, resulting in 

better estimation of convection (δ1) and viscous terms. It is also noticed that both average and 

maximum errors in the flow rate prediction are significantly higher as compared to errors in the 

pressure prediction, due to the initial conditions imposed. [18] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, the linear viscoelastic model predicts lower flow rate and pressure as compared to the elastic 

model. 

To summarize, as reported by Hasan et al. [18], 1D wave propagation model in time domain is used 

to numerically predict the flow behaviour and pressure distributions in the single aorta and aorta 

network, considering different cross-sectional velocity profiles. The flow characteristics predictions 

for the three different velocity profile functions are found to be quite close and coherent with a more 

Figure 13: comparison of flow rate (left) and pressure distribution (right) at locations B, C, D of the 

arterial network modeled as elastic. [18] 

Figure 14: comparison of flow rate (Left) and pressure distribution (right) at locations B, C, D of the 

arterial network modeled as viscoelastic. [18] 
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precise and complex simulation of a 3D model, introduced by Xiao et al. in [26]. It can be seen a 

good agreement between the 1D and 3D models in the elastic case, especially during diastole, while 

the greater error in systole is due to the inability to account for secondary flow features, to the one 

dimensional modelling of arterial vessels (approximated as small cylinders and curvatures are 

neglected) and, particularly, due to the fixed velocity profile used (in order to achieve a better 

compliance compared to 3D models, the 1D formulation could incorporate space-varying and time-

varying velocity profiles [26]). In addition, the results achieved are remarkably dependent on the 

constitutive model used for approximating arteries’ mechanical behaviour, namely linear elastic and 

linear viscoelastic: in case of elastic arterial wall model, wave speed is found to be greater than that 

for the viscoelastic case. Furthermore, time gap in the arrival of the waves at different locations of 

the domain is clearly noticeable in the results and flow rate and mean pressure predicted by 

viscoelastic model are less as compared to the elastic model. As concluded by Hasan et al. [18], 

results of linear elastic model using Bessems logarithmic velocity profile are found to be in better 

agreement with the 3D results of Xiao et al. [26] as compared to modified flat and parabolic velocity 

profiles. [18] 

Thus, it can be asserted that the 1D model presented by Hasan et al. [18] gives a reasonable 

representation of the 3-D system in terms of the global behaviour of the spatially averaged pressure 

and flow waveforms: this can lead this one dimensional model to be used to reproduce clinical 

measurements and to conduce sensitivity studies under different hemodynamic conditions, in order 

to gain an understanding of the behaviour of the arterial system. [26]   

 

 

3.3 REDUCED ORDER MODELING OF BLOOD FLOW FOR THE EVALUATION 

OF CORONARY ARTERY DISEASE 

 

Coronary artery disease, or simply CAD, is one of the most severe blood flow related diseases which 

causes a great percentage of fatalities worldwide every year, therefore it is a focal spot in the medical 

field and in ROMs development. Many times, CAD can occur in the form of arterial stenosis, that 

is to say an abnormal narrowing of the vessel that can cause, in this case, reduced blood flow to the 

region of the myocardium [27]. As stated by Buoso et al. [27], clinically, the functional severity of  

the stenosis can be quantified with the fractional flow reserve (FFR) index: FFR is calculated as the 

ratio between the blood pressure distal to a stenosis and the aortic blood pressure, both of which are 

invasively measured under hyperaemic conditions using a pressure wire catheter. Despite the 

effectiveness of this method, invasive analysis may overestimate the lesion severity, increasing the 

pressure drop in the area of interest [27]. 

Among the numerous computational haemodynamic models (usually 1D models) proposed to 

assess coronary stenosis severity (FFR derivation is highly expensive in the matter of computational 

cost and time), a different one was introduced by Buoso et al. [27]: aiming at predicting the pressure 

drop along a stenosed vessel, the model builds on the exact algebraic form of the unsteady 

incompressible Navier-Stokes equations and continuity equations used in the full-order model 

(FOM), thus creating a nonlinear ROM based on offline-online splitting of the computations. 

Furthermore, the hemodynamic equations are discretized with the finite volume (FV) method and 

the system dimensionality is reduced by projecting the FOM onto a subspace obtained from proper 
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orthogonal decomposition (POD) of a dataset of velocity and pressure fields. The algebraic 

operators of the equations in the ROM are then assembled efficiently with low computational cost 

in the online phase using the discrete empirical interpolation method (DEIM). [27] This is set to 

increase the rapidity of calculations, maintaining relative errors within the uncertainty limits of the 

invasive clinical measurements. 

