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Sommario

La turbolenza è una fenomenologia comune che è presente sia in diversi fenomeni nat-
urali come le correnti oceaniche o atmosferiche che in una ampia varietà di campi
industriali o ambientali come, ad esempio, la climatologia, le reazioni chimiche,
l’industria aerospaziale e la biologia.
Nonostante costituisca oggetto di studio da secoli, grazie al contributo incessante di
teorie o tecniche numeriche e sperimentali, ci sono ancora parecchi aspetti inesplorati
riguardanti la caratterizzazione spaziale, la predizione e il controllo della turbolenza:
questa costituisce un sistema fortemente complesso a causa del suo comportamento
che è random, irregolare e instazionario. La turbolenza, infatti, è non prevedibile
dettagliatamente.
Ad oggi, diverse simulazioni numeriche e sperimentali sono condotte in maniera si-
multanea, con lo scopo di conseguire una descrizione migliore della dinamica della
turbolenza. Esperimenti di laboratorio come la “grid turbulence” o simulazioni
numeriche delle equazioni di Navier-Stokes come DNS, LES e RANS, sono state ef-
fettuate in maniera fruttuosa per decadi, lasciando contestualmente il campo aperto
a diversi e nuovi approcci.
Questo lavoro è pensato come un approccio preliminare all’analisi di un flusso tur-
bolento tramite metodo delle reti complesse, con l’obiettivo di ottenere una migliore
comprensione della caratterizzazione spaziale e superare le limitazioni della teoria
statistica classica.
La teoria delle reti complesse affonda le sue radici nella teoria dei grafi e nella
fisica statistica, e costituisce un potente strumento per l’analisi di sistemi complessi
formati da un grande numero di elementi che evolvono dinamicamente nel tempo.
Questa teoria è stata usata con successo in diversi campi, come ad esempio sociolo-
gia, biologia, economia o informatica, mentre più recente è l’interesse della comunità
di ingegneri o di climatologi. La teoria delle reti complesse è ancora oggi una teoria
giovane e che continua ad espandersi, ottenendo in maniera continuativa contributi
da diverse comunità di ricercatori provenienti da differenti campi di studio.
In questo lavoro ci focalizziamo sull’analisi di un campo di turbolenza forzata e
isotropa, che fa parte di un database open-access di simulazioni DNS (il Johns
Hopkins Turbulence Database). Dopo un’analisi preliminare svolta con i classici
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strumenti tipici della dinamica della turbolenza (autocorrelazioni, funzioni di strut-
tura e spettri di energia), cercheremo di applicare le principali definizioni e proprietà
della teoria delle reti complesse.
L’obiettivo di questa analisi è quello di arricchire e contestualmente sintetizzare le
informazioni provenienti dalla nascita e dalla evoluzione spaziale delle strutture pre-
senti in un campo turbolento. Si tenga in considerazione il fatto che questa teoria
viene applicata per la prima volta in uno studio di caratterizzazione di un flusso
turbolento, quindi questo lavoro può essere considerato originale nel proprio campo.
La tesi è organizzata in questa maniera: nel capitolo 1 verranno sintetizzati i con-
cetti base della turbolenza e verrà prestata particolare attenzione alla teoria di Kol-
mogorov e alle definizioni degli strumenti classici utilizzati per la descrizione statis-
tica del flusso.
Nel secondo capitolo, invece, saranno riportate brevemente la storia e le proprietà
della DNS insieme ad una descrizione sintetica dei metodi risolutivi alternativi come
LES e RANS. Alla fine di questo capitolo sarà introdotto il database scelto per
l’analisi, con qualche cenno alla fase di pre-processing.
Nel capitolo 3, verrà presentata la teoria delle reti complesse: qui verrà fornita una
breve descrizione della storia e dell’evoluzione della teoria e dei suoi campi di ap-
plicazione. Dopo di ciò, saranno introdotte le definizioni analitiche e i parametri
utilizzati in fase di analisi. Alla fine del capitolo verrà rivolta grande attenzione alla
fase di costruzione della rete.
Il capitolo 4 costituirà il corpo principale di questa tesi e sarà diviso in due parti:
la prima conterrà i risultati dell’analisi effettuata tramite i metodi statistici classici
della dinamica della turbolenza, volta alla validazione del database scelto, mentre
la seconda parte riguarderà l’analisi svolta tramite metodo delle reti complesse.
Il capitolo 5, infine, conterrà una sintesi delle principali proprietà e informazioni
ottenute grazie al nostro lavoro, e contestualmente offrirà spunti per futuri miglio-
ramenti perseguibili nell’affinamento di uno studio di questo genere.
Alla fine della tesi, nelle appendici, verrano mostrati i codici (scritti in linguaggio
MatLab) utilizzati per il pre-processing, per l’analisi statistica e per quella con la
teoria delle reti complesse.
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Chapter 0

Introduction

Turbulence is a common phenomenology in everyday life that is present in several
natural phenomena like oceanic or atmospheric currents while also finding applica-
tion in a variety of industrial and environmental fields like aerospace, climatology,
chemical reactions and biology, among many others.
Even if it has been a subject of study for centuries, thanks to the contribution of
a variety of theoretical, numerical and experimental techniques, there are still a lot
of questions regarding its characterization, prediction and control: turbulence, in
fact, is a highly complex subject due to its behavior that is random, irregular and
unsteady. Turbulence, eventually, is unpredictable in detail.
Nowadays, experimental and numerical simulations are conducted simultaneously
in order to achieve a better description of the dynamic of turbulence. Laboratory
experiments like “grid turbulence” or numerical simulations for the Navier-Stokes
equations like DNS, LES or RANS have been successfully carried on for decades,
while still leaving the field clear for different approaches.
This work is meant as a preliminary approach to analyze a turbulent flow through
the method of the complex networks, trying to provide a better comprehension of
the spatial characterization of the dynamic of turbulence and overcome the limita-
tion of the classic statistical theory.
Complex network theory has its roots in the theory of graphs and in the statistical
physics, and it is a powerful tool to analyze complex systems consisting of a huge
number of elements dynamically evolving in time. This theory has been successfully
used in several fields as for example sociology, biology, economics and informatics,
while more recent is the interest in engineering and climate dynamics. The study
of complex networks is a young and still developing area, gaining nowadays contri-
bution from a variety of communities of researchers coming from different fields of
study.
In this work we focus on the analysis of a forced isotropic turbulent field, part of an
open-access database of DNS simulations (the Johns Hopkins Turbulence Database).
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0 – Introduction

After a preliminary analysis fulfilled with the typical tools used in turbulence (auto-
correlations, structure functions and energy spectra), we try to apply the definitions
and properties of the complex network theory to the turbulent field.
The purpose of this analysis is to enrich and summarize the knowledge of the forma-
tion and evolution of spatial patterns in a turbulent field. Furthermore, the reader
should take into account that the complex network theory, to the best of our knowl-
edge, has never been used for the characterization of a turbulent flow, hence this
work is original in its field.
The thesis is organized as follows: in chapter 1 the basics of the turbulence theory
are summarized with a focus on the Kolmogorov theory and on the definitions of
the classical tools used to provide a statistical description of the flow.
In the second chapter, instead, a review of the history and properties of the Direct
Numerical Simulations are given, providing a quick description of alternative reso-
lutions as LES or RANS, too. At the end of the chapter we introduce the database
chosen for the analysis and its usage.
In chapter 3, the complex network theory is presented: a brief description of the
history and evolution of the theory is provided along with an overview of the fields
of applications; after that, the analytical definitions and parameters useful for our
work are introduced. A first look at the main tools of the theory is given: degree
centrality, weighted average topological distance along with the main concepts of
network’s theory are introduced here. At the end of this chapter, great attention is
given to the process of building the network.
Chapter 4 contains the main part of the project, that is the analysis of the data, and
it consists of two parts: the first one contains the results of the classical approach
through a statistical description of turbulence, made in order to test the consistency
of the dataset with the Kolmogorov theory, while the second one is about the anal-
ysis of the field with the method of the complex networks.
Chapter 5, finally, contains a synthesis of the main properties and features that
we observed in the work, while also suggesting possible improvements that may be
pursued in the future evolution of the application of the complex network theory to
turbulence.
At the end of the thesis, in the appendices, the codes (in MatLab language) used
in this work are provided. In the Appendix A the pre-processing codes are shown,
while in Appendix B the ones used to build the network are provided. Appendix
C contains the codes for the statistical approach, whereas in the Appendix D the
MatLab scripts used in the main part of the project are shown.
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Chapter 1

Basics of turbulence

Most of the flows occurring in nature or in industrial applications are turbulent.
Common examples of turbulent flows are blood flow in arteries, lava flow, atmo-
spheric and oceanic currents, the flow through pumps or turbines, and the flow in
boat wakes and around aircraft-wing tips. During these observations we immedi-
ately understand the nature of a turbulent flow, that is unsteady, irregular, random
and chaotic: this means that the motion of every eddy or droplet is unpredictable
in detail. This chaotic behavior has been confirmed in a great number of laboratory
experiments conducted during the years.
Due to the random nature of the turbulent flow we know that the fluid velocity, as
other properties, varies significantly and irregularly in position and time. This prob-
lem led in the years to giving a particular attention to the statistical descriptions of
the turbulent flow: this kind of description is still widely used as complementary to
the DNS simulation.
Statistical approach is achieved by describing the flow in terms of some statistics,
the simplest being the mean velocity field < U(x, t) >; thanks to this model a
more feasible set of equations is achieved, because statistical fields vary smoothly in
position and time.

1.1 Turbulence and its properties: a brief expla-

nation

As previously stated turbulence is a random process in which the flow is space and
time dependent with a large number of spatial degrees of freedom. Turbulence is
unpredictable in details, whereas statistical properties are reproducible.
The dynamic of turbulence is a process that shows the existence of a large set of
scales, the smaller ones living inside the larger ones. The small scales are produced
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1 – Basics of turbulence

via vortex stretching from the larger ones: this process goes on incessantly pro-
vided that the Reynolds number of the flow is sufficiently high. The larger scales
extract energy from the mean flow thanks to the flow instability and transfer it to
the smaller scales where it is dissipated by viscous action. The Reynolds number
plays an important role in dynamic of turbulence, if it drops too low the cascade
can not longer operate. The larger scales, which have a local Reynolds higher than
the smaller ones, are dynamically important in the flow because they contain the
major part of the turbulent energy, while the smaller scales, especially the smallest
ones, show a different behavior thanks to the low Reynolds number: these scales
dissipate energy as the viscous stresses act on them.
The size of the large scales is generally determined by the environment of the flow.
The fine scales become smaller at larger Reynolds numbers but they are always
many order of magnitude larger than the molecular mean free path: that said, we
can describe a turbulent flow by continuum approximation, that is necessary for the
Navier-Stokes equations because they contain derivatives.
Turbulence is rotational (it has vorticity) and intrinsically three-dimensional. Vor-
ticity is the cause of the vortex stretching, which is the main process that guarantees
the existence of the energy cascade from the larger scales to the smaller ones.
Turbulence is more diffusive than a laminar flow because of the presence of eddies
of different scales: the consequences of the great diffusivity are that wall and flow
shear stresses are much higher than laminar ones, the boundary layer is increased,
there is a larger thermal and material transport and lower pressure drag.

1.2 The energy cascade

The concept of the energy cascade was first introduced by Richardson in 1922 [1].
Richardson suggested that the kinetic energy enters the turbulence at the largest
scales of motion, and is transferred later to smaller scales by an inviscid process that
stops when the smallest scales are reached: here the energy is dissipated by viscous
action.
The first contribution that Richardson brought to his theory was that the turbu-
lence is composed of eddies of different size. These eddies are a “turbulent motion”
localized within a region of size l, that is at least moderately coherent over this re-
gion. A larger eddy can also contain several smaller ones and it is characterized by
the lengthscale l0 which is comparable to the flow scale L, while their characteristic

velocity u0 is of the order of the r.m.s. velocity u′ ≡
(
2
3
k
)1/2

, which is comparable
to U (that is the charateristic velocity of the flow). Thanks to these assumptions
the Reynolds number of these eddies Re0 ≡ u0l0/ν is large: the effect of viscosity
are therefore small and negligible.
The large eddies are unstable and break up, transferring the energy to the smaller
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eddies that undergo a similar process. Once the Reynolds number drops too low
the eddy motion is stable, the process of the energy cascade stops and molecular
viscosity acts to dissipate the kinetic energy.
Dissipation is at the end of the sequence, that means that the rate of dissipation,
that is ε, is determined by the first process in the sequence: the transfer of en-
ergy from the largest eddies. It can be said that, consistent with the experimental
observations, the dissipation rate ε scales as u3

0/l0, independent of ν.

