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SUMMARY 
 
 
   As reported in the introduction of the study conducted by Trip et al. [1], the transition of a 
pulsatile flow from the laminar to the turbulent regime has been deeply analyzed primarily 
because of the main question concerning the possibility of transition to turbulence of the flow 
in the cardiovascular system, in particularly in large arteries (either under normal conditions or 
due to physical exercise or diseases). Mentioning what was stated by Stein and Sabbah [2], 
turbulent flow, or more generally “disturbed flow”, and the resulting fluctuating wall shear 
stresses have been associated with the etiology of a range of cardiovascular diseases. In fact, it 
is possible that in some fractions of the cycle the instantaneous Reynolds number is particularly 
high, and this parameter is such as to induce the average flow in the large arteries in the 
transition regime. Since it would be too complicated to deal with this problem considering the 
biomechanical geometry entirely, to facilitate the discussion, attention has been paid to the 
study of the simplified problem of the transition of a pulsatile flow in a straight, rigid pipe. 
Effects due to, for instance, vessel curvature, bifurcations, wall distention, wall roughness, and 
non-Newtonian behavior of blood are thus ignored. This isolates the core fundamental fluid 
mechanical problem, which is closely linked to the research of transition of steady pipe flow. 
[1] 
 
   In the first part are mentioned concepts of relevant parameters (such as Reynolds and 
Womersley numbers), pipe flow generalities, the transition of a pulsatile flow (laminar, steady 
and unsteady) and the phenomenon of phase-locked turbulence. 
 
   The second part presents the experiments carried out to visualize how a pulsatile flow reacts 
to the change of determined parameters and to evaluate the modalities and consequences of the 
transition to turbulence of pulsatile flow. Furthermore, it is analyzed the role of the transition 
growth in the transition to turbulence. 
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1. INTRODUCTION 
 
 
1.1 REYNOLDS NUMBER 
 
   The Reynolds number describes the ratio of inertial to viscous forces. It is a dimensionless 
number used to categorize the fluids systems in which the effect of viscosity is important in 
controlling the velocities or the flow pattern of a fluid. If the axial velocity ! is composed of a 
steady velocity component !! and an oscillatory velocity component !", it is possible to define 
the mean Reynolds number "## ≡ 2!!"/' and the oscillatory Reynolds number "#" ≡
2!""/'. In these definitions, " is the radius of the pipe and ' the kinematic viscosity (' = )/* 
where ) is the dynamic viscosity and * the fluid density). Considering a fluid flow in a pipe, 
the Reynolds number has a particular importance because if "# < 2300 the flow is laminar, 
otherwise if "# > 2300 the flow becomes turbulent. 
   The ratio "#"/"## is also commonly used. This parameter describes the ratio of oscillating 
and mean velocity component. 
 
1.2 WOMERSLEY NUMBER 
 
   The Womersley number is a dimensionless number used in biofluid mechanics and biofluid 
dynamics as an expression of the pulsatile flow frequency in relation to viscous effects, in other 
words it gives the ratio of transient inertial force to viscous forces. Mathematically, it is 
expressed as / ≡ 01 = "23/', where " is the radius of the pipe, ' the kinematic viscosity 
and 3 = 245 the angular velocity (5 is the frequency of the oscillation). This parameter is 
important in keeping dynamic similarity when scaling an experiment. The Womersley number 
is also important in determining the thickness of the boundary layer to see if the entrance effects 
can be ignored. 
 
1.3 PIPE FLOW (HAGEN-POISEUILLE FLOW) 
 
   Navier-Stokes equations for an incompressible fluid with constant properties in cylindrical 
coordinates, with 6 = 7$#$ + 7%9% + 7&9&, are written as  
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   The flow in an infinite rectilinear conduit with a circular section and constant diameter is a 
case of parallel flow. By introducing a cylindrical coordinate system with the > axis along the 
axis of the duct, by axial symmetry the solution has the form 

6 = {0,0, !(;)} 
with the boundary condition !(") = 0, where R is the radius of the circular section. In addition, 
E = E(>). 
   In this case, the continuity equation (1) is automatically satisfied, as well as the components 
of the equation of momentum along ; (2) and along = (3). The component along > (4) become 

) M
N'!
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+
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NE
N>
	, 

since the term on the left is a function of ; while on the right the pressure gradient is only a 
function of >, the equality is satisfied if both terms are constant and equal, from which 
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To get a finite velocity value for ; = 0 you have R( = 0, and for the condition !(") = 0 we 
get R' = P"'/(4)), whence 
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and since P = −NE/N> the Hagen-Poiseuille flow velocity profile is obtained 
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   The velocity profile is a paraboloid of revolution and since the expression of the drag 
coefficient U = 64/"# is in excellent agreement with the experimental data, this shows that the 
Hagen-Poiseuille solution represents with good precision the flow in a rectilinear duct with a 
circular section. However, this situation is valid, for a given duct, only for not too high speeds 
corresponding to values of the Reynolds number lower than "#)$*+ = 2300, for which there is 
a laminar flow represented by the Hagen-Poiseuille solution, while for higher values there is a 
completely different situation characterized by a turbulent flow. [3] 
 

 
Figure 1: Simplified visualization of a Hagen-Poiseuille flow velocity profile (paraboloid of 
revolution). 
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1.4 TRANSITION OF PULSATILE FLOW 
 
 
1.4.1 LAMINAR FLOW 
 
   According to Trip et al. [1], measurements are conducted for both steady and unsteady flow 
within the range of mean Reynolds number "## for which transition is expected ("## =
2000 − 3500). The number of images X recorded is fifty, because the velocity data converged 
sufficiently for this number in preliminary experiments, as shown in Figure 2. [1] 
 

 
Figure 2: The mean velocity u, as function of the number of images used to average. The data 
are normalized using the value obtained using all available images. [1] 
 
   Before looking at the turbulence intensity, it is necessary to introduce the following equation, 
so that the theoretical results can be compared with the experimental results concerning the 
steady, oscillatory and pulsatile laminar flow velocity profiles, 

!(;, C) =
E!
4)
(;' − "') +

E"
Z)
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\- F/
;
" Z

.
'	H

\- F/Z
.
'	H
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   In this equation, E! is the time-independent pressure gradient, E"#*/+ the time-dependent 
pressure gradient, and ) the dynamic viscosity. In the first term, the classic parabolic Poiseuille 
flow can be recognized, while the second term represents a flatter, phase-lagged profile 
representing the effects of transient inertia (note that \- is a Bessel function of the first kind of 
zeroth order). [1] 
Examples of instantaneous velocity profiles of typical pulsatile flow are shown in Figure 3. 
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Figure 3: Left: Measured and theoretical steady !! (×), oscillatory !" (∙), and pulsatile u, 
(◯) velocity profiles of a laminar pulsatile flow (/ = 10, "## = 2160 and "#" = 610). 
Right: Measured steady !! (×), oscillatory !" (∙), and pulsatile !# (◯) velocity profiles of a 
turbulent pulsatile flow (/ = 10, "## = 3160 and "#" = 610). [1] 
 
   In this figure, the mean component (×), the oscillating component (∙), and the sum (◯, 
“pulsatile”) are shown for both a laminar and a turbulent case. The data has been normalized 
with the centerline velocity for each case. For the laminar case, the continuous lines indicate 
the theoretical prediction given in Eq. (5). Only the phase of the theoretical predictions has 
been adjusted to match the experimental data, as this particular set of data was not phase-locked. 
Paying attention to the turbulent case, the velocity is uniformly distributed as the presence of 
vortex structures allows a more functional transport of the momentum. [1] 
   The laminar velocity profile, on the other hand, is probably distorted due to the high Reynolds 
numbers that generate non-ideal inlet conditions that persist in the laminar case. [1] 
 
1.4.2 TRANSITION OF STEADY FLOW 
 
   The transition of steady flow is examined first by Trip et al. [1]. The turbulence intensity is 
measured for a mean Reynolds number from "## = 2000 to "## = 3500. Because the 
volumetric flow rate is controlled, the mean Reynolds number is corrected for the temperature 
dependence of the kinematic viscosity. The turbulence intensity is the statistical average over 
fifty realizations. 
   In Figure 4, the turbulence intensity at the centerline based on the, respectively, the radial and 
axial velocity fluctuations are shown. Error bars denote the standard error of the mean. For the 
axial component, a large overshoot is shown for "## = 2388. [1] 
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Figure 4: Turbulence intensity I at the centerline, determined by normalizing the velocity 
fluctuations with the centerline velocity, as function of the mean Reynolds number "## for 
steady flow. The axial a0 (◯) and radial a$ (×) component of the turbulence intensity are 
shown separately. [1] 
 