 

3.3.1 MODEL IMPLEMENTATION 
 

As have already been mentioned, the method proposed consists in an offline-online splitting on the 

computations, as it can be observed in Figure 15. 

 

As reported by Buoso et al. in [27], the online process starts with the acquisition of images using 

computed tomography and the segmentation of the branches of interest (step A), then, a 

computational domain is created from the vessel lumen (C) and used for the discretization of the 

incompressible Navier-Stokes equations (a full order model (FOM) is obtained). The numerical 

procedure requires the coupling of the resulting system of equations with boundary conditions, 

which are derived from subject-specific non-invasive clinical images and measurements (B). In 

phase D, Navier-Stokes equations are solved and FFR computed [27].  

The offline section starts from a database of geometries (I) that approximate the main features of 

coronary arteries (geometries are obtained from the deformation of a three-dimensional straight 

pipe with diameter d0 = 4 mm and length L0 = 40 mm, Figure 16). Applying DEIM to the vertex 

Figure 15: the online block (steps A to D) corresponds to the conventional calculation 

process using a full-order model. The offline block contains the steps used for the geometric 

parametrization and the creation of a reduced-order hemodynamic model. The two outputs 

of the offline block are the geometry reduction (II) and the HROM (XI), which are used in 

online steps C and D, respectively, for the calculation of subject-specific FFR. [27] 
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coordinates of the domains, a set of geometrical bases is obtained (II): the latter, weighted by 

appropriate coefficients, can reconstruct the computational domain inside a given vessel, reducing 

the computational time of the step (C) in the online phase. [27] 

 
Moreover, in the offline step III, the boundary conditions for blood vessels are parametrized 

imposing physiologic blood flow conditions by prescribing the inlet velocity profile (simulations 

are carried out using an axisymmetric parabolic inlet velocity profile). Subsequently, the geometric 

and physical parameters identified in steps I and III are used to create a predefined set of FOMs, 

obviously based on the parametrized unsteady Navier-Stokes equations (see Paragraph 1.3), to 

which are added boundary condition at the inlet (velocity profile imposition, as already said) and at 

the outlet (Cauchy stress tensor set to zero) of the domain. Then, the hemodynamic equations are 

discretized in both time and space using a FV solution strategy (IV), obtaining the corresponding 

velocity and pressure fields (V) [27]. As explained by Buoso et al. [27], proper orthogonal 

decomposition (POD) and discrete empirical interpolation method (DEIM) are employed in order 

to reduce the dimensionality of both geometric and hemodynamic descriptions: the first is used to 

construct the reduced bases for the velocity and the pressure fields, whose linear combination can 

reconstruct the original solutions. By imposing the orthogonality of the algebraic formulation of the 

FOM on the POD bases (Galerkin projection), the system’s dimensionality of states can be reduced 

(VII). Thus, this leads to a proper reduced-order model with low dimensionality, referred to as ROM 

(VIII). However, the ROM still requires the calculation of all operators in the FOM ahead of their 

projection onto the POD bases. For this purpose, DEIM is used on FOM’s matrices (X) in such a 

way as to enable the determination of an approximation of the algebraic description of the Navier-

Stokes operators, which will allow their efficient assembly during the online solution process (XI). 

The ROM using the DEIM approximation to reconstruct the operators is referred to as hyper-

reduced ROM (HROM): with this final ROM, the time to solution of subject-specific calculations 

will be reduced. [27] 

 

3.3.2 RESULTS AND ANALYSIS 
 

As stated by Buoso et al. [27], the geometry database has been populated with 100 different 

synthetic geometries by assigning values to the coefficients that appear in Figure 16, ranging from 

a minimum to a maximum value (Table 4). 