1.3 The Kolmogorov’s hypotheses

In 1941 Kolmogorov gave a fundamental contribution to the turbulent flow theory,
advancing three hypotheses that contributed to explain several questions that still
were unanswered.
The most important result discovered by Kolmogorov was the local isotropy of the
small scale motions, in contrast with the general anisotropic nature of the large ed-
dies: Kolmogorov supported this hypothesis stating that the directional biases of the
large eddies are lost during the process of transferring the energy to smaller eddies.
The first Kolmogorov’s hypothesis hence states that at sufficiently high Reynolds
number, the small-scale turbulent motions are statistically isotropic.
The second Kolmogorov’s hypotesis comes directly from the first one: just as every
directional information is lost during the cascade, also geometrical information are
lost, hence the statistics of small-scale motions are “universal”, that means similar in
every high Reynolds number turbulent flow (this hypothesis is called “first similarity
hypothesis”). This second hypothesis therefore states that in every turbulent flow at
sufficiently high Reynolds number, the statistics of small scales have a universal form
which is uniquely determined by ν and ε. Given these two parameters the charac-
teristic length, velocity, and time scales of the so called universal equilibrium range
can be obtained as:

η ≡
(
ν3

ε

)1/4

, (1.1)

uη ≡ (εν)1/4 , (1.2)

τη ≡
(ν
ε

)1/2
. (1.3)

Two identities can be stemmed from these definitions: the first one is that the
Reynolds number of the Kolmogorov scales is approximately unitary (that implies,
as known, that viscosity effects are much more important than the inertial one), the
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second one is that the dissipation rate is given by:

ε = ν

(
uη
η

)2

=
ν

τ 2η
. (1.4)

Thanks to equations 1.1, 1.2 and 1.3, and considering that ε ∼ u30/l0, a ratio between
Kolmogorov scales and larger eddies’ ones can be obtained:

η

l0
∼ Re−3/4, (1.5)

uη
u0
∼ Re−1/4, (1.6)

τη
τ0
∼ Re−1/2. (1.7)

These ratios describe perfectly the behavior of small and large scales at high Reynolds
number, that is the characteristics scales of the Kolmogorov eddies are of many order
of magnitude smaller than the one of the largest eddies. As a consequence, there is
a range of scales l that is very small compared to l0, but still large compared to η. It
may be supposed that, since the eddies in this range are larger than the Kolmogorov
ones, their motion is little affected by viscosity. Hence the third Kolmogorov’s hy-
pothesis states that in every turbulent flow at sufficiently high Reynolds number,
the statistics of the motions of scale l (where l0 � l � η) have a universal form,
uniquely determined by ε. This is the “second similarity hypothesis”.
A new lengthscale lDI ∼ 60η may be introduced, and thanks to this definition we
may write the range above in the form lEI > l > lDI (where lEI splits the univer-
sal equilibrium range from the energy containing one). This is sketched in figure 1.1.

Figure 1.1: Display of the various lengthscales and ranges at a very high Reynolds
number
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As already said, most of the turbulent kinetic energy is contained in the larger
eddies, but we still don’t know how it is distributed among the eddies of different size.
This study can be performed with an energy spectrum function, just as Kolmogorov
did to sustain his theories.
Introducing the wavenumber κ = 2π/l that corresponds to a motion of a lengthscale
l, and considering that the energy in the wavenumber range (κa, κb) is:

k(κa,κb) =

∫ κa

κb

E (κ) dκ, (1.8)

where E (κ) is the energy spectrum that will be considered in detail later in section
1.4.3, Kolmogorov stated that the energy spectrum in the universal equilibrium
range is a function of only ν and ε, while in the inertial range it is:

E (κ) = Cε2/3κ−5/3, (1.9)

with C universal constant for which experimental data support the value C = 1.5.
This is the so called universal law of Kolmogorov −5

3
spectrum. An example of the

energy spectrum may be found in figure 1.2, where the −5
3

power law stands out for
all the energy spectra considered.

Figure 1.2: Example of Kolmogorov spectrum
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1.4 Statistical analysis of turbulent flows

It has already been explained how a statistical description of a turbulent flow may be
useful; in this section three of the tools used for the analysis of the present turbulent
field are introduced.

1.4.1 Structure functions

As Kolmogorov did back in 1941, we consider the second-order velocity structure
function: by definition it is the covariance of the difference in velocity between two
points x + r and x, that is:

Dij (r,x, t) ≡< [Ui (x + r, t)− Ui (x, t)] [Uj (x + r, t)− Uj (x, t)] >, (1.10)

where the < ... > notation represents an ensemble average.
Applying the Kolmogorov’s hypotheses to the above written formula and considering
that all the other conditions, including for example the large Reynolds number, are
satisfied, we get that Dij (r, t) is an isotropic function of r [2]. With δij and rirj being
the only second order tensor formed from vector r, Dij can be written to include
DLL and DNN , respectively called longitudinal and transverse structure functions:

Dij (r, t) = DNN (r, t) δij + [DLL (r, t)−DNN (r, t)]
rirj
r2

. (1.11)

Choosing the coordinate system in a way that r is in the x1 direction, it is obtained:

D11 = DLL, D22 = D33 = DNN Dij = 0, for i /= j. (1.12)

These equations, together with figure 1.3, show the significance of the longitudinal
and transverse structure functions.

Figure 1.3: Sketch of longitudinal and transverse structure functions for r = e1r
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If we now consider a homogeneous turbulence with zero mean velocity, we may
write as a consequence of the continuity equation:

∂

∂ri
Dij (r, t) = 0, (1.13)

equation that applies also to a case of local homogeneity. Thanks to this result equa-
tion 1.11 becomes a new one in which the transverse structure function is uniquely
determined by the longitudinal one:

DNN (r, t) = DLL (r, t) +
1

2

∂

∂r
DLL (r, t) . (1.14)

Then, in isotropic turbulence Dij (r, t) is determined by the single scalar function
DLL (r, t).
Applying the first Kolmogorov similarity hypothesis for r � L, Dij is furthermore
uniquely determined by the quantities ε and ν; there is a universal non-dimensional
function D̂LL (r/η) such that

DLL (r, t) = (εr)2/3 D̂LL (r/η) , (1.15)

where the quantity that multiples D̂LL is used to make Dij non-dimensional. Taking
into account the second similarity hypothesis, that is the one for large r/η (L �
r � η), DLL is independent of ν and is given by

DLL (r, t) = C2 (εr)2/3 , (1.16)

where C2 is a universal constant.
Thanks to the above formula the transverse structure function is:

DNN (r, t) =
4

3
DLL (r, t) =

4

3
C2 (εr)2/3 , (1.17)

with Dij:

Dij (r, t) = C2 (εr)2/3
(

4

3
δij −

1

3

rirj
r2

)
. (1.18)

Thus, in the inertial subrange (L� r � η) the Kolmogorov hypotheses are sufficient
to determine the second-order structure function.
Different set of experimental data show the behavior of the second order structure
function and its scaling in the inertial subrange and in the viscous one ([3] and [4]),
while in figure 1.4 second order velocity structure predictions of the Kolmogorov
hypothesis in the inertial range have been tested by Saddoughi and Veeravalli [5].
The horizontal lines show the predictions of the hyoptheses, while the dots are the
experimental data: the inertial subrange shows how the experimental observations
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Figure 1.4: Second order velocity structure functions in an high Reynolds number bound-
ary layer. Experimental data provided by Saddoughi and Veeravalli (1994).

provide support for the hypotheses made by Kolmogorov (while the universality of
the constant C2 has yet to be proved). The third order velocity structure function
is:

DLLL (r, t) =< [u1 (x + e1r, t)− u1 (x, t)]3 >, (1.19)

which, after some mathematics involving the Kàrmàn-Howart equation (Pope, page
202 [2]), becomes the Kolmogorov Equation

3

r5

∫ r

0

s4
∂

∂t
DLL (s, t) ds = 6ν

∂DLL

∂r
−DLLL −

4

5
εr. (1.20)
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In locally isotropic turbulence the time dependent term on the left side is zero, while
the viscous one is negligible in the inertial subrange. This leads to the useful result
of the −4/5 Kolmogorov law for the third order structure function:

DLLL (r, t) = −4

5
εr. (1.21)

Figure 1.5: Third order velocity structure function (5) with r scaling. Experimental
data provided by Romano and Antonia.

1.4.2 Autocorrelation functions

Starting from the definition of the two-point correlation

Rij ≡< ui (x + r, t)uj (x, t) >, (1.22)

in case of homogeneity and zero mean velocity, r.m.s. and ε , the above formula is
independent of x. At the origin is:

Rij (0, t) =< uiuj >= u′2δij. (1.23)
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Just as previously done with the second order structure function Dij, a consequence
of the isotropy is that Rij may be expressed in terms of two scalar functions f (r, t)
and g (r, t), respectively called longitudinal and transverse autocorrelation functions:

Rij (r, t) = u′2
(
g (r, t) δij + [f (r, t)− g (r, t)]

rirj
r2

)
, (1.24)

that, considering r = e1r, becomes

R11/u
′2 = f (r, t) =< u1 (x + e1r, t)u1 (x, t) > / < u21 >,

R22/u
′2 = g (r, t) =< u2 (x + e1r, t)u2 (x, t) > / < u22 >,

R33 = R22, Rij = 0, for i /= j,

(1.25)

Longitudinal and transversal autocorrelation functions are non-dimensional with
f (0, t) = g (0, t) = 1, and in isotropic turbulence the two point correlationRij (r, t) is
completely determined by the longitudinal autocorrelation function, that is because:

g (r, t) = f (r, t) +
1

2
r
∂

∂r
f (r, t) . (1.26)

In the last part of this section some of the results found in literature will be shown.
These results will be useful when, in chapter 4, the chosen turbulent field will be
analyzed.

Figure 1.6: Downstream evolution of the longitudinal autocorrelation function for a
grid-generated turbulence. Comte-Bellot 1971
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Figure 1.7: Downstream evolution of the transversal autocorrelation function for a grid-
generated turbulence. Comte-Bellot 1971

In figure 1.6 the longitudinal autocorrelation function from the experimental data
obtained by Comte-Bellot and Corrsin [6] is shown, while in figure 1.7 the transverse
autocorrelation function it is shown. Giving a closer look at the figures we see that
the transversal autocorrelation function decays more rapidly than the longitudinal
one, reaching negative values for high values of ∆x/M (that is r/M with M as
the grid mesh in the experiment), while the longitudinal autocorrelation function
mantains itself positive for the whole domain. This behavior has been confirmed
by Townsend [7] as it can be seen in figures 1.8 and 1.9. Townsend in his work
considered two kind of turbulence, one with eddies of the same size and the other
one with a wide spectrum of eddies’ sizes. The results, shown in figure 1.8 and 1.9,
confirm what we saw in figures 1.6 and 1.7, furthermore introducing the concept
that the initial curvature of the autocorrelation function may be an indication of
which kind of eddies are to be considered. Taking a closer look at the figures, we
see that the one-dimensional correlation functions are smooth in the case of eddies
of the same size, while they show a locally high curvature in the second case.
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Figure 1.8: Correlation functions for isotropic turbulence with eddies of the same size.
Townsend

Figure 1.9: Correlation functions for isotropic turbulence with eddies of a wide range of
sizes. Townsend
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Thanks to the definitions of the longitudinal and transverse autocorrelation func-
tion, two distinct longitudinal and transverse lengthscales may be defined. Starting
from the longitudinal autocorrelation function we may obtain longitudinal integral
scale that is:

L11 (t) ≡
∫ ∞
0

f (r, t) dr, (1.27)

and is a characteristic of the larger eddies. In isotropic turbulence, taking into
account the transverse autocorrelation function, L22 may be defined as half of L11.
In general:

L22 (t) ≡
∫ ∞
0

g (r, t) dr. (1.28)

Another lengthscale may be introduced: this is the Taylor microscale λ that can be
seen as the characteristic dimension of the smallest dynamically significant eddies
of the flow. It may be obtained after performing some mathematics involving the
Taylor series expansion of f or g around the origin, with the final formula being:

λ2f (t) = − 2

f ′′ (0, t)
, (1.29)

while the transversal one is:

λg (t) =

[
−1

2
g′′ (0, t)

]−1/2
. (1.30)

1.4.3 Spectral Analysis

In this work the one and three dimensional spectra will be considered. For a deeper
examination on velocity spectra the work of Pope may be taken into account [2].
Starting from the definition of longitudinal and transverse autocorrelation functions
1.25, the equation for the one-dimensional spectra Eij (κ1) is defined as twice the
one dimensional Fourier transform of Rij:

Eij (κ1, t) ≡
1

π

∫ ∞
−∞

Rij (e1r1,t) e
−ik1r1dr1. (1.31)

Pope shows that in isotropic turbulence the one-dimensional spectra may be calcu-
lated starting from the energy-spectrum function E (κ), that is, after some mathe-
matics:

E11 (κ1) =

∫ ∞
−∞

∫
E (κ)

2πκ2

(
1− κ21

κ2

)
dκ2dκ3, (1.32)

while the transverse counterpart is determined by E11 only:

E22 (κ1) =
1

2

(
E11 (κ1)− κ1

dE11 (κ1)

dκ1

)
. (1.33)
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That said, in isotropic turbulence energy spectrum function is

E (κ) = −κ d
dκ

1

2
Eii (κ) . (1.34)

An example of the behavior of the three-dimensional and one-dimensional spectra
has already been provided in figure 1.2, in which the solid line represents E (κ) while
dashed lines are E11 (κ) and E22 (κ). As previously explained, in the center of the
wavenumber range (that is the inertial subrange), the −5/3 power law introduced
in equation 1.9 may be observed.

All of these results, equations and figure included, will be taken into account in
a latter analysis of the validation of the chosen turbulent field with the Kolmogorov
theory.
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Chapter 2

Database and DNS description

A lot of papers and articles have been dedicated in the recent past to the DNS
subject (for a review see [8], [9]), that is an argument of recent interest and still
going development, thanks to the improvement of computing performances. In this
chapter, after a brief introduction of the Direct numerical simulation method, the
database chosen to accomplish our objective will be introduced.