   In accordance with what is reported in the previous paragraph, because of the more efficient 
momentum transfer, the mean velocity component of turbulent flows is smaller compared to 
laminar flow. Due to the intermittent nature within the transitional regime, the ensemble 
average of the mean velocity component is biased and the result for the velocity fluctuations 
increases as a result. For Trip et al. [1] the overshoot does not give a clear value for the 
intermittency, although might be considered physical because the turbulence intensity is a 
statistical quantity. One way to avoid the overshoot is by looking at the radial velocity 
component, for which the mean component is equal to zero for both the laminar and turbulent 
flow state. As a result, no overshoot is shown for radial component of the turbulent intensity as 
shown in Figure 4. To get a better understanding of turbulence during transitional flow, the 
turbulence intensity based solely on the radial component 71 is more appropriate here and will 
be used for the remainder of this section, according to Trip et al.. [1] 
   The turbulence intensity normalized by the centerline velocity is a$ ≈ 1% for a mean 
Reynolds number up to "## ≈ 2400. As attested by Trip et al. [1], the turbulence intensity of 
this flow, which is still considered to be laminar, is a result of all contributions not related to 
turbulence like measurement errors and small fluctuations in the pump output. An increase in 
intensity can be observed in a range that is referred to as transitional ("## ≈ 2400 − 2800). 
Within this region, puffs occur randomly in time. For an increasing "##, an increasing number 
of puffs occurs until the flow has become turbulent at every instance which is the case for 
"## > 2800. The turbulence intensity at this Reynolds number normalized by the centerline 
velocity is a$ ≈ 3%. This range is consistent with the range expected based on the flow 
conditions and the orifice plate used. [4] The boundaries for laminar, transitional, and turbulent 
flow measured here will be used as a reference for the results of unsteady flow, in line with the 
study of Trip et al.. [1] 
 
1.4.3 TRANSITION OF UNSTEADY FLOW 
 
   A straightforward calculation of the turbulence intensity is not a satisfactory metric due to the 
intermittent character of the flow in the transition range. A solution is to subtract the line 
average in the axial direction for each fluctuating velocity field 

Ψ#"2,*
1 (e, ;) = Ψ*

1(e, ;) −
1
f
gΨ*

1(e, ;)	Ne	. (6) 
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   One should notice this is only valid if the turbulent structures are large compared to the width 
of the field of view. As stated in the study of Wygnanski and Champagne [5], a typical puff is 
over 20 diameters in length and, therefore, extends over multiple measurement volumes. The 
error made because only part of the puff is within the field of view is small for that reason. 
Although the pump oscillations produce uniform variations in speed in the axial direction, the 
turbulent structures do not. 
   In the analysis of Trip et al. [1], the series of measurements for unsteady flow is conducted 
over a range of mean Reynolds numbers "## for a single velocity amplitude, i.e., "#" = 610 
and four Womersley numbers (/ = 10 − 25) representative for blood flow within the aorta and 
arteries. Measurements are conducted phase-locked at eight instances during each flow cycle. 
The required measurement frequency and total measurement time for each case are shown in 
Table I. 
 
Table I: Measurements of unsteady pulsatile flow with a Womersley number /, where 5 is the 
frequency of the pulsation, 5+ the frequency of measurements, h+ the total measurement time 
based on 50 image pairs per phase, and !1/i an estimate of the reciprocal value of the 
turbulence integral time-scale. [1] 
 

/ 5 5+ h+ !1/i 
[-] [1/s] [1/s] [s] [1/s] 
0 0.0000 1.000 50 0.0775 
10 0.0398 0.318 1256 0.0900 
15 0.0895 0.716 559 0.0692 
20 0.1592 1.273 314 0.0825 
25 0.2487 1.989 201 0.0955 

 
   Based on the modified velocity fluctuation field Ψ#"21 , the turbulence intensity is calculated 
at the centerline. The turbulence intensity is normalized by the centerline velocity and averaged 
over time. The results are shown in Figure 5. [1] 
 

 
Figure 5: Turbulence intensity a at the centerline based on j#"21  normalized by the centerline 
velocity as function of the mean Reynolds number "## for five different Womersley numbers. 
The dotted line indicates the mean Reynolds number for which the dependence on oscillatory 
Reynolds number is shown in Figure 3. The arrow marks a specific measurement discussed in 
the text. [1] 
 
   The results for the steady case, i.e., the result described in Sec. 1.4.2, are shown as open circles 
(/ = 0). Compared to the results based on the radial velocity fluctuation component, discussed 
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in Sec. 1.4.2, the turbulence intensity at the centerline for steady laminar flow has decreased to 
a value of a ≈ 0.1%. This observation confirms that the new method to compute the velocity 
fluctuation does indeed also provide a correction for pump fluctuations. [1] 
   As reported in Table I, due to the difference in measurement frequency, a puff is captured in 
more instantaneous velocity fields for higher Womersley numbers. As per Kuik et al. [6], for 
the unsteady cases, the total measurement time is long compared to the survival time of a puff. 
As a result, the statistics average out with little influence of individual puffs. For the steady 
case, however, the total measurement time is short compared to the survival time. 
Consequently, a puff (if present) will be present in a larger fraction of the total measurement 
time and this means that the statistics will be more strongly influenced by the possible presence 
of a puff. As a result, the transition (as reported in Figure 5) seems to be less gradual. This 
hypothesis is underpinned by evaluating the data that is associated with the apparent outlier 
marked with an arrow in Figure 5, for ("## = 2237 and / = 0). Visual inspection of the 
velocity fields supports the conclusion that this “outlier” is the result of a single puff. In keeping 
with the research of Trip et al. [1], this problem can be overcome by recording significantly 
more image pairs, but this turned out to be unfeasible in practice. [1] 
   To confirm the presence of puffs, the flow is visualized using Iriodin flakes. For both steady 
and unsteady transitional flow, a series of images is recorded with a frame rate of 5+ = 10	l> 
to capture the passage of a puff. To obtain a spatial reconstruction, images are stitched together 
with a spatial distance based on the average velocity of the puff which is approximately equal 
to the bulk velocity. [1] 
 

 
Figure 6: A visualization of a puff for unsteady (A) and steady (B) base flow. Image (C) gives 
the velocity fluctuations in the radial direction obtained by PIV. The phase-locked turbulence 
regime is shown in (D). The flow direction is from right to left. (Notice that the horizontal axis 
is compressed relative to the vertical axis). [1] 
 
   In Figure 6, the characteristic shape of a puff [7] is clearly recognizable for both steady as 
well as unsteady flow, i.e., a conical tail of turbulence at the centerline downstream side of the 
puff and initial turbulence at the wall at the upstream side. The figure also shows velocity 
fluctuations in the radial directions measured with PIV. The PIV data are combined in a similar 
way to the visualization images. The velocity data appears to show a much smaller puff, but 
this is actually caused by the large velocity fluctuations in the core of the puff compared to the 
fluctuations in its downstream tail. As stated by Trip et al. [1], a visual inspection of the data 
showed that the flow consisted of small, isolated turbulent structures; they also did not observe 
growing slug-like structures that start to appear in steady flows at Reynolds numbers above 
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2400-2700. A detailed comparison of the full flow structure of the puffs in the steady and 
pulsatile cases would be interesting, but cannot be done with the present measurement facilities. 
[1] 
   Returning to Figure 5, no clear differences can be observed for the different pulsatile flows. 
Therefore, a single fit through all values is shown in Figure 5. This agrees with results of Stettler 
and Hussain [8] who found that the influence of pulsation is limited to / < 10. The s-like shape 
of the turbulence intensity graphs (Figures 4 and 5) resembles the graph of the intermittency as 
a function of Reynolds number as reported in Yellin [9], data which was obtained by flow 
visualization. This confirms our hypothesis that the increase in puff number causes the smooth 
increase in turbulent intensity. [1] 
   The question arises if the oscillatory Reynolds number influences the turbulence intensity for 
a fixed mean Reynolds number. For "## ≈ 2700, the turbulence intensity is shown in Figure 
7 as a function of the oscillatory Reynolds number. [1] 
 