 

Figure 16: reference domain (representing a coronary artery branch) with added features 

(changes of the geometry due to stenosis and tapering): μg,0d0 is the inlet diameter, μg,0μg,4d0 the 

outlet diameter, μg,1d0 the diameter of the stenosis throat, μg,3d0 the throat position on the x3 axis, 

L0 is the total length (constant for all geometries). The stenosis length is a function of μg,2L0 . μg,0 

is the diameter scaling factor and μg,1 , μg,2  and μg,3 are the amplitude, length and throat position 

parameters of the bell-shaped restriction, respectively. [27] 
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Once defined the initial database, the geometric parametrization is carried out through the 

application of the discrete empirical interpolation method (DEIM) to 75 out of 100 geometries 

present within the database; chosen three values of tolerance ε (10-2, 10-3 and 10-4) for DEIM and 

their respective bases (3, 5 and 7 basis), the mean geometry of the vessel can be computed (Figure 

17a) and obtained from the point-wise average of the coordinates of the domains in the dataset.  

 
Subsequently, for each of the defined training geometries, a constant parabolic inlet velocity profile 

is set with a mean velocity magnitude between 0.2 and 1.2 m/s (flow regimes with Reynolds 

numbers between 200 and 1200) and snapshots of pressure and velocity, obtained from FOMs, are 

stored. Afterwards, POD is applied to the calculation of velocity and pressure subspaces and ROM’s 

constitutive matrices are solved, storing Navier-Stokes operators. Then, DEIM is applied to 

reconstruct the operators and a reduced mesh of the original domain is obtained: as stated by Buoso 

et al. [27], “since when using the HROM we are only required to assemble the algebraic NS 

operators for the cells of the reduced mesh, during the online phase we use the geometric 

parametrization to reconstruct the cells of the reduced mesh, decreasing the computational cost 

compared to the reconstruction of the full mesh”. [27] In Figure 18 is shown the reduced mesh for 

the computation of DEIM coefficients. 

 

 

Table 4: parameters and their value ranges for the geometry 

database; are also indicated the geometric features they affect. [27] 

Figure 17: output of geometric parametrization. (a) mean shape and 

magic points (red spheres) for the case with  ε = 10−4 , (b) first and (c) 

second reconstruction modes: the yellow shape corresponds to the 

minimum value of the reconstruction coefficient, the blue shape to the 

maximum value. [27] 
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Ultimately, HROM has been employed to pursue the purpose of Buoso’s study, i.e. the prediction 

of the pressure drop in the geometries of the database for selected inlet flow velocities [27]. 

Figure 18: reduced mesh for Navier-Stokes operators of the HROM. The panels represent the 

cells of the full mesh (red elements) required for the calculation of the coefficients used to 

impose the interpolation constraints on DEIM (convective, Laplacian, pressure-gradient and 

pressure-Laplacian operators). The background geometry refers to the mean geometry obtained 

from the geometric parametrization (transparent background, see Figure 17). [27] 

Figure 19: comparison of time averaged pressure drop predictions from FOM, ROM and 

HROM for the training set. (a) compares the pressure drop determined with the FOM 

(horizontal axis) to that calculated with the ROM (green dots) and the HROM (orange 

triangles), while (b) shows the relative errors in the pressure predictions: eR (green dots) 

refers to the relative error between FOM and ROM, while eH (orange triangles) to the 

relative error between FOM and HROM. [27] 

 

 

Figure 20: comparison of time averaged pressure drop predictions from FOM and HROM 

for the 25 test cases. (a) compares the pressure drop from the FOM (horizontal axis) to that 

calculated with the HROM, while b shows the relative errors in the pressure predictions 

between FOM and HROM as function of the pressure drop. [27] 
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Figures 19 and 20 show the comparison between FOM, ROM and HROM in the context of the 

calculation of the pressure drop in the stenosed artery vessel, also highlighting the relative errors in 

the pressure prediction in order to evaluate the uncertainties introduced during the Galerkin 

projection and the reconstruction of the operators using DEIM. Furthermore, Buoso et al. in [27] 

present the time-averaged velocity magnitude and pressure fields within the stenosed in the case of 

a section-averaged inlet velocity equal to 0.34 m/s, which is shown in Figure 21. 

  

In Figure 21, panels (a) and (b) are respectively the velocity magnitude, ||uh||, and pressure, ph, 

predictions from the FOM, while (c) and (d) are the reconstructed velocity magnitude field, ||ur||, 

and pressure, pr , predictions from the HROM. Finally, panels (e) and (f) illustrate the absolute error 

in velocity and pressure of the HROM with respect to the FOM, showing the magnitude of velocity 

difference ||ur – uh|| and difference in pressure pr − ph [27]. Additionally, it can be brought to 

attention that there is a region downstream the stenosis characterised by negative pressure values 

(with the increasing of Reynolds number and the variations of geometrical parameters, this region 

grows in extension, as it can be seen in Figure 22): it is recalled that at the outlet of the domain 

pressure values are set to zero, thus after the stenosis a partial recovery of the pressure occurs. 