2.1 The DNS method

In the past years turbulence has been a subject of interest for the community of re-
searchers; this interest grew constantly because of the complexity of the argument,
due to the nature of turbulence that is to possess a mixture of order, chaos and a
wide range of length and time scales, as already explained in the previous chapter.
This complex behavior is a consequence of an apparent simple set of equations, that
is the Navier-Stokes one: non linearity, large number of degrees of freedom, sensi-
tivity to flow conditions are just some of the causes of this problem.
We know that an analytical solution to even the simplest of the turbulent flows does
not exist: a complete description of the flow, with space and time dependance, can
be achieved only by numerical resolutions. These numerical resolutions are termed
DNS, that stays for “direct numerical simulations”.
The main feature of the DNS method is to solve the Navier-Stokes equations numer-
ically and without the use of any turbulence model. This means that this method
can solve the flow for the whole range of spatial and temporal scales. Starting from
the smallest dissipative scales and up to the integral scale, all the spatial scales of
the turbulence must be solved in the computational mesh.
DNS approach was born in 1971 and since then it developed along the progress of
computational machines. In early years isotropic, incompressible and homogeneus
flows could be computed: first of all, for example, a pioneering project of computing
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a 323 grid point mesh was achieved [10], and since then it has been observed that
the complexity of the flow analyzed noticeably increased (in 2007 the N3 achieved
was the 40963 of forced turbulence on the Earth Simulator), even if their Reynolds
numbers were still low. DNS grew also as a research tool for flows that cannot be
easily produced in laboratory because of their geometry (finite difference schemes
and finite element method helped in this process); in fact, while the laboratory ex-
periments are limited by geometrical flow problems, DNS is not because geometry
can be “easily” manipulated by CAD softwares. On the contrary, DNS, as already
said, cannot reach extremely high Reynolds numbers whereas a laboratory’s exper-
iment can.
All of the improvements that made DNS a better method have been accompanied
by a significant improvement in computer hardware. It can be easily imagined that
some of the hardware requirements for a fine DNS resolution, as for example large
memory storage and personal computer’s power, were improved significantly only in
the last few years, finally contributing to the refinement of the DNS method.
DNS is still an unrivalled approach in the level of description provided, however it’s
important to notice that computational cost and time are still very high, and this
is the major issue of this method. Minor problems that were solved in the long
process of defining DNS method were numerical issues as spatial resolution, time
advancement and definition of boundary conditions. For compressible flows, shock
waves posed sever challenges to the method, too.
DNS has been labelled in the past as a brutal-force solution to the Navier-Stokes
problem, but later it has been considered as a powerful research tool and a comple-
ment to the experiments made in laboratory.
At these days the contribution of direct numerical simulations to turbulence have
been impressive even if some of their limits have not been yet overcome. DNS is
being brightly used today for experiments with low-medium Reynolds number, but
it is a method that is always open to evolution thanks to, for example, the use of
parallel and high-performance computing that in the future may help to achieve
results for more realistic turbulence conditions.
As previously stated, DNS is limited to flows with moderate Reynolds number, that
is why DNS is a research and validation tool rather than a method for engineering
design. While being still used for the resolution of the NS equations at all scales,
different methods were explored in order to reduce one of the main cons of the DNS
(that is the computational cost). Some of them are listed below:

• RANS: Reynolds-Averaged Navier-Stokes simulation:
In this method, ensemble averaged flow variables are computed, while all the
fluctuations are modelled with a turbulence model. This method is at low
computational cost: in fact if only the main flow is simulated, the characteristic
time scale will be much larger than the Kolomogorov ones, hence it is not
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required time spacing.
There are some drawbacks, too: even with a cheaper computational cost the
RANS method fails in providing a lot of information like velocity and pressure
fluctuations. The major problem is the quest for an appropriate closure model:
this may be obtained either via turbulent viscosity hypothesis or via modelled
Reynolds-stress transport equations : several constant values must be defined
for every simulation.

• Large-Eddy simulation:
There is another approach for overcoming both the difficulties of DNS and
RANS: in a LES (Large-eddy simulation) a spatial scale separation is applied,
so that medium and larger scales are normally computed with a DNS while
the small scales are treated separately. The main distinction between LES and
RANS is that in the first there is a spatial filtering while in RANS there is
a temporal filtering. Different types of filters may be applied and they affect
the method directly because, after applying at the NS set of equation this
filter, a new anisotropic residual-stress tensor has to be modelled. A closure
is needed here too, with the most common one being the eddy viscosity type
sub-grid closure. The problem in this method is determining the value of
the eddy viscosity itself: different choices were proposed during the years, like
Smagorinsky model or Germano’s one. The main inconvenient of adopting the
Smagorinsky model was that a single value of the problem’s constant was not
suitable for achieving consistent results in different types of flow; Germano
instead tried to adjust dynamically the constant to the local structure of the
flow [11]. Damping functions are needed too: subgrid-scale stresses do not
vanish at the boundaries of the domain.

2.2 The Johns Hopkins Turbulence Database

The dataset that we chose for this work is a resolved DNS of a forced isotropic tur-
bulent field being part of a database that contains two more datasets (a MHD DNS
and a fully developed turbulent flow in a channel) [12]. The database was made
with the purpose of creating a comprehensive data archive, providing the users the
ability to explore a multi-terabyte database thanks to a feasible interface [13]. This
interface makes possible the interaction between the database and a computational
program running on a user’s personal computer. Data may be obtained whenever
needed, and may be used to perform further analysis on the local machine of the
user. Some useful codes, written in Matlab or FORTRAN language, are provided
to facilitate the user in downloading and processing data.
This database demonstrated compliance with our criteria, as well as other researchers’
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needs too. The list of the publications made thanks to this database is hence long
and it includes, among others, the works listed below:

• In 2010 Gungor and Mengon worked on a new hybrid approach for two-scale
model for large eddy simulation of wall-bounded flows [14].

• In 2010 Yu and Meneveau studied Langrangian time correlations values of
velocity and pressure gradient, in order to achieve collapse of the correlation
functions after reaching the inertial-range [15].

• In 2012 Wu and Chang published a paper for a study of rank-ordered multi-
fractal analysis of the probability distributions in fluid turbulence, in order to
provide a natural connection between the rank-ordered spectrum and the idea
of one-parameter scaling for monofractals [16].

2.2.1 Dataset of a forced isotropic turbulence DNS

As previously said, we chose to analyze a forced isotropic turbulent field for our
project. The dataset we chose, part of the bigger Johns Hopkins Turbulence Database,
comes from a data simulation made by the Johns Hopkins University of Baltimore
in collaboration with the Peking University in Beijing, China.
The data is from a 10243 periodic grid simulation, made by using a pseudo-spectral
parallel code. Integrating factor is used for time integration of the viscous term,
that hence was done analytically. The other terms are integrated using a multi-step
method, that is the second-order Adams-Bashforth scheme one, while the nonlinear
term is written in vorticity form. The simulation is de-aliased using a phase-shift and
a 2
√

3/3 truncation. Energy is injected by keeping constant the total energy, in a
way that their wave-number magnitude |k| is less or equal to 2. After the simulation
has reached the statistical stationary state, 1024 frames of data including the three
components of the velocity vector and the pressure are generated and stored in the
multi-terabyte database. The duration of the stored data is about one large-eddy
turnover time TL.
The domain of the field is a 2π x 2π x 2π cube, that is a range of x1, x2 and x3
of [0,2π]. Viscosity ν is 0.000185 and the simulation time-step ∆t = 0.0002. Data
are stored every 10 DNS time-steps, so they are separated by a δt = 0.002. Time
is stored between t = 0 and t = 2.048. There was another dataset available for
download, a finer one made for testing purposes, that acquired the data every single
time step (and not every 10 step as the one we chose) for t between [0.0002,0.0198].
Some of the main characteristics of the field, and respective formulas, are listed
below. They are time averaged over t = 0 and t = 2.048.
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• Distance between nodes:

d =
2π

1024
= 0.006136. (2.1)

• Total kinetic energy:

Etot =

〈∑
k

1

2
û · û∗

〉
time

= 0.695. (2.2)

• Dissipation:

ε =

〈∑
k

(
νκ2û · û∗

)〉
time

= 0.0928. (2.3)

• R.m.s. velocity:

u′ =

√(
2

3

)
Eκ = 0.681. (2.4)

• Taylor micro-scale

λ =

√
15νu2

ε
= 0.118. (2.5)

• Reynolds at the Taylor scale:

Reλ =
uλ

ν
= 433. (2.6)

• Kolmogorov length scale:

η =
ν3/4

ε1/4
= 0.00287. (2.7)

• Kolmogorov time-scale:

τη =

√
ν

ε
= 0.0446. (2.8)

• Integral scale:

L =
π

2u2

∫
E (κ)

κ
dκ = 1.376. (2.9)

• Large eddy turnover time:

TL =
L

u′
= 2.02. (2.10)
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Figure 2.1: Radial kinetic energy spectrum, averaged in time t = [0,2.048]

In figure 2.1 the radial kinetic energy spectrum of the dataset is shown: as it can
be seen, the scaling of the −5/3 Kolmogorov law is represented too for the inertial
subrange. We observe that the scaling applies also for smaller k values, and that is
because of the forcing that acts on bigger scales.
In figure 2.2 it is shown the time scale of the total kinetic energy which, as previously
explained, is injected in a way that the wave-number magnitude is less or equal 2.
The dashed part of the line stands for the time before the acquiring of the data in the
database, that is before reaching a statistically stationary state. Data corresponding
to the database are represented by the solid line. The same thing applies for the
figure 2.3, in which the time series of the Taylor scale Reynolds is represented.
In figures 2.4 and next, time evolution of the velocity vectorial field is shown for a
two-dimensional grid (800x800) at a z section equal to z=512. The arrows show the
velocity vectors, while the colormap show the evolution of the z component of the
velocity. Six different timesteps are shown, in order to provide an entire view of the
evolution of the field.
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Figure 2.2: Time series of the total kinetic energy

Figure 2.3: Time series of the micro-scale Reynolds number
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Figure 2.4: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 1
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Figure 2.5: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 200
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Figure 2.6: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 400
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Figure 2.7: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 600
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Figure 2.8: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 800
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Figure 2.9: 800 x 800, z=512 grid: colormap indicates value of the z component of
velocity, while vectors indicate velocity. Timestep t = 1000
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In figures 2.10, 2.11, 2.12, 2.13 and 2.14 the time evolution of a small portion of
the energy field is shown and is taken as an example. This portion, in particular, is
a small circle with a diameter of 65 cells circa centered around the node placed at
coordinates (280,280). The colorbar shows the magnitude of the value of the kinetic
energy.
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Figure 2.10: Time evolution of the kinetic energy of a field centered around the node
280x280. Timesteps 100 and 200.

x

y

 

 

0.2

0.4

0.6

0.8

1

1.2

x

y

 

 

0.2

0.4

0.6

0.8

1

1.2

Figure 2.11: Time evolution of the kinetic energy of a field centered around the node
280x280. Timesteps 300 and 400.
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Figure 2.12: Time evolution of the kinetic energy of a field centered around the node
280x280. Timesteps 500 and 600.
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Figure 2.13: Time evolution of the kinetic energy of a field centered around the node
280x280. Timesteps 700 and 800.
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Figure 2.14: Time evolution of the kinetic energy of a field centered around the node
280x280. Timesteps 900 and 1024.

2.2.2 Data acquiring and pre-processing

To acquire the data from the database, a simple procedure was followed; we chose
to use the section “Download Data Cutout” from the website, because it was more
suitable for our work. The layout of the downloading section is represented in figure
2.15. After filling in an authorization token, obtained thanks to a website operator,

Figure 2.15: Layout of the data cutout section

dataset and field of interest is to be chosen. The data cutout section layout is very
suitable to download portions, in space and time, of the field: the user is able to
insert starting coordinates in the three directions and in time, and the size of the
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cutout. An output was generated in a Hierarchical Data Format, that is a .h5 ex-
tension.
During the downloading process, due to some limitation of the database’s server,
it was possible to download cutouts of dimension equal to 800 x 20 x 1, hence 40
cuts were needed in order to fulfill our request to create a grid of 800 x 800 x 1.
In particular, for our analysis, two grids were downloaded: the first one at the half
of the z direction (we will refer to that as the z = 512 grid), the second one at
z = 212. The grid were downloaded starting from x = 112 and y = 112 for a size
of 800 in every of the two directions. Other smaller parts of the domain were then
downloaded to provide a better understanding of the evolution of the parameters
along the z direction too. Every part was downloaded in its integrity, composed
hence of the whole 1024 temporal steps.
A MatLab code was then created to extrapolate from the .h5 files the three compo-
nents of velocity, plus to compute the kinetic energy. This code, which may be seen
in Appendix A.1, gave as outputs several .mat files containing matrices of dimen-
sions 800 x 200 x 1024, which were then cut in order to manage smaller parts of the
domain (for example 200 x 200 grids, as we will see in section 3.4).
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Chapter 3

Complex network theory

Networks are all around us, the world wide web, social species, neural networks or
highways and subways systems are just some of the many examples that may be
provided: we are part of a network of social relationships, too. The most natural
approach used to describe these systems is, of course, a network structured one. A
network, in fact, is made of nodes that represent dynamical units, while the links
between them stand for their “relationships”: thanks to their simple nature, hence,
great part of the systems of the world may be represented as networks.
With the always more appealing power of modern computers, network analysis grew
constantly as one of the main instruments to describe real system properties.