 
Figure 7: Turbulence intensity a as a function of the oscillating Reynolds number "#". The 
corresponding temperature-corrected mean Reynolds numbers "## and the ratio "#"/"## are 
also indicated. [1] 
 
   At first sight, it appears that the turbulence intensity increases with "#". However, as the 
temperature was not completely constant during the measurement, the mean Reynolds number 
"## increases slightly. Therefore, the observed increase in turbulence intensity is likely 
explained by the increase in the mean Reynolds number, rather than due to the different 
oscillatory Reynolds numbers (see e.g., the slope shown in Figure 5 for "## = 2700, indicated 
by the dashed line). Consequently, it can be concluded that the turbulence intensity is not a 
function of the oscillating Reynolds number; this indirectly suggests that the transition behavior 
is also not influenced by this parameter. Figure 7 also shows that there is no clear relation 
between "#"/"## and the turbulence intensity. [1] 
 
1.5 PHASE-LOCKED TURBULENCE 
 
   For a Womersley number up to / = 25, phase-locked turbulence is expected for mean 
Reynolds number "## > 2700 and oscillatory Reynolds numbers "#" > 1400 [9]. None of 
the parameters "##, "#", "#"/"##, or / gives a clear boundary between the two regimes 
indicated here. As expressed in their study by Trip et al. [1], the phase-locked turbulence is a 
completely different phenomenon compared to the random occurrence of puffs. They assume 
that it is not likely that a local patch of turbulence that travels through the pipe appears phase-
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locked at a fixed measurement location for every flow cycle, but a more likely explanation 
would be that the entire flow bursts into turbulence and then (partially) relaminarizes. [1] 
   Two measurements are carried out by Trip et al. within the phase-locked regime, for which 
the parameters are given in Table II. The PIV measurements shown are an average over 100 
cycles and a 50% overlap of the interrogation areas is used to obtain a higher resolution in the 
radial direction, required to resolve the radial dependence of the turbulence intensity. The bulk 
velocity is used as the reference velocity to define the turbulence intensity. Besides the PIV 
measurements, a flow visualization is carried out as well. [1] 
 
Table II: Measurements of unsteady pulsatile flow with Womersley number /, the frequency 
of the pulsation 5, the frequency of measurements 5+ based on the number of phase-locked 
measurements per cycle, and !1/i an estimate of the reciprocal value of the turbulence integral 
time-scale. [1] 
 
"## "#" "#"

/"## 
/ 5 5+ !1/i 

[-] [-] [-] [-] [1/s] [1/s] [1/s] 
4000 1610 0.40 15 0.0895 3.580 0.1000 
5000 4000 0.80 20 0.1592 3.184 0.1350 

 
To analyze the occurrence of turbulence as a function of the phase of pulsatile flow, it is 
worthwhile to look at the turbulence characteristics over the pipe radius as function of phase 
first, as shown in Figures 8 and 9. [1] 
 

 
Figure 8: 〈!1'〉

!
" and 〈71'〉

!
" as function of time over the radial position ; with " the pipe radius 

for	"## = 4000, "#- = 1610, and / = 15. The accelerating (Acc.) and decelerating phases 
(Dec.) are shown at the top and bottom rows, respectively, with an indication of the phase with 
respect to the bulk velocity flow cycle in the insets of each sub-image. [1] 
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Figure 9: 〈!1'〉

!
" and 〈71'〉

!
" as function of time over the radial position ; with " the pipe radius 

for "## = 5000, "#- = 4000, and / = 20. The accelerating (Acc.) and decelerating phases 
(Dec.) are shown at the top and bottom rows, respectively, with an indication of the phase with 
respect to the bulk velocity flow cycle in the insets of each sub-image. [1] 
 
   For several phases in both cases a small “bump” in 〈!1'〉

!
" and 〈71'〉

!
" is shown around ; =

3 4⁄ ". These are actually artifacts caused by reflection of light in the raw PIV images that are 
insufficiently corrected for by image background reduction. A reflection causes the mean 
velocity to decrease as reflections are stationary. When the mean velocity is subtracted this 
leads to a higher apparent fluctuating component. [1] 
   To characterize the turbulent intensity in the entire pipe, the turbulence intensity is integrated 
over the pipe radius. Because the turbulence intensity in the azimuthal direction cannot be 
measured with planar PIV, it was assumed to be equal to the radial turbulence intensity because 
the mean velocity is zero in this direction as well. The turbulence intensity during a cycle for 
both "## = 4000 and "## = 5000 are shown in Figures 10 and 11. The turbulence intensity 
has here been determined by averaging the RMS value for all realizations within one phase. [1] 
 

 
Figure 10: Turbulence intensity a as function of time C/h for "## = 4000, "#" = 1610, and 
/ = 15. The top figure shows the bulk velocity to indicate the flow cycle. [1] 
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Figure 11: Turbulence intensity a as function of time C/h for "## = 5000, "#" = 4000, and 
/ = 20. The top figure shows the bulk velocity to indicate the flow cycle. [1] 
 
   Looking at the two figures above it is possible to notice that the turbulence intensity decreases 
during the accelerating phase and starts to increase during deceleration. Also, a maximum is 
reached just before the end of the deceleration phase after which it remains constant. For "## =
5000 a decrease is shown for the remainder of the cycle. Both cases show that the turbulence 
intensity maintains the same phase lag relative to the velocity.  This observation is in excellent 
agreement with results shown by Ramaprian and Tu [10], but one should notice that their results 
concerned the centerline fluctuations only. Akhavan et al. [11] report the turbulent kinetic 
energy integrated over the cross section, but these results are opposite to the results shown here. 
In fact, maximum turbulent kinetic energy was found at the end of the accelerating phase instead 
of at the moment of largest deceleration. A possible explanation, proposed by Trip et al., is the 
oscillatory nature of their flow, i.e., no mean velocity component, instead of the pulsatile flow 
studied here. In the present case, even during the decelerating phase, the velocity always has 
the same sign. [1] 
   A plausible explanation for the relation between velocity and turbulence intensity is given by 
Bluestein and Einav [12]. It is mentioned that disturbances are generally observed to occur 
during flow deceleration. During deceleration, the flow exhibits inflection points in the velocity 
profiles, which is a condition that might lead to an unstable flow. As the velocity approaches a 
minimum, the free stream can no longer feed the turbulence and the turbulent structures that 
have just formed start to decay. Whether the flow will completely relaminarize during the 
accelerating phase probably depends on the oscillating frequency, since it takes some time for 
turbulence to decay. For the cases examined here by Trip et al., the flow does not completely 
relaminarize. This can be explained by the turbulence integral time-scale, which is of the same 
order of magnitude as the frequency of the pulsation (see Table II). Simply stated, there is 
simply not enough time for turbulence to decay completely. [1] 
   Whether turbulent patches are present or the flow bursts into turbulence over, the entire pipe 
at once is difficult to conclude from the PIV measurements recorded for a relatively small 
observation window. Flow visualization using Iriodin flakes was again used to observe the 
transition over the entire pipe length at once. Visual inspection (see e.g., Figure 6(D)) show 
that the flow does not relaminarize completely, but remains turbulent. The structures during the 
accelerating phase are large compared to the pipe radius. It is not possible to conclude whether 
the structures are located near the wall. When the minimum velocity has been nearly reached 
the flow abruptly burst into small structures at apparent random axial locations within the entire 
pipe, swiftly growing throughout the entire pipe length. [1] 
 
 



 13 

2. EXPERIMENTS AND NUMERICAL SIMULATIONS 
 
 
2.1 XU ET AL. EXPERIMENT N°1 
 
These experiments were reported in Sec. 2 of Xu et al. 2017. [13] 
 
2.1.1 EXPERIMENT’S SET UP 
 
   The experiments conducted by Xu et al. 2017 [13] were carried out in straight rigid pipes of 
circular cross-section and three set-ups were used which mainly differed in the pipe diameter 
and the pipe length. 
 

• Case I: the pipe is composed of five glass tubes resulting in a total length of 5.5 m. 
Tubes have an inner diameter of D=10±0.01 mm and hence a dimensionless length of 
550D. Taking the entrance length into account the remaining measurement length is 
350D. 

• Case II: the pipe was composed of acrylic tubes (inner diameter D = 7.18 ± 0.02 mm) 
and had a total length of 12 m, leading to a measurement length of 1300D. 