Figure 19: contours of time-averaged velocity (left panels) and pressure fields 

(right panels) for the case described by the parameters μg,0 = 3.4 mm, μg,1 = 0.48 , 

μg,2 = 1.1 × 10−4 , μg,3 = 0.47 , μg,4 = 0.97 and μp = 0.34 m/s. The time-averaged 

pressure drops predicted by FOM and HROM are 5.69 mmHg and 5.59 mmHg, 

respectively. [27] 

Figure 20: reconstructed velocity magnitude field, ||ur||, and pressure, pr, 

predictions from the HROM for an inlet velocity of 1.05 m/s, μg,0 = 3.0 mm, μg,1 = 

0.48, μg,2 = 0.75 × 10−4, μg,3 = 0.04, μg,4 = 0.93 and μp = 1.05 m/s. With respect to 

Figure 21, Reynolds number in the vessel is much higher and transition from  

laminar to turbulent flow can be seen. [27] 
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As stated by Buoso et al. [27], in the case presented in Figure 21, the prediction error eH is 0.1 

mmHg (2%) and the maximum error in the pressure field reconstruction is approximately 30%, 

while, as far as Figure 22 is concerned, the time-averaged pressure drops predicted by FOM and 

HROM are 41.74 mmHg and 38.68 mmHg respectively, thus eH is approximately 3 mmHg (8%) 

and the maximum error in the pressure field reconstruction is about 10%. The errors observed 

between FOM and ROMs are linked to the complexity of the flow structures, as illustrated in 

Figures 21 and 22: moreover, it is shown that the prediction errors in the pressure drop, eH, is lower 

than the local maximum errors in the pressure fields, indicating that the output variable of interest 

is better approximated by the HROM than the full field [27]. 

Going back to Figure 19, it can be seen that the maximum prediction errors eR and eH are very close, 

indicating negligible additional errors in the HROM introduced by the approximation of the Navier-

Stokes operators with DEIM. Generally, ROM and HROM tend to underestimate the pressure drop, 

maybe because the smallest flow structures with POD basis are neglected as well as some of the 

inherent viscous dissipation. As asserted by Buoso et al. [27], the errors eH for training and test sets 

are very similar (Figures 19 and 20), indicating that the model introduced could be used for making 

predictions for new cases not included in the training set; in addition, is important to highlight that 

the magnitude of these errors is within the range of those introduced by the catheter wire during 

invasive FFR measurements, thus showing the potential of the method for the generation of 

reduced-order models fast enough for pressure drop predictions for clinical applications [27]. From 

a clinical point of view, high prediction accuracy must be achieved in cases where the FFR value is 

in the range of 0.75–0.85, since 0.8. is commonly used as the threshold below which a stenosis is 

considered functionally significant, therefore the cases close to the FFR threshold value should 

receive a higher weight (in the model presented by Buoso et al. all snapshots have the same weight), 

increasing the accuracy of the prediction. [27] 

In terms of computational cost, the reduced order model introduced in [27] implies a high speed up, 

especially in the context of mesh generation and haemodynamic calculations: with the conventional 

pipeline, mesh generation takes on average 2 s on a single CPU core, but only 0.19 s with the 

proposed geometric reconstruction through DEIM, providing a speedup of about a factor of 10; on 

the other hand, considering the computational time for the generation of the time-dependent 

operators and the solution of the system of equations, the FOM requires on average 2.5 s on a single 

core for each time step, while the ROM requires 0.11 s on average. This corresponds to a speedup 

of a factor of about 25. [27] 

To summarize, Buoso et al. [27] introduced a methodology for generating a parametrized reduced-

order model (HROM) to predict the pressure drop along a blood vessel, based on an offline-online 

splitting of the solution process combined with proper orthogonal decomposition (POD) and the 

discrete empirical interpolation method (DEIM), in order to reduce the computational cost 

associated with mesh generation and the solution of the hemodynamic equations. Numerical results 

show good overall accuracy of the HROM in predicting hemodynamic indices, and a great speedup 

compared to the full-order model. Finally, errors are lower than those incurred during invasive 

acquisitions of pressure drop across stenoses in coronary arteries, thus ensuring a possible 

application of the model in clinical setting aiming at evaluating the severity of coronary artery 

disease in a rapid, precise and non-invasive way. 
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CONCLUSIONS 
 