3.1 The network approach: an historical intro-

duction

The study of networks was conceived as a branch of discrete mathematics known as
“graph theory”, which was introduced firstly by the Swiss mathematician Euler in
its Konigsberg bridge problem (1736): this problem consisted in finding a way to
cross every bridge of the prussian city of Konigsberg exactly once. Since its birth
this theory witnessed many developments and achieved a lot of results, providing
answers to many practical questions (e.g. the “four colors theorem” or the “Hamilto-
nian path problem”). While actively used in a series of mathematical problems, only
in the early years of the 20th century the theory became an important instrument to
analyze social problems as communication and relationships between people. The
social field in fact was the main one in which the theory of networks had its roots.
While network theory established itself as one of the main instruments for these prob-
lems, a new branch of it grew constantly, thanks to a renewed interest in research
and, especially, thanks to the increased computing power: this was the “complex
network analysis”.
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The study of the complex networks, which are networks whose structure is complex,
irregular, and dynamically evolving in time, was meant as an instrument for systems
with thousands or millions of nodes. This flurry of activity was triggered at the end
of the 20th century by the pioneering works of Strogatz, Barabàsi and Albert ([17],
[18]) which showed glimpses of the large possibilities of this kind of analysis. The
appeal of this theory therefore was so strong that the physics’ community became
the principal actor in its growth.
During the last decades a lot of works were published in order to define global
properties of the complex network theory ([19], [20]): these works contributed in
distancing this new theory from the graph one. Graph theory in fact demonstrated
itself as no longer suitable for real life systems, while still widely used in informat-
ics and mathematics. Complex network theory, instead, established itself as the
intersection between graph theory and statistical mechanics, hence assuming more
popularity thanks to its flexibility and its natural reliability in representing virtually
any discrete system.
Complex network theory is still a young and active area that is developing at fast
pace: more and more fields of study, as for example engineering and biology, are
being explored at the moment thanks to a huge researching activities that spread
across many countries in the world.

3.2 Complex network: a brief survey of the ap-

plications

The theory introduced in this chapter had a huge impact in a lot of areas of study.
The success of it could be imputed to contributing to new theoretical approaches
and to satisfactory applications to real world problems [21].
As previously explained, one of the fields where this theory gained his major achieve-
ments is the social one: relationships among people have been crucial to guide cul-
tural and economic evolution since ancient times. Social networks have been studied
in a quantitative and primitive way for 3 centuries, but just in the last decades the
analysis of empirical data grew as one of the main instruments for understanding
social issues. Some of the most important concept of the complex network theory
were conceived in the social field: the “small world” effect, which emerged from
the famous Milgram social experiment about six degrees of separation, it’s just one
of the examples [22]. Since its first applications in the social field, a lot of differ-
ent aspects of social communities were explored thanks to this theory: sports [23],
sexual relations, migration [24], collaborations, terrorism [25] and folklore are just
few of the areas of applications. This constant growth in analyzing social problems
with this theory is at the moment still running thanks to larger and larger available
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databases of real world data (e.g blogs or social networks). Communication net-
work, in fact, had a huge impact on the theory, overcoming the practical difficulties
of mapping the interactions between people thanks to the advent of Internet and
mobile communications [26]. The World Wide Web has been widely analyzed with
the complex network theory whereas being so difficult to map completely due to its
depth and its constant evolution [27].
Another field in which the complex network theory excelled is the biological one.
Modeling biological systems such as metabolic pathways, interacting proteins or ge-
netic networks may be performed with this theory. By using complex network theory,
a lot of properties of biological systems have been discovered in the recent years,
including power law connectivity distributions, small-world properties, motif and
community structures [28]. Furthermore, the crucial concepts needed to understand
biological systems as emergence, robustness and modularity, are also ingredients of
the general complex networks theory. Thanks to the network approach to biologi-
cal problems, the theory has been useful in medicine too, due to the possibility of
applying these concepts to understand disease’s principles and their spreading [29],
[30].
Networks have been used also to describe economic phenomena: industrial produc-
tion, wealth spreading [31], tourism, trade [32] and currency are just some of the
subjects that can be easily represented by discrete systems. Financial market, for
example, is a highly complex evolving system that may be studied thanks to a net-
work representation [33].
One of the recent fields to be analyzed thanks to the complex network theory, is the
one of the Earth sciences: the study of earthquake’s spatial distribution, for exam-
ple, may be done in a form of network [34]. Climate networks’ studies arose too,
in which systems representing climate issues vary in a complex way: every node of
the network represents cells of a grid that covers the whole globe, while connections
among them represent the time correlation coefficient [35], [36].
All these different applications converged in the recent years to the engineering
field. The complex network approach started to spread itself among the community
of engineers, with some ideas still developing while others already realized. Trans-
portation networks, for example, are already being analyzed thanks to this theory
that helped to understand movement of people around the world. Airports [37],
railways and subways network are just few of the examples of experiments carried
out successfully.
Eventually, complex networks have been a topic of conferences in different fields
since its birth, and while its principles are already well defined, more will be done
with its endless possibilities and constant growth.
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3.3 The structure of complex network: properties

and definitions

In this section just few of the concepts of the complex network theory will be intro-
duced. As previously explained the theory is still developing itself at a fast pace,
gaining contribution from a variety of fields of studying, this means that new def-
initions and properties of complex networks are surfacing constantly. Therefore in
this section we will limit the list of parameters and definitions to the ones we used
in this work.
A complex network may be represented as a graph which consists of two sets N and
L, such that N /= 0 and L is a set of pairs of elements N . We call the elements
of N as nodes (or vertices, or points), while the elements of L are named links (or
edges, lines). In an unordered graph the order of links is not important, whereas in
an ordered one links are defined by their direction, too.
In a graph nodes may be drawn as dots linked with lines: how these dots and lines
are drawn is irrelevant because the only thing that matters is if a pair of nodes
form a link or not. Two nodes that form a link are referred to as adjacent (or
neighbouring), a single node cannot be linked to himself (i.e. there are not loops in
the network), and two nodes cannot be linked by more than one links (no multiple
edges).
Networks may be divided into two sub-categories: unweighted ones and weighted

Figure 3.1: Graphical representation of a undirected (a), a directed (b), and a weighted
undirected (c) graph with N = 7 nodes and K = 14 links.

ones. Unweighted networks are networks in which there is an homogeneity in inten-
sity of links. Weighted networks, instead, present large heterogeneity in the capacity
and the intensity of the connections, therefore are more suitable for the usage in real
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world problems.
Another important concept of this theory is the one of reachability of two different
nodes. Two nodes that are not adjacent may not be reachable from one to the other
but through an alternative walk, that is a different sequence of nodes and edges that
begins and finish with the two starting nodes: a trail is a walk in which no edge is
repeated, while a path is a walk in which no node is visited more than one time. The
shortest path concept is therefore one of the main concept of the complex network
theory: it is the walk of minimal length between two nodes.
A graph is connected if, for every pair of different nodes, there is a path between
them, otherwise it is unconnected (or disconnected). In this work we will deal with
undirected, unweighted and connected networks.
It’s useful to introduce a matricial representation of a graph: this can be achieved
with the adjacency matrix (or connectivity). An adjacency matrix is a N x N matrix
in which every entry aij is equal to 1 if nodes i and j are adjacent, i.e. when the link
lij exists, and zero otherwise. The adjacency matrix has a diagonal that contains
0 (that means that there aren’t any self-loops) and it is symmetric for undirected
graphs:

Aij =

{
1 if i and j are linked,
0 if i and j are not linked.

(3.1)

Some important parameters that are going to be analyzed in this work are about to
be introduced. The degree centrality of a node is defined as:

ki =

∑N
j=1 aij

N − 1
, (3.2)

with N number of nodes. The degree centrality gives the number of the nodes
adjacent to the node i, normalized over the total number of possible neighbors
N − 1.
Thanks to the definition of degree centrality, the degree distribution P (k) may be
introduced too: it defines the fraction of nodes having a value of the degree centrality
k. In other words, the degree distribution is the probability that a node in a network
is connected to k other nodes.
The weighted average topological distance of a node is here defined as:

Di =

∑
j∈nn(i) dij

Nci

N − 1

Nci

. (3.3)

In these equation dij is the shortest path length between the two nodes i and j, that
is the minimum number of edges that have to be crossed from the node i to the node
j, while nn (i) is the complete set of all the nodes adjacent to i. Nci is the number
of the neighbors of the node i, and it satisfies the condition Nci ∈ [1, N − 1]. The
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ratios at the right member of equations 3.3 have different meaning: the first one
measure the topological distance between the node i and the Nci nodes adjacent to
it, while the second one is a weight coefficient that indicates how strongly the node
i is connected to the rest of the graph. This notation is quite different from the
classic average topological distance definition which is:

di =

∑
j∈nn(i) dij

N − 1
. (3.4)

The two definitions are different in the case of a graph with disconnected compo-
nents, while are equal for a connected one. In our work, since we are dealing with
connected networks, the values of weighted average topological distance and aver-
age topological distance will be the same. A large value of the weighted average
topological distance Di means that the node is far from the rest of the network. In
general, most of the nodes that show larger degree centrality values, have smaller
values of weighted average topological distance.
Introducing Γi that is the set of first neighbors of the node i, a formula indicating
the local clustering coefficient may be given:

Ci =
e (Γi)
ki(ki−1)

2

. (3.5)

In this equation e (Γi) is the number of edges connecting the vertices within the
neighborhood Γi, and ki (ki − 1) /2 is the maximum number of edges in Γi. A global
clustering coefficient may be introduced too as:

C =
N∑
i=1

Ci
N
. (3.6)

The local and global clustering coefficients are parameters that indicate the proba-
bility that two neighbors of a given node are also adjacent: the local coefficient is
characteristic for a given point, while the global one indicates a general network’s
behavior.
The betweenness centrality of a node is defined as:

BCk =
∑
i,j /=k

σij (k)

σij
, (3.7)

where σij represents the number of shortest paths that connect nodes i and j while
σij (k) is the number of shortest paths from node i to node j crossing node k.
The betweenness centrality value is high for a node k which is crossed by a large
number of shortest paths, which means that the node k may be considered an
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important mediator of information for the network. Betweenness centrality and
clustering coefficient are connected to each other: a node important in mediating
information will probably have an high value of clustering coefficient. A large part
of the networks analyzed showed that higher values of degree centrality mean higher
values of clustering and betweenness coefficient, while smaller values of the weighted
average topological distance. This is not always true, but it can be considered as a
general behavior of the systems analyzed.

3.4 Building the network

In this work we decided to analyze two-dimensional portions of the three-dimensional
domain. Starting from the 800 x 800 grid, different cuts were made in order to
explore the downloaded two-dimensional grids.
First of all, a bigger grid of 200 x 200 nodes was cut, centered around the node of
reference (0,0). For every node we had a temporal series for the energy (or for one of
the three components of velocity). For this grid a code was written to select a circle
of ray r = 0.4 (which corresponds to 65 nodes circa) centered around the node (0,0).
After the selection of the 13333 nodes included in the circle, correlations in time
between every couple of nodes of the network were computed. Three matrices are
stored after the code ran: one for the values of correlations between all the nodes,
and the other two for the coordinates of every node. The code is shown in Appendix
B.1.

After the first selection of nodes, a second one has to be done in order to reach
the definitive network form. In this code (Appendix B.2) the main input (other
than the correlations matrix and their coordinates) to be inserted is the τ value,
which is the threshold value of the correlation that we are going to consider. Along
with this mathematical condition, two more geometrical conditions are considered
in order to avoid results biased by the geometric position of each node (graphically
represented in figure 3.2). Eventually a link between two nodes i and j may be
taken into account if:

• Rij > τ with Rij time correlation value.

• At least one between nodes i and j lies inside the circumference with ray
r = 0.2 and centered in (0,0);

• The physical distance between nodes i and j is less or equal to 0.2.

With this selection, every node included in a circumference with ray r = 0.2 and
center (0,0) has a well-defined region of influence where links with other nodes may
occur. Every node included in this circumference has the same potential number of
links. The output of the code B.2 will give two vectors representing the coordinates
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Figure 3.2: 200 x 200 starting grid, Circles of ray r = 0.4 and r = 0.2

of the active links, and a matrix of adjacency in which two values, 1 or 0, represent
an active link or an inactive one. In so doing, the resulting network is undirected
(A is symmetric) and unweighted (all the values above the threshold correspond to
Aij = 1). The selection of the threshold is a non-trivial aspect of building a network
and is here mutuated for convenience from the climate network ([35], [38] and [39]).
Since we are primarily interested in highlighting strong correlated connections, we
consider two different threshold values, namely τ = 0.5 and τ = 0.9. For example,
the network corresponding to the circumference centered in (280,280) at z = 512
shows with τ = 0.5 a number of active links equal to n = 5688943 and a number
of nodes equal to N = 10451. With τ = 0.9 we have instead n = 379581 and
N = 4848. A graphical representation of the nodes with the two threshold values
is reported in figures 3.3 and 3.4 (edges between nodes are not reported due to the
complexity of the figure). As expected, the network with lower τ has a wider spatial
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extension than with higher τ .
The choice of the size of the domain of interest is linked to the Taylor scale, as

−0.2 0 0.2

−0.2

0

0.2

Figure 3.3: Network for the circumference centered in (280,280) at z = 512, τ = 0.5.
The network has N=10451 nodes and n=5688943 links.

we are mainly interested in what happens at scales of this order or smaller (Kol-
mogorov scales), where the spatial correlation is high. The autocorrelation function
f(r), computed in section 4.1.2, shows that the correlation remains considerably
high even when the Taylor scale (λ = 0.118) is exceeded, therefore we almost dou-
bled the Taylor scale in defining the domain of interest. In fact, the region we focus
on for the following considerations is a circumference with ray r = 0.2.
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Figure 3.4: Network for the circumference centered in (280,280) at z = 512, τ = 0.9.
The network has N=4848 nodes and n=379581 links.
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Chapter 4

Analysis of the turbulent field

In this chapter a deep review of all the results obtained in this project will be given.
First of all the field that we extracted from the database will be analyzed with
the classic methods of the dynamic of turbulence. We introduced these methods in
chapter 1 where we defined several statistic tools that will help us in this process.
These results will be compared with some literature’s results and scaling, in order
to test the consistency of the flow with the hypotheses of Kolmogorov.
After this classic analysis, a more original one will be pursued thanks to the in-
struments of the complex network theory. Several results, following the definitions
introduced in chapter 3, will be shown with the purpose of drawing conclusions from
this preliminary analysis.
The reader should take into account that this work is original in its field, hence
there is not a counterpart of the results to be found in literature in order to make a
comparison with.