• Case III: In the third case the pipe was composed of glass tubes (inner diameter D = 4 
± 0.01 mm) and had a total length of 10 m and a measurement length of 2250D. 

 
   The pipe is connected via a trumpet-shaped convergence section to a reservoir (see Figure 
12). The rear end of the pipe is connected to a 1.2 m long piston (Pneumax) with a diameter of 
40 mm that pulls the water through the pipe. The piston sits on a separate support and is coupled 
to the pipe via a short piece of semi-flexible tubing to dampen vibrations from the mechanical 
drive. As reported in their study, when run in steady motion the flow remains laminar up to Re 
= 9000. [13] 
 

 
Figure 12: (a) Sketch of the pulsatile pipe flow set-up (pipe-1: D= 10 mm and L=350D, pipe-
2: D=7.18 mm and L=1300D, pipe-3: D=4 mm and L = 2250D), (b) the sinusoidally modulated 
speed of the piston and (c) the phase covered by the injection perturbation. (d) Comparison of 
measured velocity profiles (symbols) and analytical solutions (lines in corresponding color) at 
"#! = 2000, / = 5 and p = 0.4. Typical flow visualization images are shown for turbulent 
(e) and laminar (f) flow. (The images display a pipe segment of about 5D long and flow 
direction is from left to right). [13]  
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   The piston speed was accurately controlled via a PC and was sinusoidally modulated giving 
rise to a pulsating flow (!(C) = q! + q" ∙ sin(245 ∙ C)). For the entire parameter regime under 
investigation the pipe flow was laminar unless being disturbed. 
   Xu et al. 2017 report a particularly precise correspondence of the velocity profiles measured 
during the various phases with the analytical solution for a pulsatile laminar pipe flow. It is 
possible to generate disturbances inside the flow by using an electronically regulated valve that 
allows to briefly inject fluid into the flow from a 1mm hole located in the pipe wall. [13] 
   Comparing what has been written so far with the work of Florio and Mueller [14] and of 
Gerrard and Hughes [15] it can be concluded that the flow is fully developed when the 
perturbation is situated 150D downstream of the entrance. 
   According to Samanta, de Lozar and Hof [16]: “To ensure that the perturbation resulted in a 
single puff (the length of a puff is approximately 20D), the duration of injection is adjusted for 
each α to cover a specific phase of the sinusoidal motion”, as demonstrated in Figure 12. The 
transition threshold is not affected in particular by variations in the injection phase. 
   For visualization purposes, the water was seeded with particles (fishsilver) and a light sheet, 
and a camera (MatrixVision BlueFox 121G) were positioned a certain distance L downstream 
from the perturbation point, as shown in Figure 12. The resulting images allow for a 
straightforward distinction between turbulent and laminar flows (see Figure 12 e,f). Following 
the evolution of the average grey scale level in the center of the tube or by examining the spatial 
fluctuations (obtained from the root mean square), the presence of puffs can be noted. Since the 
viscosity of the fluids may vary, it is necessary to supervise the temperature before each run 
using a calibrated Pt100. The flow rate was then automatically adjusted to ensure the desired 
value of "#! ("#! = q!i '⁄  with q! steady component of the velocity). The Case I was 
conducted in a tube of 350D unlike the Case II and Case III in which tubes of 1300D and 2250D 
were used for measurements respectively due to the fact that for lower Womersley numbers the 
advection over a period occurred in tubes longer than the Case I, but it should be noted that the 
survival probabilities obtained in the three pipes weakly depend on the pipe length. In fact, in 
the longer pipes, puffs will only survive over the longer measurement length at somewhat 
higher "# where their lifetimes are larger. Although the differences are small (<10% for steady 
pipe flow) when compared to the modification of the transition threshold with Womersley 
number (> 50%), the threshold estimates obtained in the longer pipes converge to the actual 
critical point where the turbulence eventually becomes sustained. [13] 
 
2.1.2 RESULTS 
 
   Considering a certain range of some parameters such as Womersley numbers 1.5 ≤ / ≤ 22, 
amplitudes 0 ≤ p ≤ 0.7 and Reynolds numbers "#! < 3500, it was possible to evaluate the 
reaction of the transition to the effect of pulsation. As shown in Figure 13a, for the considered 
parameters the flows appear as laminar as long as they are not disturbed, thus resulting in the 
laminar flow as linearly stable. Nevertheless, the sight of localized patches of turbulence can 
be traced back to perturbations generated for large enough "#! (shown in Figure 13b). [13] 
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Figure 13: Visualization samples of laminar flow which is observed in the absence of external 
perturbations (a). When perturbed upstream, turbulence could be excited locally (b). The 
examples shown are for parameter values of (/, "#!) of (2.5, 3100), (5, 2800), (10, 2500), (15, 
2500), (20, 2500) from top to bottom. The flow direction is from left to right. [13]  
 
   For fixed combinations of (/, p), "#! was varied to find the regime where sufficiently strong 
perturbations first result in turbulent puffs. Subsequently, remembering that the measurement 
distance is 350D for pipe 1, 1300D for pipe 2 and 2250D for pipe 3, it was possible to identify 
the probability, as a function of "#!, that the puffs existed over a fixed distance. [13] 
   Previously reported values (black solid curve in Figure 14) by Hof et al. 2008 [17] still agree 
with the case of a steady flow rate (red circles in Figure 14a) despite having moved from 
operating with pipes operated at a constant pressure head to estimating the probabilities of 
survival with piston driven set-up (pipe 1) respectively. According to Hof et al. 2006 [18], 2008 
[17], a S-shaped curve represents the survival probability which is an increasing function with 
Re until it reaches a higher asymptotic plateau where the survival probability u = 1 is 
approximated asymptotically and this also suggests the transient nature of individual puffs. 
Consequently to the transient nature of the individual puffs, the survival possibilities in 
pulsating flow also respect the S-shaped curves as represented in Figure 14, for a fixed pulsation 
amplitude of p = 0.4, to estimate the effect of pulsation frequency. For small Womersley 
numbers S curves are considerably shifted to the right and hence much higher "#! are required 
to observe puffs of appreciable lifetimes. For large Womersley numbers on the other hand puff 
survival probabilities approach the steady pipe flow case and the transition point appears to be 
unaffected by flow pulsation. [13] 
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Figure 14: (a) The survival probability of individual puffs, measured 350D downstream from 
the perturbation point. Plotted are the survival probabilities as a function of Re4 for various 
pulsation frequencies and a fixed amplitude of p = 0.4. The corresponding lines indicate super-
exponential fits to the respective data sets. The black curve shows the lifetime scaling for steady 
pipe flow from Hof et al. 2008 [17]. For clarity not all measured data sets are plotted. The dash-
dot line marks u = 0.5. (b) The Reynolds number for which u = 0.5 is plotted as a function of 
Womersley number. Measurements are carried out for three different lengths, corresponding to 
three different observation times t = 350, 1300 and 2250 (for all cases puff advection speeds 
are close to 1). Subtracting the puff formation time C- ≈ 100i/q! the obtained Reynolds 
number values then map out the thresholds where puff lifetimes reach 250, 1200 and 2150 
advective time units respectively. The results of Stettler and Hussain [8] are shown in grey for 
comparison. [13] 
 
   As shown in Figure 14b for / > 12 50 % survival probabilities are reached at the same 
Reynolds number as in steady flow ("# ≈ 1860 for L = 350D). For / < 12 however transition 
is delayed and significantly higher Reynolds numbers ("#! = 2960 for / = 2.5) are necessary 
to obtain puffs of the same lifetimes as in the steady case. Measurements of puff lifetimes at 
lower Womersley numbers had to be carried out in the longer pipe set-ups, in order to ensure 
that puffs experience a full oscillation cycle before they exit the pipe. The data sets (Figure 
14b) taken in the two longer pipes show the same general trend, transition thresholds keep 
increasing with decreasing Womersley number. As stated by Xu et al. 2017 “In contrast to 
earlier studies of this parameter regime that reported transition to occur earlier than in steady 
flow, the transition threshold continues to increase and there is no sign of a reversal of this 
trend. The rate of increase however slows down for / < 2.5.” [13] 
   It is necessary to underline that in this experiment the impact on the transition of the pulsation 
amplitude as well as of the Womersley number was examined by fixing the pulsation frequency 
while A was varied. Considering the S-shaped curves shown in Figure 15 it was possible to 
determine "#!|u = 0.5 and puff survival probabilities have once again been established. [13] 
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Figure 15: (a) The survival probability of individual puffs measured for varying pulsation 
amplitudes. The dashed line marks u = 0.5. (b) The Reynolds number threshold values (50% 
survival probabilities) are plotted as a function of the pulsation amplitude. [13] 
 