 
The cardiovascular system consists in a series of vessels of different sizes, thickness and structural 

properties which branch and link up, introducing a great number of discontinuities that are difficult 

to model; moreover, as far as haemodynamics is concerned, Reynolds number varies considerably 

depending on the type of vessel and on physiological or pathological conditions of blood flow. Flow 

rate and pressure characteristics constantly change in correspondence of the numerous interfaces 

between vessels and have generally a pulsatile behaviour (it can also be pointed out the non-

Newtonian nature of blood, which further complicates a highly precise analysis). Thus, as it has 

been widely highlighted throughout this thesis, the extremely elevated complexity of the 

cardiovascular system both in terms of spatial geometry and fluid dynamics, makes the use of 

reduced order models indispensable when faster and cheaper analysis are required. In fact, ROMs 

have strongly broken into clinical settings, where accurate computations may have to be performed 

in a short amount of time, in order to support decision making processes and to evaluate the severity 

of pathological condition in patients. Furthermore, we have said that the benefits of reduced order 

models primarily consist in computational cost and time reduction with respect to full order models 

(FOMs), being also able to preserve the accuracy and precision that characterize the latters. As 

shown in Chapter 3 in the works of Civilla et al. [17], Hasan et al. [18] and Buoso et al. [27], the 

reduced order models proposed are generally in good agreement with output results derived from 

3D models and FOMs already existing in literature, demonstrating that errors are restrained and 

thus validating these ROMs. Therefore, it surely cannot be questioned the fact that, thanks to ROMs, 

a great computational burden is relieved: focusing, for example, on the parametrized model 

proposed by Buoso et al. [27], it has been proven that the ROM ensures a huge speedup both in 

terms of domain parametrizing (mesh generation), with a factor of 10, and of haemodynamic 

equations solving, actually 25 times much faster than the full order model. Another fundamental 

advantage introduced by the model abovementioned regards the fact that errors derived from the 

splitting of the calculations, the application of proper orthogonal decomposition (POD) and discrete 

empirical interpolation method (DEIM) are even smaller than the ones introduced by in-vivo 

measurements. Thus, in this and other cases, the utility and the clinical importance of such a model 

is obvious and can be well on the way to replace expensive FOMs in the context of patient-specific 

analysis. 

Needless to say, the accuracy of the reduced order models strongly depends on their dimension, 

giving the fact that some important hypothesis and simplifications are employed in the full order 

model approximation: for example, a 0D model is well suited for the representation of the global 

haemodynamics of the whole circulation, but fails at giving precise results when the study of blood 

flow is carried out in restricted domains (this models neglect important haemodynamic aspects, 

such as pulse wave propagation in arteries). Moreover, in the case of a 1D model, although giving 

more precise results in terms of pressure and flow rate waveforms in artery vessels than a 0D model, 

a velocity profile must always be set in order to carry out simulations: this, obviously, constitutes a 

source of error that cannot be neglected when precise results are needed and the entity of the error 

is related to the type of velocity profile and structural vessel wall model chosen. For example, when 

modeling blood flow through aorta, Hasan et al. [18] compared the effect of three different profiles 

on the flow characteristics, concluding that a parabolic profile, which is the most commonly used 
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in simulations, provides less accurate outputs than other profiles (the problem of finding the most 

suited velocity profile to the aim of the study opens up), although still giving a very useful and quick 

approximation that can be used for real time analysis in the place of the FOM. 

As stated by Dal Santo et al. [12], several challenges remain open when dealing with cardiovascular 

applications of reduced order models, such as among others to find new approaches to address 

multiphysics and multiscale models, to find a solution to the nonlinearity and high sensitivity of the 

solutions with respect to parameter variations, which limit computational speedups and, finally, to 

achieve patient-specific models that can safely replace three dimensional imagine based 

computational fluid dynamic models (CFD), thus obtaining a large number of advantages from a 

preventive, diagnostic and operative point of view in clinical settings. 
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