4.1 A classic statistical approach

4.1.1 Structure functions scaling

First of all the structure functions are going to be analyzed. We chose to analyze
second order structure functions for all the three components of the velocity.
As previously explained in chapter 1 equation 1.10, the second order structure func-
tion is the ensemble average of the product of the difference between velocities. Three
second order structure functions will be shown here, computed thanks to code C.1
and scaled with the Kolmogorov hypoteses applied for the structure functions in
section 1.4.1. In the process of computing the second order structure functions we
chose to do an average value in time of a number of 1024 timesteps (when the field is
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statistically stationary): the functions were averaged in space starting from a num-
ber of 160 samples over each direction. The graphs are drawn with logarithmic axes
in order to have a better understanding of the Kolmogorov scaling in the inertial
range.
In figure 4.1 the longitudinal second-order structure function (that is DLL that we
introduced before) is shown: as previously explained in equation 1.16 this function
in the inertial range should be proportional to r2/3, up to a multiplicative costant.
Because of the isotropic characteristic of this field, in fact, this scaling is followed
in the inertial range (L� r � η). The green line in the figure represents the tem-
poral average of the functions, while the curve sheaf in the background is composed
of every temporal step. The same scaling applies for the transversal second-order
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Figure 4.1: Longitudinal second-order structure function D11. Kolmogorov scaling with
r2/3.

structure function: equations 1.12 and 1.17 show that D22 = D33 = DNN with DNN

scaled in the inertial subrange as r2/3 (that is because, in isotropic turbulence, DNN

could be completely computed starting from DLL). In figures 4.2 and 4.3 the two
transversal second-order structure functions are shown. The Kolmogorov scaling
applies also in these cases, but in a less clear way than the longitudinal function
case.
In both the longitudinal and transversal second-order structure function the behav-
ior far from the inertial sub-range is similar to what we expected: the curve diverges
significantly from r2/3 for r → η and for r → L, hence distancing itself from the
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Kolmogorov scaling.
The third-order structure function, instead, was computed thanks to the code in
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Figure 4.2: Transversal second-order structure function D22. Kolmogorov scaling with
r2/3.

Appendix C.2. We chose to compute this only for the D111, that is for the first
component of velocity, averaged over 160 samples and then averaged in time (as
we did for the second-order one). The characteristic equation for the D111 comes
directly from the DLLL introduced in equation 1.19, and it is scaled in the inertial
subrange as r as we explained in equation 1.21. In this case the scaling is correct
once again, and the curve in figure 4.4 shows the same global behavior that we saw
for the second-order functions.
To achieve better results and in order to get smoother curves, the number of samples
should have been increased: due to the machine computational power, in fact, we
used just 160 samples. We could have used more samples, for example taken from
different grids, and not only the z = 512 one as we did.
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Figure 4.3: Transversal second-order structure function D33. Kolmogorov scaling with
r2/3.
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Figure 4.4: Longitudinal third-order structure function D111. Kolmogorov scaling with
r.
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In figures 4.5, 4.6, 4.7 and 4.8 the structure functions averaged in time for both
the grids z = 212 and z = 512 are showed, along with the their Kolmogorov scaling.
As expected, in the inertial subrange the trend scales exactly as the Kolmogorov
formulas for both the functions. Outside the inertial subrange, however, the trends
are slightly different: this happens expecially for r → L.
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Figure 4.5: Longitudinal second-order structure function D11 for both the grids z = 212
and z = 512. Kolmogorov scaling with r2/3.
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Figure 4.6: Transversal second-order structure function D22 for both the grids z = 212
and z = 512. Kolmogorov scaling with r2/3.
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Figure 4.7: Transversal second-order structure function D33 for both the grids z = 212
and z = 512. Kolmogorov scaling with r2/3.
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Figure 4.8: Longitudinal third-order structure function D111 for both the grids z = 212
and z = 512. Kolmogorov scaling with r.
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4.1.2 Auto-correlation functions

In this section we will analyze some important statistical quantities which may be
compared to several different results found in literature regarding the isotropic tur-
bulent flow. We introduced the quantities of interest in section 1.4.2, providing some
interesting results from different works and authors.
For all the quantities that we analyzed in this section we used the same number
of samples that we used before for the structure functions, that was 160 samples
averaged in spaces, and then averaged once again in time. The green curve stays for
the final result, while in the background 1024 temporal steps are shown.The samples
are taken from the grid z = 512 if not specified otherwise.
First of all the two-point correlation function in x direction R11 (equation 1.22) is
going to be shown. This function indicates how much velocities in two different
points distanced by r are correlated, and it’s quite important because from that we
may calculate the energy spectrum and the autocorrelation function. We expect the
two point correlation to drop significantly for increasing distances r.
As we can see in figure 4.9 in fact the two-point correlation function drops signif-
icantly in a short range of r, reaching values near to zero when we approach the
range r → L.
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Figure 4.9: Two-point correlation function R11.

The two-point correlation is useful when computing the longitudinal autocorrela-
tion function f(u) that has been defined in equations 1.25 along with its transversal
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counterpart for the second component of the velocity g(v). In this case the two
auto-correlation functions are defined in this way:

f (u) =< u (x + e1r, t)u (x, t) > / < u(0)2 >,

g (v) =< v (x + e1r, t) v (x, t) > / < v(0)2 > .
(4.1)

Figures 4.10 and 4.11 show the two above autocorrelation functions and as usual the
two curves decrease in a way that can be compared to literature results reported for
examples in Comte-Bellot’s work in figures 1.6 and 1.7. The two longitudinal auto-
correlation functions drop to zero at an r ∼ 2, and after this value they diverge due
to spurious effects, periodic boundary conditions and limitation in samples number;
in particular the transversal one should reach negative values for bigger values of r,
but this is not the case for g(v) probably due to the limitation of samples. Charac-
teristic in these cases is the behavior for smaller r values that confirm the fact that
we are describing an isotropic turbulent flow, hence showing the universal behavior
for smaller scales.
The codes used to compute the two autocorrelation functions are shown in Appendix
C.3 and C.4, with the first one containing the two-point correlation R11, too.
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Figure 4.10: Longitudinal autocorrelation function f(u).
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Figure 4.11: Transversal autocorrelation function g(v).

In figures 4.12 and 4.13 (computed thanks to codes in Appendix C.5 and C.6) the
two autocorrelation functions, longitudinal for v and transversal for u, are showed.
The definitions here are:

f (v) =< v (x + e2r, t) v (x, t) > / < v(0)2 >,

g (u) =< u (x + e2r, t)u (x, t) > / < u(0)2 > .
(4.2)

In this case, while decreasing as the autocorrelation functions we have seen before,
the behavior of the transversal function may be observed more vividly: as we saw
in the work of Comte-Bellot in figure 1.7 and in the one of Townsend in figure 1.9,
the transversal autocorrelation function reach negative values for bigger r. Spurious
effects and number samples affect instead the curve trend of f(v).
Furthermore, thanks to Townsend work that we described in section 1.4.2 we may

compare these results with ones in figures 1.8 and 1.9, hence stating that, due to
the form of longitudinal autocorrelation functions that are not smooth but decrease
rapidly, we are in presence of a wide range of eddies. This is confirmed, for example,
from the flow visualizations provided in figure 2.4 and next.
To complete the discussion in figures 4.14 and 4.15 the autocorrelation functions
for the grid at z = 212 are showed too. As we can see the evolution is slightly
different from the one of the grid z = 512, but even though the trend is different for
increasing values of r, we are more interested in what happens at small values of the
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Figure 4.12: Longitudinal autocorrelation function f(v).
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Figure 4.13: Transversal autocorrelation function g(u).
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Figure 4.14: Longitudinal autocorrelation functions for z = 212 and z = 512.
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Figure 4.15: Transversal autocorrelation functions for z = 212 and z = 512.
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distance because of the hypotheses of Kolmogorov: here the evolution of these func-
tions is the same, hence the isotropy for the smaller scales of the field is confirmed
once again. In order to achieve better results a comprehensive average of both grid
should be performed.
The transversal autocorrelation functions g(u) and g(v) may be also calculated an-
alytically thanks to the definition provided in equation 1.26 and code in Appendix
C.7, that derives from the isotropic hypotesis and starts from the curves obtained
for the longitudinal autocorrelation functions f(u) and f(v). The two figures 4.16
and 4.17 show that in the range of smaller r these analytically derived curves are
similar to the ones provided in figures 4.13 and 4.11, while for bigger values of r
they diverge and oscillate significantly due to the their definition that involves a
derivative. The similarity applies especially for g(v). Hence this definition is right
for a very high number of samples and for smaller values of r, that is in the isotropic
range.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

g

 

 

g(u) at z=512

g(u) at z=212

analytical g(u) at z=512

analytical g(u) at z=212

Figure 4.16: Transversal autocorrelation function g(u), including the one derived from
the analytical definition.
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Figure 4.17: Transversal autocorrelation function g(v), including the one derived from
the analytical definition.

4.1.3 Energy Spectrum

The last tool that we used to analyze the isotropic turbulent flow is the spectrum
of energy, that is how the energy is divided between the whole wavenumber range.
We introduced the definitions in section 1.4.3.
In figures 4.18 and 4.19 the two one dimensional spectrum, derived from the R11

and R22, are shown and confronted with the −5
3

Kolmogorov law for the inertial
subrange. These results clearly support the provided scaling, and that is because
we are taking into account an isotropic field. Furthermore it may be observed how
the Kolmogorov scaling extends also to smaller values of the wavenumber: this is
due to the forcing that acts on bigger scales.
The code used to compute this two one-dimensional spectra is shown in Appendix
C.8.

In figure 4.20 the 3D spectrum is shown. This was computed thanks to code
Appendix in C.9 that followed the definition provided in equation 1.34. The reader
should take into account that this definition is an approximation due to the isotropic
characteristic of the field and that contains a derivative inside: this is the main rea-
son of the oscillations that the E(k) curve has. To reduce this oscillations a bigger
number of samples could have been used.

In figure 4.21 all the spectra computed are shown together along with the Kol-
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Figure 4.18: Spectrum derived from R11, E11.
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Figure 4.19: Spectrum derived from R22, E22.
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Figure 4.20: 3D Spectrum derived E(k).

mogorov scaling, as a comparison with the figure 1.2, while in figure 4.22 the spec-
tra computed thanks to the samples of the z = 212 grid are showed (the trend is
obviously similar to the ones taken from the z = 512 grid).
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Figure 4.21: Spectra E(k), E11, E22 for the z = 512 grid.
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Figure 4.22: Spectra E(k), E11, E22 for the z = 212 grid.
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4.2 A complex network analysis

In this section the key part of the work is going to be analyzed. We will look through
a big number of results that we obtained, computed thanks to the definitions intro-
duced in chapter 3.3 and a variety of codes that will be specified in the Appendix.
First of all, a quick look at some figures will be given, introducing the graphics
counterpart of the definitions of chapter 3.3; after that a deeper analysis of the most
interesting structures that we found will be provided. We chose to display only the
networks that showed interesting patterns or structures and to omit the remaining
part, that consisted in a variety of networks similar to each other, in which spatial
homogeneity was found.
As previously explained in the 3.4 “Building the network” section, every graph rep-
resents a circle of a ray of ∼ 33 nodes, centered around a node located in one of the
two 800x800 grids at z = 512 and z = 212. Every figure contains a colorbar that
indicates the magnitude of the parameter that we are looking at. The networks are
created starting from the time evolution of the kinetic energy values and computing
their correlations, if not specified otherwise.