   As shown in Figure 15a the characteristic S shapes are shifted considerably to higher "#! and 
the transition delay increases with pulsation amplitude. When the pulsation amplitude increases, 
the "#!|u = 0.5 increases monotonically and this was found for all four frequencies considered 
(Figure 15b) and this transition delay is most prominent for low frequencies while at large 
frequencies the increase with amplitude is only moderate. [13] 
 
2.1.3 DISCUSSION 
 
   Due to the number of control parameters it is difficult to evaluate the transition process in 
linearly stable flows. As stated by Xu et al. 2017 “Puffs are the first turbulent structures to arise 
in the subcritical regime of pulsatile pipe flow, and lifetimes of turbulent puffs provide a natural 
and very accurate measure of the transition threshold, because small changes in the governing 
parameters can change mean lifetimes by several orders of magnitude”. [13] 
   If perturbation levels to trigger turbulence depend on α or if the noise levels present in the 
experiments change with /, experiments lacking an active triggering mechanism become very 
difficult to interpret. 
   By comparing this work with previous work by Stettler and Hussain [8] and Trip et al. [1], 
underlining that in all three studies turbulence was actively triggered, it can be observed that 
the transition threshold does not change in the large frequency limit (/ > 12) while puff 
lifetimes is significantly reduced if Womersley number decreases below 10 so that 
consequently also the transition is delayed to larger "#!. Dwelling in comparison with the work 
of Stettler and Hussain [8], in which the length of the tube used was inadequate for examining 
such low Womersley numbers, they noted a transition delay for 5 < / < 10 and differently 
from the experiment of Xu et al. [13] recorded a decrease of the transition threshold for / < 5. 
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   There was a monotonous increase in the transition delay with the variation of the pulsation 
amplitudes and it is particularly marked at low /. Taking up the study by Stettler and Hussain 
[8], they too reported a transition delay in this regime but for larger amplitudes the transition 
recoiled towards lower Reynolds number. [13] 
   By monitoring the process of growth and decay of turbulence by means of the simplified case 
of a square-wave pulsation, in which the Reynolds number jumps between two defined levels, 
it is possible to notice the upward shift of the transition point. At "# = 2856, i.e. the faster half, 
the flow was altered with a puff that was simulated at "# = 2040 in the same pipe. Then the 
puff starts to grow turning into a slug. At the jump to the lower cycle at "# = 1224, the mass 
flux was considerably changed (mean flow speed) while keep the turbulent fluctuations 
unchanged, in such a way that this imitates the situation in experiment in which the mass flux 
is changed quickly by, e.g. abruptly adjusting the speed of the driving piston. An oscillation 
period of 120 advective time units (corresponding to a Womersley number of 5) was simulated. 
[13] 
 

 
Figure 16: Direct numerical simulation of a puff in a square-wave motion at "#! = 2040 with 
p = 0.4. From bottom to top, each snapshot shows the contour of the streamwise vorticity 
normalized by mean velocity of "#!, from t = 0 to t = T with an equal time interval of T/8. [13] 
 
   As shown in Figure 16 during the faster half of the square-wave cycle ("# = 2856, bottom 
half of Figure 16) turbulence rapidly expands. After half of the oscillation period (60-time 
units) "# changes to 1224, and turbulence abruptly decays (top half of Figure 16). A key 
difference is that in the faster part of the cycle the turbulent patch expands outwards from its 
interfaces, whereas at low "# turbulence collapses throughout (rather than receding from its 
interfaces). As reported by Xu et al. 2017 [13] “The decay is much faster and clearly dominates 
over the growth process when viewed over one full pulsation period. This imbalance between 
the decay and growth implies that in the low Womersley number regime turbulence can only 
become sustained at significantly larger "# than in steady pipe flow, in qualitative agreement 
with the experimental observations.” 
   Considering a more regular decrease of the Reynolds number in the case of a sinusoidal 
pulsation, it will be noted that the collapse of the turbulence occurs less suddenly, although a 
small Womersley number will control the previous growth, and it will be expected that the 
expanding turbulent structures (i.e. slugs) collapse to puffs for quite slow decreases in the 
Reynolds number (up to the puff regime). To investigate if at sufficiently low Womersley 
numbers this proposed structural adjustment of turbulence indeed occurs flows were compared 
at / = 8, 5 and 3. In all three runs the mean Reynolds number is equal to 3000 while the 
pulsation amplitude is 0.4. In each case the laminar flow is perturbed at C = h/4 where the flow 
speed is at its maximum ("# = 4200). The evolving turbulent flow was later followed 
downstream, and the flow field was visualized at C = 3h/4, i.e. at the minimum flow speed 
("# = 1800). [13] 
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   At / = 8 turbulence takes the form of a slug-like structure (Figure 17a), whereas in a steady 
flow at the same Reynolds number (1800) slugs are unstable and only much shorter puffs can 
be found (see Figure 17d). 
 

 
Figure 17: Flow structures recorded at an instantaneous Reynolds number "#(C) = 1800 for 
various α: (a) / = 8, (b) / = 5, (c) / = 3; (d) steady pipe flow at "# = 1800. For the pulsating 
flows (a–c) all other parameters are identical "#! = 3000 and p = 0.4 and the images were 
recorded at the minimum of the cycle (i.e. at "# = 1800). At / = 8 turbulence forms an 
elongated slug, despite the low instantaneous Reynolds number (1800). For / = 3 on the other 
hand the observed flow structure is a puff in close correspondence to puffs in steady flow of the 
same "# (d). [13] 
 
   The Reynolds number change appears to be too fast for turbulence to adapt to the structure 
characteristic for the instantaneous speed. While puffs are prone to decay, slugs are stable and 
hence turbulence at 01 = 8, "#! = 3000 is sustained and well above the transition threshold. 
At the intermediate Womersley number (Figure 17b) the slug observed at the minimum of the 
cycle (i.e. "# = 1800) is shorter than at / = 8 but still larger than the structures would be 
under steady flow conditions at this instantaneous "#. Finally, for / = 3 at the cycle minimum 
turbulence has reduced to a puff (Figure 17c), structurally equivalent to puffs in steady pipe 
flow at this Reynolds number (Figure 17d). Although during the faster part of the cycle 
turbulence had spread considerably (not shown) once "# drops sufficiently (here shown for 
"# = 1800), the extended slug (in this example >100D at its maximum length) collapses and 
in this case only a single puff (at the position of the slug’s trailing edge) remained. As said by 
Xu et al. 2017 “It hence appears that at low Womersley numbers where Reynolds number 
changes are much slower, turbulent structures can more readily adapt to the instantaneous 
Reynolds numbers. As Womersley numbers further decrease one may expect that eventually 
turbulent structures follow the very slow changes of Reynolds number in a quasi-steady fashion. 
In this case the survival of turbulence would be decided over the low Reynolds number phase 
where turbulence consists of distinct puffs with finite lifetimes. In this limit it should then be 
possible to estimate the transition threshold based on puff lifetimes by integrating over the 
corresponding steady flow values for the corresponding Reynolds numbers.” [13] 
   In order to retain the same survival probability (i.e. u = 0.5) at lower / the mean Reynolds 
number has to go up. Therefore, the quasi-steady assumption predicts monotonically increasing 
threshold values "#!|u = 0.5 for decreasing /. To test the quantitative agreement the results 
of the quasi-steady analysis are shown for comparison in Figure 18 (dashed curve). [13] 
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Figure 18: Estimates of the transition threshold, obtained by determining the Reynolds number 
value where puffs have a 50% survival probability (i.e. "#!(/)|u = 0.5) over the respective 
pipe length L of the three different pipe set-ups. For comparison the (purple) dashed curve 
shows the 50% survival probability over a single period obtained from the quasi-steady 
assumption. For / → 0 the curve asymptotes towards an upper bound ("#! = 3400 for p =
0.4) (see inset). The black dotted line marks the 50 % survival probability for L = 350D (same 
as red circles) for steady pipe flow. [13]  
 
   For / < 2.5 they indeed closely capture the values measured in the pulsating flow 
experiment. It would appear that for the long period times (and hence the slow Reynolds number 
variations at these low Womersley numbers) flows indeed can be considered as quasi steady. 
Unfortunately, due to the very long periods at these low Womersley numbers an experimental 
verification of this predicted asymptotic value is not possible. 
 