4.2.1 Differences between τ = 0.5 and τ = 0.9

During the process of building the network in code B.2 a value of the correlation
limit had to be specified. This threshold of course affects directly the results in a
way that may be understood better looking at the next figures.
First of all, the value of τ affects deeply the geometry of the network; in figures 4.23
and 4.24 the networks obtained for the two values of τ are shown. These circum-
ference are centered in (200,600) and are located in the grid at z = 512. In these
figures every point represents a node that has at least one link “switched on”: of
course the number of nodes (and consequently of links) in the figure 4.23 is a lot
higher than the one of figure 4.24. In the case of a threshold τ = 0.5 we have 9378
nodes and 1313722 links, while for τ = 0.9 there are 3862 nodes and 38770 links.
Geometry is different too: the network extends itself farther in the first case than
in the second one. It’s clear that, due to rapid decay of the correlation values, every
node has nearer neighbors if higher is the value of the threshold value τ , and this
reflects itself in the topology of the network.
Figures 4.25 and 4.26 show a comparison between the values of the degree central-

ity for the networks that we introduced in precedent figures. We remember that the
degree centrality is the number of links that a node has, normalized over the total
number of possible neighbors. The definition of the degree centrality was provided
in equation 3.2 while its computational code is in Appendix D.1. The result of
the comparison between the two limit values of correlations is obvious: while the
location of the nodes with a higher value of the degree centrality in the network is
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Figure 4.23: Network for the circumference centered in (200,600) at z = 512, τ = 0.5.

almost the same, the structures of the most correlated nodes are more extended in
space when τ is lower. The values (local values and mean value of the network) of
the degree centrality are certainly different of some order of magnitude, and that
is because choosing a value of τ = 0.9 means to cut a whole range of nodes with a
smaller correlation, hence the degree centrality is smaller too.
The weighted average topological distance is affected deeply by the value of τ . We
introduced the definition of this quantity in equation 3.3 stating that the larger it
is, the further is the node from the rest of the network: we mean distant in a topo-
logical sense, not in a geometrical one. The computational code used to evaluate
the weighted average topological distance is shown in Appendix D.2.
Obviously a bigger value of the threshold τ , that means a smaller number of links for
a particular node, implies a bigger weighted average topological distance at the same
time: hence we should always expect bigger values of the weighted distance if the
network shows low values of degree centrality. Figures 4.27 and 4.28 are shown as
an example of the comparison between two networks at different τ for the weighted
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Figure 4.24: Network for the circumference centered in (200,600) at z = 512, τ = 0.9.

average topological distance. It may be observed that the values reached are quite
different, and the geometrical features are different too: the networks built with a
value of τ = 0.9 tend to show often a zone in which the values of the weighted dis-
tance are small and quite uniform, and this zone is located around the center of the
network. This happens because, taking into account the threshold value τ = 0.9, few
links are still switched on and they connect nodes that are physically close: there is
uniformity in space (values of the parameters vary slowly between close nodes) that
interests the central part of the network. This behavior is evident especially in less
connected networks, that is the one with small mean values of the degree centrality.

The same subject may be analyzed comparing the results of the betweenness
centrality and local clustering coefficient, introduced in equations 3.7 and 3.5 re-
spectively. The betweenness centrality, that is a value that indicates how much a
node is a mediator for the information in a network (that is how many paths cross
it), is computed with code in Appendix D.3, while the local clustering coefficient,
that is the probability that two nodes linked with another are at their time adjacent,
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Figure 4.25: Comparison of the degree centrality for the (200,600) circumference at
z = 512, τ = 0.5.
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Figure 4.26: Comparison of the degree centrality for the (200,600) circumference at
z = 512, τ = 0.9.
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Figure 4.27: Comparison of the weighted average topological distance for the (200,600)
circumference at z = 512, τ = 0.5.
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Figure 4.28: Comparison of the weighted average topological distance for the (200,600)
circumference at z = 512, τ = 0.9.
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is computed with the code shown in Appendix D.4.
Figure 4.29 shows the betweenness centrality for the τ = 0.5 network of the same
circumference we have analyzed before for the other parameters, while 4.30 considers
the same network but for τ = 0.9. It stands out that in case of a lower correlation
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Figure 4.29: Comparison of the betweenness centrality for the (200,600) circumference
at z = 512, τ = 0.5.

limit a pattern is well defined, and on the contrary for τ = 0.9 very spotted and
heterogeneous values are present: this typical behavior will stand out expecially for
network with smaller values of degree centrality, as we will see later. Changing the
value of τ from 0.5 to 0.9 the values’ range stays the same, but of course there are
fewer nodes that have bigger values of betweenness centrality. These nodes are im-
portant in the network because they generally show high values of degree centrality
and smaller values of weighted average topological distance, too.
The same concept applies also for the local clustering coefficient shown in figures

4.31 and 4.32. We already explained how the concepts of betweenness centrality and
local clustering are in a certain sense similar: we expect in fact that if a node has
a high value of the betweenness centrality, it has a high local clustering coefficient,
too. This behavior happens in general for the major part of nodes. This similarity
doesn’t apply correctly if we focus on the change of the correlation limit values τ : we
observed before how a node with a high value of the betweeness centrality for τ = 0.5
will probably have a high value for τ = 0.9. This is not always meant to happen
if we consider the local clustering coefficient because, by increasing the threshold
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Figure 4.30: Comparison of the betweenness centrality for the (200,600) circumference
at z = 512, τ = 0.9.
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Figure 4.31: Comparison of the local clustering coefficient for the (200,600) circumference
at z = 512, τ = 0.5.
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Figure 4.32: Comparison of the local clustering coefficient for the (200,600) circumference
at z = 512, τ = 0.9.

value, we cut a lot of links in a way that if two nodes adjacent to a third one were
neighbors, they may not be anymore linked to each other. As a consequence, the
τ = 0.9 network does not substantially maintain any of the patterns revealed by the
τ = 0.5 network.
Taking a closer look at these figures we see that the same pixelated pattern that we
observed in figure 4.30 stands out also in the case of local clustering coefficient: this
is a general behavior observed for networks with smaller degree centrality values.
From now on the major part of this analysis will focus on the case of τ = 0.9, hence
we are going to consider only the strongest correlations between the nodes of the
network.
In the next sections a quick look to some of the most interesting structures found
in the two grids z = 212 and z = 512 will be given; after that the focus will be on
one of these structures that will be analyzed deeply.

4.2.2 Analysis of the grid z = 212

As already explained in section 3.4, two 800x800 grids were downloaded in order
to find some interesting patterns in the domain. The two grids were analyzed in
their integrity, creating 80 cuts circa that consisted in 80 circumferences for each
section. In this chapter, some of the most interesting circumferences of the section
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z = 212 will be analyzed mainly in terms of the degree centrality and the weighted
average distance, which are the most meaningful measures of the network theory. A
sketch of the location of the networks analyzed in this section is provided in figure
4.33. Out of ∼ 80 circumferences that were analyzed at this z, we found at least 10
networks with interesting patterns and high values of the degree centrality; the rest
of the circumferences, instead, showed homogeneity in space and small values of the
degree centrality.
Figure 4.34 shows a network centered around the node (230,230) in the grid z = 212.
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Figure 4.33: Sketch of the circumferences analyzed at z = 212

The degree centrality is two order of magnitude higher than the one showed in the
example provided in figure 4.26, whereas still lower than some values that we found
in our analysis. The streaky pattern that we observe in this figure is typical of
networks with a low-medium value of the degree centrality, and it goes against what
we would have expected in a case of isotropic field: one of the brightest results in
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Figure 4.34: Degree centrality for the circumference centered in (230,230) at z = 212,
τ = 0.9.

our project is that there isn’t isotropy in the network’s pattern, even if the flow
considered is an isotropic one.

Figure 4.35 shows, for the same network, the evolution of the weighted average
topological distance. Due to the fact that the values of the degree centrality are not
particularly high, the values of the weighted topological distance are of course high,
because every node tends to be topologically far from the rest of the network.

The streaky pattern that we observed in figure 4.34 is confirmed in figure 4.36
where another network with degree centrality values similar in order of magnitude
is shown. The streaks break down when there are few nodes with high values of
degree centrality and the rest of the network with quite low and uniform values,
as shown in figure 4.37, where a circumference centered in (150,470) displays a low
mean degree centrality value.

While exploring the z = 212 grid we found some interesting structures that con-
sisted of nodes with a high degree centrality value: these nodes are referred to as
supernodes. This is the case of the circumference centered in (110,350) that has
N = 4172 nodes and 376685 active links: this network is showed in figure 4.38 while
the degree centrality plot is in figure 4.39. This network is interesting because is one
of the few having small structures consisting of supernodes, while the major part
of the networks with high values of degree centrality show structures contained in a
range of 10-40 nodes circa.
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Figure 4.35: Weighted average topological distance for the circumference centered in
(230,230) at z = 212, τ = 0.9.
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Figure 4.36: Degree centrality for the circumference centered in (390,470) at z = 212,
τ = 0.9.
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Figure 4.37: Degree centrality for the circumference centered in (150,470) at z = 212,
τ = 0.9.

In figure 4.40 the supernode (120,344) is highlighted along with its active links.
This is one of the nodes with a higher value of the degree centrality in the network
showed in figures 4.38 and 4.37. Its degree centrality is 0.1172, while its active links
are 551. Once again it may be observed that there is not an isotropic behavior
in the trend of the correlations, hence the links are distributed differently in every
direction.
In figure 4.41 a node with smaller degree centrality (0.0365 with 172 links) is showed.
Comparing the two graphs 4.40 and 4.41 we see that the directional biases are lost
when we pass from a node with an high degree centrality value to a node with a
smaller one: that said, the fewer the links of a node are, the more similar the cor-
relations in every direction are.
Figure 4.42 shows the weighted average topological distance for the same network:

as we expected, the smaller values of this parameter are located in the nodes cor-
responding to higher values of degree centrality (supernodes shown in fig. 4.39 are
represented by dark blue regions in fig. 4.42). In this network the weighted average
topological distance in medially smaller than in other networks.
For the sake of completeness the graphs for betweenness centrality and local clus-

tering coefficient are showed too (figures 4.43 and 4.44). The patterns are more
defined than the ones of figures 4.30 and 4.32, and that is because the network has
high values of degree centrality.
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Figure 4.38: Network for the circumference centered in (110,350) at z = 212, τ = 0.9.

Taking a closer look to the betweenness centrality, we observe that there is not a
particular connection between the structures present here with the ones of the de-
gree centrality graph: an exception has to be done to the structure around the node
(120,344) that we highlighted in figure 4.40. This structure has high values of the
betweenness centrality and at the same time high values of degree centrality too,
whereas showing small values of local clustering coefficient.
In this network, on the contrary of what happens in other networks with smaller
values of degree centrality, the similarity between the patterns of the betweenness
centrality and local clustering coefficient doesn’t stand out.
While exploring the z = 212 grid, different structures were found showing a wide

range of degree centrality values. In figure 4.46 a structure with very high values
of degree centrality is shown: this network (figure 4.45) consists of 6600 nodes and
1629967 links, and represents an agglomeration of highly correlated nodes, probably
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Figure 4.39: Degree centrality for the circumference centered in (110,350) at z = 212,
τ = 0.9.
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Figure 4.40: Node (120,344) and its 551 active links. z = 212, τ = 0.9.
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Figure 4.41: Node (100,335) and its 172 active links. z = 212, τ = 0.9.
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Figure 4.42: Weighted average topological distance for the circumference centered in
(110,350) at z = 212, τ = 0.9.
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Figure 4.43: Betweenness centrality for the circumference centered in (110,350) at z =
212, τ = 0.9.
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Figure 4.44: Local clustering coefficient for the circumference centered in (110,350) at
z = 212, τ = 0.9.
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due to a presence of a very energetic eddy. Figure 4.47 shows the central node of
the network, that is the one located at (510,430). This node has a degree centrality
value of 0.2731 and a number of active links of 1802. This is definitely one of the
supernodes with the highest value of the degree centrality in the domain.

In figure 4.48 another interesting structure of the z = 212 grid is shown: this
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Figure 4.45: Network for the circumference centered in (510,430) at z = 212, τ = 0.9.

time we are in presence of a big structure with great heterogeneity in the degree
centrality values. For this network the supernode located in (727,416) is shown in
figure 4.49. Once again we observe that there isn’t isotropy in the correlation trend.

74



4 – Analysis of the turbulent field

−0.2 0 0.2

−0.2

0

0.2

 

 

0.05

0.1

0.15

0.2

0.25

Figure 4.46: Degree centrality for the circumference centered in (510,430) at z = 212,
τ = 0.9.
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Figure 4.47: Node (510,430) and its 1802 active links. z = 212, τ = 0.9.
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Figure 4.48: Degree centrality for the circumference centered in (730,410) at z = 212,
τ = 0.9.
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Figure 4.49: Node (727,416) and its 1032 active links. z = 212, τ = 0.9.

76



4 – Analysis of the turbulent field

4.2.3 Analysis of the grid z = 512

The z = 512 was explored in the same way that we did for the z = 212. Several
interesting structure, of course different in dimensions, shape and magnitude, were
found in this grid: out of 80 cuts we found circa ten interesting networks, hence
confirming the trend of the z = 212 grid. In this section an overview of the main
results will be provided while in the next section a deeper analysis of a particular
network located in this grid will be given.
First of all, as previously did for the z = 212 grid, a graphical sketch of the location
of the circumferences here analyzed is provided in figure 4.50.

Figures 4.51 and 4.52 show the degree centrality and weighted average topological
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Figure 4.50: Sketch of the circumferences analyzed at z = 512

distance for a circumference centered in the node (390,390). In this configuration
there aren’t any interesting structures with high values of degree centrality, and
of course the values of the weighted average topological distance is medially high
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Figure 4.51: Degree centrality for the circumference centered in (390,390) at z = 512,
τ = 0.9.
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Figure 4.52: Weighted average topological distance for the circumference centered in
(390,390) at z = 512, τ = 0.9.
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and quite uniform: due to the fact that the nodes are not strongly correlated, the
weighted average topological distance is high. Even though we are in presence of a
network with small values of correlations, the link between the plot of the degree
centrality and the one for the weighted average topological distance stands out: in
figure 4.52 in fact there is a zone in which the values of the parameters are low, and
that corresponds to the zone in figure 4.51 where there is an agglomeration of nodes
with higher degree centrality compared with the rest of the network.
A more correlated network is shown in figure 4.53. In this case the values of the
degree centrality are higher because we have a network with 3962 nodes and 92448
links. The weighted average topological distance is showed as well in figure 4.54: the
values are obviously smaller than the circumference located in (390,390). Also in
this case the correspondence between the graph of the degree centrality and the one
of the weighted average topological distance is straightforward: the structure that
has the higher values of the degree centrality in figure 4.53 has the smaller values of
weighted average topological distance in figure 4.54.
Comparing the values of the network centered in (710,150) with the ones of the
network seen before and centered in (390,390) we observe once again that when a
network tends to show high values of the degree centrality, it shows small values
of the weighted average topological distance too: the network centered in (390,390)
has a peak in the degree centrality value of 0.025 while the one centered in (710,150)
has a peak of 0.045 and consequently the values of the weighted average topological
centrality have a minimum value of 10 in the (390,390) network and of 6 in the
(710,150) one.
One of the more correlated nodes of the network centered in (710,150) is showed in

figure 4.55. This node can’t be classified as a supernode if we compare it with other
nodes of the domain, because it has a degree centrality value of 0.04 and a number
of active links equal to 159. These values, despite being the highest in this network,
are small in comparison with other network’s ones.
As we did for the z = 212 grid, we provide also in this case an example of a highly

correlated network that is the one centered in the node (630x70), that has a number
of nodes N=4462 and 416573 links. Figure 4.56 represents the degree centrality,
which shows a structure with degree centrality values of ∼ 0.2, while figure 4.57 de-
picts the weighted average topological distance. The range of values of the weighted
average topological distance is small, and that’s due to the high degree centrality of
the network: as already seen for other networks the nodes that have higher values of
the degree centrality tend to assume small values of the weighted average topological
distance. For the sake of completeness the graphs for the betweenness centrality and
local clustering coefficient are reported, too (figures 4.58 and 4.59). Taking a closer
look at the figures, we may observe that the nodes with an high degree centrality
value tend to show higher values of the betweenness centrality and local clustering
coefficient. Even though the major part of the supernodes show high values of both
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Figure 4.53: Degree centrality for the circumference centered in (710,150) at z = 512,
τ = 0.9.
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Figure 4.54: Weighted average topological distance for the circumference centered in
(710,150) at z = 512, τ = 0.9.
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Figure 4.55: Node (728,163) and its 159 active links. z = 512, τ = 0.9.

the betweenness centrality and local clustering coefficient, a small degree centrality
value doesn’t exclude a priori a high value of the two parameters.
Figure 4.60 shows the active links for the node (638,53): the number of links are
911 while the value of the degree centrality is 0.2042. Once again we observe how
links spread out differently in every direction.
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Figure 4.56: Degree centrality for the circumference centered in (630,70) at z = 512,
τ = 0.9.
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Figure 4.57: Weighted average topological distance for the circumference centered in
(630,70) at z = 512, τ = 0.9.
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Figure 4.58: Betweenness centrality for the circumference centered in (630,70) at z =
512, τ = 0.9.
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Figure 4.59: Local clustering coefficient for the circumference centered in (630,70) at
z = 512, τ = 0.9.
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Figure 4.60: Node (638,53) and its 911 active links. z = 512, τ = 0.9.

4.2.4 A deeper look at the circumference centered in (280,280)
at z = 512

In this section a closer look at one of the most interesting networks that we found
in our work will be given. Different results will be provided: beyond all the param-
eters that we introduced in the previous chapters a different analysis will be done,
including several cuts at different sections and networks for the three components
of velocity.
The circumference centered in (280,280) has already been introduced in section 3.4,
where it was taken as an example for the process of building the network. Figures
3.3 and 3.4 showed the network for both the two values of the threshold τ : the
first network with τ = 0.5 has N = 10451 nodes and n = 5688943 links while the
one with τ = 0.9 consists of N = 4848 nodes and n = 379581 links. The same
circumference was also showed in figures 2.10, 2.11, 2.12, 2.13 and 2.14 where the
time evolution of the kinetic energy was plotted.
The graphs for the degree centrality are showed in figures 4.61 and 4.62: the first

one shows the degree centrality for the threshold value τ = 0.5, while the second
one is for τ = 0.9. Comparing the two figures we observe that the values of the
degree centrality are of course smaller in the second network; the pattern is different
too, the threshold τ = 0.9 cuts a huge part of the correlated nodes, hence the main
structure in the center of the network is less extended in space. Figures 4.63 and
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Figure 4.61: Degree centrality for the circumference centered in (280,280) at z = 512,
τ = 0.5.
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Figure 4.62: Degree centrality for the circumference centered in (280,280) at z = 512,
τ = 0.9.
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4.64 show the links of the central node of the network. In case of threshold τ = 0.5
the central node has a degree centrality value of 0.28736 with 3003 active links,
while with τ = 0.9 the degree centrality value is 0.10583 and the number of active
links is 513. Furthermore, we observe how the links around the node (280,280) for
the threshold value τ = 0.9 are located in a way that resembles the streak already
seen for the degree centrality plot, that is the one in figure 4.62.
From now on, the analysis of this circumference will be done assuming a value of
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Figure 4.63: Node (280,280) and its 3003 active links. z = 512, τ = 0.5.

the threshold τ = 0.9 because we are interested in highlighting the stronger cor-
relations between nodes. Taking a look at figure 4.61 in fact we observe how the
greatest part of the nodes of the network has high and similar values of the degree
centrality, hence we are not able to capture any well-defined structure.
Figure 4.65 shows the weighted average topological distance, the trend of which is
similar to the ones seen in precedent chapter: the nodes with high degree centrality
tend to show smaller values of the weighted average topological distance (dark blue
regions). Figures 4.66 and 4.67 represent the betweenness centrality and the local
clustering coefficient, respectively: these measures don’t show a particular trend
even if we expect having higher values of betweenness centrality and local clustering
coefficient where we are in presence of supernodes.

As previously anticipated, a different analysis may be done in order to overcome
the limitation that comes from taking into account only two-dimensional grids. We
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Figure 4.64: Node (280,280) and its 513 active links. z = 512, τ = 0.9.
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Figure 4.65: Weighted average topological distance for the circumference centered in
(280,280) at z = 512, τ = 0.9.
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Figure 4.66: Betweenness centrality for the circumference centered in (280,280) at z =
512, τ = 0.9.
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Figure 4.67: Local clustering coefficient for the circumference centered in (280,280) at
z = 512, τ = 0.9.
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downloaded 8 different 400x400 grids, distanced of 5 nodes along the z direction:
the cuts were done at z = 492,497,502,507,512,517,522,527,532. For each of these
grids a network centered in the (280,280) node was built, and the degree centrality
was computed in order to follow the evolution of the structure with high correlated
nodes in the z direction.
Figures from 4.68 to 4.76 show the evolution of the structure in space along the z
direction; the figures are scaled with the same values of the degree centrality found
in these networks, in order to capture in the best way the evolution of the pattern
of interest. We observe that the structure extends in the z direction for a number
of nodes similar to the ones in the x-y plane, while maintaining the same values of
the degree centrality throughout the z cuts. Starting from the cut at z = 527 in
figure 4.75 the structure disappears, while another big and correlated structure rises
in the lower part of the network. Even though the field is isotropic, the presence of
these patterns located at different sections may be an indication of the existence of
eddies which have a ’lifetime’ bigger, or at least equal, than the integral scale one,
that is comparable to the duration of the stored data of the database.
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Figure 4.68: Degree centrality for the circumference centered in (280,280) at z = 492,
τ = 0.9.

Up to now we analyzed networks based on the time evolution of the kinetic
energy value; in order to achieve a better description of the phenomenology, the
same analysis may be pursued for all the three components of the velocity. We
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Figure 4.69: Degree centrality for the circumference centered in (280,280) at z = 497,
τ = 0.9.
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Figure 4.70: Degree centrality for the circumference centered in (280,280) at z = 502,
τ = 0.9.
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Figure 4.71: Degree centrality for the circumference centered in (280,280) at z = 507,
τ = 0.9.
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Figure 4.72: Degree centrality for the circumference centered in (280,280) at z = 512,
τ = 0.9.
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Figure 4.73: Degree centrality for the circumference centered in (280,280) at z = 517,
τ = 0.9.
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Figure 4.74: Degree centrality for the circumference centered in (280,280) at z = 522,
τ = 0.9.
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Figure 4.75: Degree centrality for the circumference centered in (280,280) at z = 527,
τ = 0.9.
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Figure 4.76: Degree centrality for the circumference centered in (280,280) at z = 532,
τ = 0.9.
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built these types of network for several circumferences that we found interesting
when analyzing the energy correlations, and we didn’t find a particular connection
between the networks for the energy and the ones for the three velocity components:
here only the results for the circumference centered in (280,280) at z = 512 are
showed (figures 4.77, 4.78 and 4.79). We scaled the figure with the same values
of the degree centrality, in order to have a better understanding of the evolution.
In this case it may be observed that the component which seems to resemble the
morphology of the kinetic energy network in figure 4.62 is the third one, w (figure
4.79).
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Figure 4.77: Degree centrality of the u component of velocity for the circumference
centered in (280,280) at z = 512, τ = 0.9.
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Figure 4.78: Degree centrality of the v component of velocity for the circumference
centered in (280,280) at z = 512, τ = 0.9.
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Figure 4.79: Degree centrality of the w component of velocity for the circumference
centered in (280,280) at z = 512, τ = 0.9.
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4.2.5 Power-law distribution of the degree centrality

In order to conclude our analysis some graphs showing the power-law distribution of
the degree centrality will be provided. A network is called scale-free when power-laws
of degree distribution have the same functional form at all scales. Real networks are
often scale-free and have exponents ranging between −2 and −3 ([19], [40]). These
networks have a typical behavior, that is few of the nodes are highly connected to
the others while a great amount of nodes are barely connected to each other. How-
ever, because of the finite size of the network, data can have a rather strong intrinsic
noise. To smooth the fluctuations generally present in the tails of the distribution, it
is often verified if the cumulative distribution function, Pk(k), presents a power-law
behavior.
Here we will show some graphs containing the exceedance probability of the node
degree, that is 1− Pk(k), along with a scaling having exponent equal to -2 observ-
able in the intermediate range of degree centrality value, where the greatest part of
the nodes is located. These graphs are referred to several networks with different
patterns and different values of the degree centrality: for a better comparison, the
results the degree centrality of each of the chosen networks will be showed as well.
Figure 4.80 shows the degree distribution for the main network that we analyzed
in our work, that is the (280,280) one located at the grid z = 512. The power-law
scaling with exponent -2 is observed for a restricted range of k values. A different
scenario appears in figure 4.81 in which another circumference with different pattern
and different values of the degree centrality is analyzed. Here the power-law scaling
(-2) involves about a decade of degree centrality values.

In figures 4.84 and 4.86 two networks of the z = 212 grid with quite different
characteristics are shown, while in figures 4.83 and 4.85 their degree distributions
are plotted. It may be observed that for the circumference centered in (730,410)
the scaling is not fully applied, but for the (110,350) circumference the power law is
confirmed.
By summarizing, a clear power-law scaling is observed when the network has few
potential supernodes and a lot of moderately connected nodes, as shown with ev-
idence in figure 4.81. On the contrary, when the degree centrality is high and the
number of supernodes is huge, the power-law scaling is almost absent, as reported
in figure 4.85. We recall that the presence of a power-law scaling of the degree
centrality is a further demonstration that the spatial regions individuated by the
different circumferences analyzed have all the features of real networks.
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Figure 4.80: Degree centrality distribution for the circumference centered in (280,280)
at z = 512, τ = 0.9
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Figure 4.81: Degree centrality distribution for the circumference centered in (150,230)
at z = 512, τ = 0.9
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Figure 4.82: Degree centrality of the circumference centered in (150,230) at z = 512,
τ = 0.9.
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Figure 4.83: Degree centrality distribution for the circumference centered in (110,350)
at z = 212, τ = 0.9
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Figure 4.84: Degree centrality of the circumference centered in (110,350) at z = 212,
τ = 0.9.
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Figure 4.85: Degree centrality distribution for the circumference centered in (730,410)
at z = 212, τ = 0.9
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Figure 4.86: Degree centrality of the circumference centered in (730,410) at z = 212,
τ = 0.9.
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Chapter 5