2.2 XU ET AL. EXPERIMENT N°2 
 
These experiments were reported in Xu et al. 2020. [19] 
 
2.2.1 PUFF TURBULENCE 
 
   The experiments conducted by Xu et al. 2020 [19] were carried out in a rigid straight pipe 
with an inner diameter of 7 mm and a total length of 12 m. The fluid was pulled through the 
pipe by a piston (Figure 19). 
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Figure 19: (A) Sketch of the pulsatile pipe flow setup. The dashed rectangle marks the 
measurement location where pressure and visualization measurements were carried out. The 
flow is from left to right. The perturbation methods are sketched in B and C, where D is the 
pipe inner diameter, Lp the length of perturbation section, and Lo the offset: (B) curved segment 
perturbation, where Lp = 7D and the offset ranges from 0D (natural transition) to 0.45D; (C) 
constriction perturbation (mimicking unevenness), where Lp = 5.6D and the offset ranges from 
0.14D to 0.7D. C, Right shows the cross-sectional view. [19]  
 
   The piston speed was sinusoidally modulated, imposing a cross-sectionally averaged flow 
velocity q(C) = q# + q" ∙ sin(245C), where q# is the mean flow speed, q" the oscillation 
component of the flow speed, 5 the frequency, and C the time. As suggested by the linear 
stability theory, the unperturbed flow remains laminar over the entire parameter regime 
investigated.  A small hole in the pipe wall, located 150D downstream of the pipe inlet, could 
be used to inject an impulsive jet of fluid in order to determine the susceptibility of the fluid to 
finite-amplitude perturbations. To visualize the flow structure, the water was seeded with 
reflective particles (fish silver) and a light sheet was used to illuminate the mid–cross-section 
(radial–streamwise) of the pipe. A turbulent puff, which is then advected downstream, has 
developed from the perturbed flow when the Reynolds number reaches relatively high values. 
An example of a puff with its characteristic intense upstream interface and a gradual 
downstream interface is shown in Figure 20. [19] 
 

 
Figure 20: The threshold for the onset of puffs is given by the red dotted line. That for the onset 
of the helical wave instability is given by the green solid line. The Womersley number is held 
fixed at 01 = 5.6. The upper part (note the scale is altered to be logarithmic) shows the linear 
instability threshold (black curve) which sets in only at "## much larger than those discussed 
in this study. Insets show flow visualization images at t/T ≈ 0.68: Top Inset shows the helical 
wave pattern and Bottom Inset shows a puff. The flow in both cases is from left to right. [19] 
 
   It is important to underline that just like in steady pipe flow, puffs also have finite lifetimes 
in pulsatile flow. It was necessary to measure the puff survival rate for varying pulsation 
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amplitude in order to estimate the effect of flow pulsation on the puff transition threshold. While 
the frequency was held constant throughout (i.e., Womersley number, 01 = 5.6) for each 
selected pulsation amplitude, the Reynolds number was increased until puffs were first 
detected. Womersley number, pulsation amplitude, and Reynolds number are defined as 
follows: 01 = 0.5i2245/', p = q"/q#, and "## = q#i/', where i is the pipe diameter, 
and ' is kinematic viscosity of the fluid. The Reynolds number where 50% of puffs survive has 
been evaluated as a measure of the transition threshold since for low "# all puffs decayed before 
the end of the pipe while for "# sufficiently large all puffs survive. For each pair of parameters 
(p and "##) lifetime statistics were based on a sample of 150 puffs. As shown in Figure 20 the 
dependence of this chosen puff survival threshold is plotted as a function of the pulsation 
amplitude. With increasing amplitude, the puff transition (red curve) is delayed in accordance 
with the previous experiments of Xu et al. 2017 [13]. 
 
2.2.2 HELICAL INSTABILITY 
 
   When the pulsation amplitude surpasses 0.7, the above trend stops, and the transition 
threshold begins to move to lower "##. Inspection of the flow structure shows that here instead 
of puffs a regular, helical vortex pattern is observed (Figure 20). Unlike puffs this structure 
does not result from the injection of a jet at the perturbation location, but instead it was 
discovered by Xu et al. 2020 [19] that it develops at a fixed pipe location at each cycle during 
flow deceleration (i.e., for 0.6 ≲ C h⁄ ≲ 0.75 with period h) and it decays during acceleration. 
Upon a further increase in the pulsation amplitude the instability threshold moves to smaller 
"##. By increasing the Reynolds number, the helical instability occurred spontaneously in 
order to continue the instability branch to lower amplitudes (p < 0.7), without triggering puffs. 
   From the inspection of the pipe it was found that the helical (wave) instability was generated 
in the segment directly upstream of the pipe in which there was an axial misalignment of the 
order of 1 mm. When realigning the pipe, the helical instability could be postponed to larger 
"##, while further misalignment moved the instability threshold to lower "##. Comparing 
them at the same parameter values ("##, 01, p) = (2200, 5.6, 0.85), it was possible to describe 
the structural and dynamic differences between puffs and the helical instability: in fact, in one 
case the pipe segment was carefully aligned and a puff was triggered using the upstream 
injection perturbation while in the other case no puff was injected and the flow was perturbed 
by the upstream bent pipe segment. Both instances are shown for the flow deceleration phase 
in Figure 21: the puff begins to spread in the downstream direction, while its upstream interface 
remains at the same location; over the same part of the cycle, the helical instability gradually 
increases in amplitude and spreads down- as well as upstream. According to Xu et al. 2020 [19] 
“The upstream propagation indicates that the instability is of absolute nature during part of the 
cycle, while the puff instability for the same parameters remains convective.” 
 

 
Figure 21: Visualization of transition to turbulence in pulsatile pipe flow in a space–time 
diagram at ("##, 01, p) = (2200, 5.6, 0.85). (A) The evolution of a puff which grows in the 
streamwise direction while its upstream interface is approximately stationary. (B) Evolution of 
the helical instability. The helical wave spreads downstream as well as upstream. The flow in 
A and B is from left to right. [19] 
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   Making a parallelism with the cardiovascular context, it is necessary to point out that all blood 
vessels present deviations from the idealized straight pipe case of the same order or larger than 
in the previously mentioned case in which the misalignment regarded only part of a pipe 
diameter. By inserting a short pipe segment with a chosen moderate curvature (sketched in 
Figure 19B), while keeping the rest of the pipe straight and well aligned, it was possible to 
trigger the helical instability in a more controlled manner. With a more strongly curved pipe 
segment, the instability occurs at considerably lower "## (see green curves in Figure 22) and 
again the transition threshold decreases with p. These findings suggest that the helical 
instability, just like the instability to turbulence in steady flow, results from a perturbation of 
finite amplitude. 
   As reported by Xu et al. 2020 [19] “While the transition in steady pipe flow is characterized 
by a double threshold, i.e., both the amplitude of the perturbation and the Reynolds number 
have to be large enough, the helical instability has a triple threshold. Here in addition to the 
perturbation amplitude and the Reynolds number also the pulsation amplitude has to be 
sufficiently large. Moreover, the types of disturbance that trigger the helical instability differ 
from those triggering puffs.” 
 

 
Figure 22: Onset of instability as a function of the pulsation amplitude for water (Newtonian) 
and blood (non-Newtonian). The pulsation frequencies (i.e., Womersley numbers) for the 
different datasets are as follows: red circles, 01 = 5.6; green triangles, 01 = 5.6; and blue 
squares, 01 = 5.9. For the blood flow measurement (orange diamonds) 01 = 4.0. [19]  
 
 
2.2.3 HELICAL INSTABILITY IN SIMULATION 
 
   Using the Navier-Stokes equations in a numerical simulation it was possible to create a model 
to illustrate the origin of the instability. Although the flow is linearly stable over the considered 
parameter range and despite the perturbations decay considerably during the entire cycle 
duration, the perturbation growth can occur in a part of the pulsation cycle. A linear nonmodal 
transient growth analysis with an adjoint-based method was performed to determine the optimal 
perturbations of pulsating pipe flow. [19] 
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Figure 23: (A) Optimal linear energy growth P(C) of disturbances at ("##,01, 
p)=(2200,5.6,0.85) for the classic perturbation (streamwise independent, dotted line) and 
helical perturbation (solid line). (B) Direct numerical simulation of transition in a pipe of 12D 
length disturbed with the optimal helical perturbation (for 1.5D wavelength) and superposed 
three-dimensional (3D) noise. Shown are time series of the kinetic energy of the spatially 
averaged flow profile (|--) and the 3D component of the disturbance (|.5), i.e., of those 
Fourier modes with } ≠ 0 and � ≠ 0. The latter is further decomposed into the part 
corresponding to the optimal helical perturbation (|"6) and the rest (|7"*!8). (C) Time series of 
fluid wall shear stress Ä& exerting on the pipe wall at a fixed location, together with the 
instantaneous Reynolds number "#(C), in the direct numerical simulation at ("##, 01, p) = 
(2200, 5.6, 0.85). (D) The relative deviation in pressure from the corresponding laminar case 
for blood flow at ("##, 01, p) = (1140, 4.0, 0.5). Inset shows the time series of streamwise 
differential pressure (black solid line) together with the instantaneous Reynolds number (blue 
dashed line) at ("##, 01, p) = (1700, 5.9, 0.58). The instability causes the smaller secondary 
peak in the pressure signal during flow deceleration. [19] 
 
   As shown in Figure 23A, the energy of infinitesimal perturbations can be amplified by more 
than four orders of magnitude during part of the cycle. According to the study of Xu et al. 2020 
[19] the optimal perturbation has a helical shape and yields its maximum energy amplification 
toward the end of the deceleration phase. In fact, this helical perturbation dominates during the 
deceleration phase, and the streamwise independence of the classic optimal perturbation of 
steady pipe flow is also relevant to pulsatile pipe flow and dominates in the acceleration phase, 
but features much lower amplification factors than the helical perturbation in the deceleration 
phase. 
   Subsequently, direct numerical simulations, initialized with a helical suboptimal perturbation 
of wavelength 1.5D, were developed to be able to compare the experiments performed. After 
the initial development and amplification of the helical wave, breakdown to turbulence 
occurred. The peak in turbulent kinetic energy was reached at C h⁄ ≈ 0.75, as shown in Figure 
23B, in close agreement with experiments. The strong fluctuations and abrupt changes in shear 
stress that occur during this period are shown in Figure 23C. Similarly to the experiments, the 
fluctuations decayed during the acceleration phase and the flow returned to laminar and then 
the helical vortex pattern in the radial–azimuthal plane and the waviness in the radial–
streamwise cross-section resemble those in experiments, as shown in Figure24. [19] 
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Figure 24: (A and B) Colormap of the streamwise vorticity in a radial–azimuthal cross-section 
of the pipe from experiments (A) and numerical simulations (B). (C and D) The colormap of 
the spanwise vorticity in a radial–streamwise plane from experiments (C) and numerical 
simulations (D). In both cases, a pipe segment of 5D is shown. The experiment and the direct 
numerical simulation were both carried out at ("##, 01, p) = (2200, 5.6, 0.85), and the 
snapshots were taken at t/T ≈ 0.7. [19]  
 
   Thus, it can be seen that a generic mechanism for the generation of helical vortices and a 
subsequent breakdown into turbulence is offered by the large transient amplification of 
disturbances during flow deceleration. [19] 
   From the analysis of Xu et al. 2020 [19], this nonmodal transient growth analysis shows that 
the energy of all axisymmetric perturbations decays nearly monotonically. Furthermore, the 
helical instability revealed here occurs at moderate amplitudes and is rooted in the strong 
nonmodal transient growth of helical (3D) perturbations. 
 
2.2.4 LUMEN CONSTRICTION 
 
   The replacement of the curved pipe segment by a straight section that includes a local 
constriction in the form of a spherical cap (up to D/4 in height and a base cap diameter of 2D; 
Figure 19C) allowed to analyze whether the helical instability can occur if the cross-sections 
of blood vessels deviate from the idealized circular case as in the presence of protrusions due 
to wound healing or stenosis formation. As the Reynolds number increases at (01, p) = (5, 
0.85), a helical vortex pattern was found during the flow deceleration, according to Xu et al. 
2020 [19]. In fact, the helical wave was first observed 40D downstream of the protrusion and, 
at its maximum amplitude, the turbulent patch stretches approximately from 35D to 55D 
downstream from the spherical cap. On the other hand, the helical instability did not manifest 
itself in case the experiment is conducted with a slight axisymmetric constriction. 
   By performing experiments in the 20-mm pipe with flow parameters ("##, 01, p) = (1100, 
10, 0.8), the waveform typically observed in the aorta has replaced the idealized sinusoidal flow 
rate in order to examine the robustness of the helical instability. As concluded by Xu et al. 2020 
[19], it is again verified the situation where the helical instability was observed during flow 
deceleration followed by relaminarization as the flow was accelerated. 
 



 26 

2.2.5 BLOOD FLOW EXPERIMENTS 
 
   In order to conduct experiments with blood as a working fluid, which unlike water is a non-
Newtonian fluid (blood is a dense suspension of blood cells), it was necessary to use a 4 mm 
diameter pipe to operate in similarity to a larger diameter pipe. To perturb the flow a curved 
section was introduced 185D from the pipe inlet. As shown in Figure 23D, the differential 
pressure of the curved section was supervised instead of direct observation of the blood due to 
the characteristic opacity of the blood. Consequently, flows were deemed unsteady if deviations 
in pressure were larger than twice the background noise level of the sensor. Based on the 
conclusions of Xu et al. 2020 [19], like in the Newtonian flow, also the pulsatile blood flow 
became unstable during flow deceleration, and a considerable drag increase was detected 
approximately 20D downstream of the curved pipe segment while during the acceleration the 
flow stabilized and returned to the laminar friction value. The instability threshold for blood 
flow is shown by the orange symbols in Figure 22. In this case the transition occurs at lower 
"## than for water flows because was used a more strongly curved segment which could 
generate an earlier onset. For pulsation levels typical for the aorta, i.e., p ≈ 0.94, the Reynolds 
number threshold was as low as 800 and hence much lower than the commonly assumed value 
of 2000. As claimed by Xu et al. 2020 [19], the measurements were repeated under comparable 
conditions using a transparent Newtonian fluid (water), where again the deviation in pressure 
was used to determine the instability threshold and was found to coincide with the appearance 
of the helical wave (blue line in Figure 22). 
 
2.3 TRANSIENT GROWTH NUMERICAL SIMULATIONS 
 
   Xu, Song and Avila [20] begin their study by saying that even for the simple case of pulsatile 
flow in a straight pipe, the mechanisms of instability and transition to turbulence are poorly 
understood and particularly the dependence on the pulsation amplitude is largely unknown. 
This makes it difficult to assess whether disturbed flow patterns in arterial and respiratory flow 
are solely due to geometric and structural effects (e.g. vessel curvature and flexibility, 
bifurcations), or are also related to the stability of pulsatile pipe flow. 
   It has already been stated that the pulsation amplitude p, the Womersley number 01 and the 
Reynolds number "#! control the pulsatile flow in a straight pipe. It is important to note that 
the limit of small pulsation amplitude p → 0 (steady flow) is relevant to laminar blood flow in 
capillaries, whereas the opposite limit p → ∞ (oscillatory flow) is relevant to respiratory flow. 
It is interesting to report what was said by Kleinstreuer and Zhang [21], who stated that, in 
humans, the airflow may be laminar, transitional or turbulent depending on the airway segment. 
The intermediate regime, in which the pulsatile flow component is like the steady one (p ≳ 1), 
is typical of blood flow in the large arteries. 
   In the experiments previously considered (Stettler and Hussain [8], Xu et al. 2017 [13] and 
2020 [19]), it was found that the transition is largely anticipated, while the study of Thomas et 
al. [22] illustrated that the linear instability of oscillatory pipe flow persists also for pulsatile 
flow. Putting together the results obtained so far, it can be hypothesized that pulsatile pipe flow 
undergoes a subcritical transition to turbulence in all regimes. As found in Sec. 2.2, Xu et al. 
2020 [19] reported on a nonlinear instability of pulsatile pipe flow, which occurs at pulsation 
amplitudes relevant for arterial flow. Furthermore, Xu et al. 2020 [19] performed also linear 
non-modal transient growth computations at a selected parameter set and showed that the most 
amplified disturbance is a helical wave. The relevant role of transient growth can be observed 
through direct numerical simulations initialized with this helical wave, that reproduced the flow 
patterns and the time of turbulence breakdown observed experimentally. [20] 
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   During numerical simulations was considered an incompressible viscous fluid driven at a 
pulsatile flow rate in a straight pipe of circular cross-section and lengths, velocities and time 
are rendered dimensionless. [20] 
 

 
Figure 25: (a) Time series of the kinetic energy |(C)/|(C-) of the optimal helical, (},�) =
(3.24, 1), and classic, (},�) = (0, 1), disturbances at ("#!, p,01) = (2000, 1, 15). (b,c) 
Time series of kinetic energy contribution of each velocity component for the classic (b) and 
helical (c) disturbances. (d,e) Contours of stream-wise vorticity (on an ; − = cross-section) and 
of stream-wise velocity (on a > − ; cross-section) of the classic disturbance, and the 
corresponding base flow profile É9,& at C- h⁄ = 0.25 (d) and C: h⁄ = 1.75. (f,g) The same as 
(d,e), but for the helical disturbance at C- h⁄ = 0.5 and C: h⁄ = 1.2. The dashed line denotes the 
Stokes-layer thickness. [20] 
 
   Considering "#! = 2000, p = 1 and 01 = 15, as shown in Figure 25a the temporal 
evolution of the optimal disturbance’s energy is represented as a dashed line while in Figure 
25f,g is shown that the optimal disturbance has a helical structure and is localized at the outer 
half of the pipe (exceeding the Stokes-layer thickness). According to Xu, Song and Avila [20], 
the optimal point to disturb is during the deceleration phase (at C- h⁄ = 0.5), whereas the 
maximum amplification is reached during the acceleration phase (at C: h⁄ = 1.2). As shown in 
Figure 25d,e, the classic disturbance initially consists of stream-wise vortices while in Figure 
25b is represented that the energy is subsequently transferred to the stream-wise velocity 
components and the cross-stream components decay monotonically. As stated by Xu, Song and 
Avila [20], the classic perturbation’s behavior appears to be rather insensitive to the change in 
flow profile throughout the cycle, and the decay is very slow. 
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   As shown in Figure 25c, the kinetic energy of the optimal helical perturbation is mostly 
distributed in the stream-wise and azimuthal components, which self-amplify rapidly during 
the deceleration phase and a bit slower during the subsequent acceleration phase. Focusing on 
Figure 25f, it is clear that initially the disturbance spirals clockwisely towards the pipe centre 
while leaning against the background shear profile. Figure 25g shows that as the energy grows, 
the perturbation switches the spiralling direction and is tilted by the shear until it aligns with it 
and the disturbance finally decays.  Moreover, Xu, Song and Avila [20] reported a strong three-
dimensional effect because approximately 96% of the kinetic energy is shared in equal parts 
between the azimuthal and stream-wise components. 
   The studies of Von Kerczek [23] and Tsigklifis & Lucey [24] both associated the modal 
energy growth with the inflectional velocity profiles occurring in the deceleration phase. As 
shown in Figure 25f, Xu, Song & Avila [20] stated that at the optimal perturbation point C- the 
velocity profile also presents inflection points. The relevant role in pulsating pipe flow of 
inflection points and modal mechanisms is indicated by the results obtained in additional runs 
at 01 = 5 and 8. 
 

 
Figure 26: Transient growth at ("#!, p,01) = (2000, 1, 15): (a) The red dashed lines denote 
the temporal evolution of the optimal classic disturbances (},�) = (0, 1) for four different 
initial times C-, whereas the blue solid lines correspond to the optimal helical disturbances 
(},�) = (3.24, 1) initialized at the same C-. The thick black line is the maximum gain PÑC:Ö 
that can be achieved at a given time C: (optimized over }, � and C- disturbances). (b) 
Dependence of the optimal axial wavenumber } (associated with the thick line of (a)) on C:. (c) 
Colourmap of the maximum gain P(C-, Ä) (optimized over } and �) in the C- − Ä plane. The 
black cross marks the maximum of P. [20] 
 
   As shown in Figure 26b, the maximum amplification is reached during the acceleration phase 
via helical disturbances, whereas the classic disturbance achieves larger growth only during the 
second half of the deceleration phase. The colourmap of Figure 26c shows that the optimal time 
to perturb the flow is during the middle of the deceleration phase (C- h⁄ ≈ 0.5); perturbing 
during the acceleration phase leads to much lower growth (yielded by the classic disturbance 
during the deceleration phase). It is clear that the helical mechanism is efficient only in the 
deceleration phase. [20] 
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3. CONCLUSIONS 
 
 
   From the first experiments it was possible to identify three possible regimes of the transition 
to turbulence in pulsating pipe flow as a function of the Womersley number that specifically 
characterizes the transition threshold. According to Xu et al. 2017 [13], the three regimes are 
defined as follows. 

i. In the high frequency limit / ≳ 12 the transition threshold is unaffected by flow 
pulsation. Presumably here flow rate changes are too fast for turbulence to react and 
hence turbulence becomes sustained when the average Reynolds number is equal to the 
steady state threshold. 

ii. For low Womersley numbers (/ ≲ 2.5) the Reynolds number changes are sufficiently 
slow for turbulent structures to adjust to the instantaneous Reynolds number and 
turbulent lifetimes can be predicted by a quasi-steady assumption. Much of the 
expansion of turbulence occurring during the faster part of the cycle is erased once "# 
drops and turbulence reduces to puffs ("# ≲ 2300 Barkley et al. [25]). This low 
Reynolds number interval is critical for the survival of turbulence and the transition 
threshold is determined by the puff decay rates in this interval. Therefore, transition 
thresholds are considerably larger than in high Womersley number flows and equally 
transition is delayed compared to steady flow. As suggested by the quasi-steady 
analysis, in the low Womersley number limit the minimum Reynolds number has to be 
above threshold for turbulence to be sustained. 

iii. In the intermediate Womersley regime, i.e. 2.5 ≤ / ≲ 12 the transition threshold 
adjusts smoothly between the two limits.  

   From the second experiments was reported a generic instability for pulsatile pipe flow that 
occurs for large pulsation amplitudes and precedes the normal turbulence transition. The helical 
vortex pattern characteristic for this instability sets in at unusually low Reynolds numbers. As 
reported by Xu et al. 2020 [19], weak curvature and modest pipe constrictions are sufficient to 
destabilize the laminar flow. In fact, curvature has a stabilizing effect under steady conditions 
and can even lead to relaminarization at not too large "# while constrictions, on the other hand, 
need to be very severe to trigger puffs in steady flow. It is interesting to note that the geometrical 
perturbations that appear to be most efficient in pulsatile flow are inefficient in the context of 
steady pipe flow and this study also shows that pulsatile flows are susceptible to qualitatively 
different and more subtle perturbations than steady pipe flows. Another characteristic 
mentioned of the identified mechanism is that the instability occurs only during part of the 
pulsation cycle, i.e., the deceleration, whereas acceleration relaminarizes the flow. This 
particular feature is shared with linear modal and non-modal mechanisms uncovered recently 
in pulsatile channel flow.  The above findings hence suggest that pulsatile flows of sufficient 
amplitude, such as cardiovascular flows in large blood vessels, despite being linearly stable can 
periodically break down into bursts of turbulence. The responsible transition mechanism 
requires perturbations of finite amplitude as caused by geometrical deviations from the straight 
pipe case (e.g., bends or constrictions). In particular, the resulting large shear stress changes in 
space and time (Figure 23C) encountered during flow deceleration offer a possible cause for 
endothelial activation. 

   In the numerical simulations Xu, Song and Avila [20] showed that the largest transient growth 
in pulsatile flow of low amplitude (p ≲ 0.4) was produced by the classic lift-up mechanism. 
This result agrees with previous reported experiments of Xu et al. 2017 [13] (and also with the 
direct numerical simulations of Xu and Avila [26]), exhibiting turbulent puff and slugs as in 
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steady pipe flow. At higher amplitudes, helical disturbances begin to dominate in a band of 
intermediate Womersley number 4 ≲ 01 ≲ 8 which progressively widens toward larger 01 
as the oscillatory Reynolds number "#" is increased. It is important to underline that Xu, Song 
and Avila [20] considered linear transient growth of disturbances while transition to turbulence 
can only be completed with nonlinear effects. In fact, Xu et al. 2020 [19] showed that 
initializing direct numerical simulations with the linear optimal helical disturbance can trigger 
turbulent flow patterns as those observed in their experiments. 
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