Conclusions

This work was divided into two parts; the first one, useful to test the consistency
of the chosen database with the Kolmogorov hypotheses, confirmed the isotropic
behavior of the field while providing also a good validation of the chosen dataset.
Thanks to the tools of the standard dynamics of turbulence, we gained a statistical
description of the flow typical of the classical approach to the problem. The second
part, that was the major and the main one, helped us drawing some conclusions
about the preliminary approach used in the analysis of the turbulent field. The
main features achieved in this work are listed below.
First of all, part of the complex network theory’s parameters chosen to analyze the
behavior of the field demonstrated itself as suitable for a turbulent flow analysis:
degree centrality and weighted average topological distance, in fact, may be consid-
ered as interesting means to understand the behavior of a turbulent flow and helped
us in achieving a spatial characterization of the problem. On the contrary, probably
due to the network extension, betweenness centrality and local clustering coefficient
didn’t provide as much information as thought.
We focused our analysis mainly on the degree centrality evolution, highlighting the
level of correlation that a node has with its neighbors. We found several structures in
the domain, different in size, shape and magnitude of the values. These structures,
especially if composed of an ensemble of highly correlated nodes (i.e. supernodes),
may be linked with the existence of energetic eddies: one of the main results of the
theory is, in fact, the likely existence of eddies which have a lifetime longer or at least
equal to the integral time-scale (which was comparable to the duration of the stored
data of the DNS). In our analysis, out of circa 160 networks located in two different
grids, we found at least 15-20 structures with degree centrality values ranging from
0.10 to 0.22. Every network’s pattern was different from each other, hence another
bright (and not expected) result of our project was that there isn’t local isotropy or
homogeneity, even though the flow was an isotropic and homogeneous one. More-
over, these patterns are not influenced by the forcing that acts instead on the bigger
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scales. Homogeneity and isotropy were found in less correlated networks, where the
range of the degree centrality values goes from 0 to 0.02. We recall, in fact, that the
greater part of the analyzed networks consists of nodes which are poorly correlated
to each other.
In the last part of the work we confirmed, through the power-law distribution scal-
ing, that a turbulent field may be considered as a complex network and, legitimately,
may be analyzed with the method of the complex network theory because it has all
the characteristics of real networks. Eventually complex network theory can be ap-
plied to this kind of problem, because it may help to understand in a better way
the complex spatial interaction between different scales (Kolmogorov’s and Taylor’s
ones above all) in a turbulent flow, being at the same time a complementary tool of
the statistical approach.
By building a network and by describing it with the complex network theory’s pa-
rameters, we were able to observe the spatio-temporal characterization of emerging
patterns, hence providing a richer view of what happens around a particular re-
gion. The autocorrelation and structure functions, in fact, are two-point statistics
(in space, in time or both), while the complex network approach is richer because it
is a multi-point statistical tool: with this study we are able to look simultaneously
at the correlations between a huge number of nodes. Furthermore, thanks to the
informations provided by this approach, we are able to understand phenomenologies
(like the formation of spatial patterns) that the standard and simpler tools didn’t
provide.
We already explained how the complex network theory is still developing at fast
pace, gaining (and at the same time exchanging) contributions from several fields of
study. This preliminary work, due to its originality, demonstrated how a turbulence
study may gain advantage from the usage of this theory. Of course, some adjust-
ments and improvements may be done in order to fulfill a better description of a
turbulent flow.
Turbulence is intrinsically three-dimensional, hence the first improvement that may
be pursued is to consider a sphere instead of a circumference: a 3D network may
describe in a better way what happens locally, whereas requesting more computing
power.
Due to the huge number of nodes that may be contained in a turbulent network,
community structure may be taken into account, too: a network is said to have a
community structure if its nodes are grouped into subnetworks such that each set
is densely connected internally (overlapping may be taken into account) [41]. The
dishomogeneity of connections in a network, in fact, may suggest that there may be
certain natural divisions within it.
Moreover, different types of flow may be legitimately explored thanks to the com-
plex network theory: flows with strong dishomogeneity such as channel flow (spatial
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dishomogeneity) or the Rayleigh-Bernard flow (thermal dishomogeneity) or com-
pressible mixing layer flow (density dishomogeneity) may be taken into account,
and their study may gain advantage from the field of the complex networks.
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Appendix A

Codes: Pre-processing

Listing A.1 : Pre-processing

1 clc
2 clear all
3 close all
4

5 U1=zeros(800,200,1024);
6 V1=zeros(800,200,1024);
7 W1=zeros(800,200,1024);
8

9

10 hinfo1= hdf5info('1024timesteps/y112.h5')
11

12 for i=5:1028
13 a112=hdf5read(hinfo1.GroupHierarchy.Datasets(i));
14 for x=1:800
15 U1(x,1:20,i-4)=a112(1,x,:);
16 V1(x,1:20,i-4)=a112(2,x,:);
17 W1(x,1:20,i-4)=a112(3,x,:);
18 end
19 end
20

21 hinfo2= hdf5info('1024timesteps/y132.h5')
22 for i=5:1028
23 a132=hdf5read(hinfo2.GroupHierarchy.Datasets(i));
24 for x=1:800
25 U1(x,21:40,i-4)=a132(1,x,:);
26 V1(x,21:40,i-4)=a132(2,x,:);
27 W1(x,21:40,i-4)=a132(3,x,:);
28 end
29 end
30
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31 hinfo3= hdf5info('1024timesteps/y152.h5')
32 for i=5:1028
33 a152=hdf5read(hinfo3.GroupHierarchy.Datasets(i));
34 for x=1:800
35 U1(x,41:60,i-4)=a152(1,x,:);
36 V1(x,41:60,i-4)=a152(2,x,:);
37 W1(x,41:60,i-4)=a152(3,x,:);
38 end
39 end
40

41 hinfo4= hdf5info('1024timesteps/y172.h5')
42 for i=5:1028
43 a172=hdf5read(hinfo4.GroupHierarchy.Datasets(i));
44 for x=1:800
45 U1(x,61:80,i-4)=a172(1,x,:);
46 V1(x,61:80,i-4)=a172(2,x,:);
47 W1(x,61:80,i-4)=a172(3,x,:);
48 end
49 end
50

51 hinfo5=hdf5info('1024timesteps/y192.h5')
52 for i=5:1028
53 a192=hdf5read(hinfo5.GroupHierarchy.Datasets(i));
54 for x=1:800
55 U1(x,81:100,i-4)=a192(1,x,:);
56 V1(x,81:100,i-4)=a192(2,x,:);
57 W1(x,81:100,i-4)=a192(3,x,:);
58 end
59 end
60

61 hinfo6=hdf5info('1024timesteps/y212.h5')
62 for i=5:1028
63 a212=hdf5read(hinfo6.GroupHierarchy.Datasets(i));
64 for x=1:800
65 U1(x,101:120,i-4)=a212(1,x,:);
66 V1(x,101:120,i-4)=a212(2,x,:);
67 W1(x,101:120,i-4)=a212(3,x,:);
68 end
69 end
70

71 hinfo7= hdf5info('1024timesteps/y232.h5')
72 for i=5:1028
73 a232=hdf5read(hinfo7.GroupHierarchy.Datasets(i));
74 for x=1:800
75 U1(x,121:140,i-4)=a232(1,x,:);
76 V1(x,121:140,i-4)=a232(2,x,:);
77 W1(x,121:140,i-4)=a232(3,x,:);
78 end
79 end
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80

81 hinfo8= hdf5info('1024timesteps/y252.h5')
82 for i=5:1028
83 a252=hdf5read(hinfo8.GroupHierarchy.Datasets(i));
84 for x=1:800
85 U1(x,141:160,i-4)=a252(1,x,:);
86 V1(x,141:160,i-4)=a252(2,x,:);
87 W1(x,141:160,i-4)=a252(3,x,:);
88 end
89 end
90

91 %272-292
92 hinfo9= hdf5info('1024timesteps/y272.h5')
93 for i=5:1028
94 a272=hdf5read(hinfo9.GroupHierarchy.Datasets(i));
95 for x=1:800
96 U1(x,161:180,i-4)=a272(1,x,:);
97 V1(x,161:180,i-4)=a272(2,x,:);
98 W1(x,161:180,i-4)=a272(3,x,:);
99 end

100 end
101

102 hinfo10= hdf5info('1024timesteps/y292.h5')
103 for i=5:1028
104 a292=hdf5read(hinfo10.GroupHierarchy.Datasets(i));
105 for x=1:800
106 U1(x,181:200,i-4)=a292(1,x,:);
107 V1(x,181:200,i-4)=a292(2,x,:);
108 W1(x,181:200,i-4)=a292(3,x,:);
109 end
110 end
111

112

113 E1=0.5*U1.ˆ2+0.5*V1.ˆ2+0.5*W1.ˆ2;
114 save U1 212.mat U1 -v7.3
115 save V1 212.mat V1 -v7.3
116 save W1 212.mat W1 -v7.3
117 save E1 212.mat E1 -v7.3
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Codes: Network building

Listing B.1 : Correlations

1 clc
2 clear all
3 close all
4

5

6 load E.mat %or U.mat, V.mat, W.mat
7 %E.mat contains 1024 timesteps of a 200x200 grid centered around the

point
8 %of interest
9

10

11 r circ=0.4;
12 x 1=[30:170];
13 y 1=[30:170];
14 x=x 1*(2*pi/1023);
15 y=y 1*(2*pi/1023);
16 N lato=length(x);
17 x0=100*(2*pi/1023);
18 y0=100*(2*pi/1023);
19 cont=0;
20

21 x new=zeros(1,13333);
22 y new=zeros(1,13333);
23 E new=zeros(13333,1024);
24

25 for i=1:N lato
26 for j=1:N lato
27 if sqrt((x(i)-x0)ˆ2 + (y(j)-y0)ˆ2) <= r circ
28 cont=cont+1;
29 x new(cont)=x(i);
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30 y new(cont)=y(j);
31 E new(cont,1:1024)=squeeze(E(x 1(i),y 1(j),1:1024));
32 end
33 end
34 end
35

36 R=corrcoef(E new');
37 save R coord.mat R x new y new

Listing B.2 : Adjacency matrix

1 clc
2 clear all
3 close all
4

5 load R coord.mat
6

7 x new
8 %%
9 M=size(R,1);

10 A=zeros(M,M);
11 %%
12 tau=0.9; %or tau=0.5
13 for i=1:M
14 for j=1:M
15 if R(i,j)>tau && i~=j && sqrt((x new(i)-x new(j))ˆ2 + (y new(i)

-y new(j))ˆ2) <= 0.2
16 if sqrt((x new(i)-100*(2*pi/1023))ˆ2 + (y new(i)-100*(2*pi

/1023))ˆ2) <= 0.2 | sqrt((x new(j)-100*(2*pi/1023))ˆ2 +
(y new(j)-100*(2*pi/1023))ˆ2) <= 0.2

17 A(i,j)=1;
18 end
19 else
20 A(i,j)=0;
21 end
22

23 end
24 end
25 %%
26 N=0;
27 for i=1:M
28 if sum(A(i,:))>0
29 N=N+1;
30 xi new(N)=x new(i);
31

32 yi new(N)=y new(i);
33 end
34 end
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35

36 A(:,all(A==0,2))=[];
37 A(all(A==0,2),:)=[];
38

39 fid x=fopen('x new tau 09.txt','wt');
40 fid y=fopen('y new tau 09.txt','wt');
41 fid A=fopen('A tau 09.txt','wt');
42 for i=1:length(xi new)
43 fprintf(fid x,'%3.0f\n',xi new(i)/(2*pi/1023));
44 fprintf(fid y,'%3.0f\n',yi new(i)/(2*pi/1023));
45 fprintf(fid A,'%2.0f\t',A(i,:));
46 fprintf(fid A,'\n');
47 end
48 fclose(fid x);
49 fclose(fid y);
50 fclose(fid A);
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Codes: Statistical tools for
turbulent analysis

Listing C.1 : Second-order structure functions

1 clc
2 close all
3 clear all
4 load U1.mat %or V1,W1
5

6

7 cont=0;
8 for i=1:5:200
9 cont=cont+1;

10 for k=1:1024
11 for j=1:800
12

13 D LL(j,cont,k)=(U1(j,i,k)-U1(1,i,k))*(U1(j,i,k)-U1(1,i,k));
14

15

16 end
17 end
18 end
19

20

21

22 load U2.mat %or V2,W2
23

24

25 cont=0;
26 for i=1:5:200
27 cont=cont+1;
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28 for k=1:1024
29 for j=1:800
30 D LL(j,40+cont,k)=(U2(j,i,k)-U2(1,i,k))*(U2(j,i,k)-U2(1,i,k

));
31 end
32 end
33 end
34

35

36

37 load U3.mat %or V3,W4
38

39

40 cont=0;
41 for i=1:5:200
42 cont=cont+1;
43 for k=1:1024
44 for j=1:800
45 D LL(j,80+cont,k)=(U3(j,i,k)-U3(1,i,k))*(U3(j,i,k)-U3(1,i,

k));
46 end
47 end
48 end
49

50

51 load U4.mat %or V4,W4
52

53

54

55 cont=0;
56 for i=1:5:200
57 cont=cont+1;
58 for k=1:1024
59 for j=1:800
60 D LL(j,120+cont,k)=(U4(j,i,k)-U4(1,i,k))*(U4(j,i,k)-U4(1,i

,k));
61 end
62 end
63 end
64

65 D LL cont=mean(D LL,2);
66 D LL nuova=squeeze(D LL cont);
67 D LL mediata=mean(D LL nuova,2);

Listing C.2 : Third-order structure functions

1 clc
2 close all
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3 clear all
4 load U1.mat
5

6

7 cont=0;
8 for i=1:5:200
9 cont=cont+1;

10 for k=1:1024
11 for j=1:800
12

13 D LLL(j,cont,k)=(abs(U1(j,i,k)-U1(1,i,k)))ˆ3;
14

15

16 end
17 end
18 end
19

20 load U2.mat
21

22

23 cont=0;
24 for i=1:5:200
25 cont=cont+1;
26 for k=1:1024
27 for j=1:800
28 D LLL(j,40+cont,k)=(abs(U2(j,i,k)-U2(1,i,k)))ˆ3;
29 end
30 end
31 end
32

33 load U3.mat
34

35

36 cont=0;
37 for i=1:5:200
38 cont=cont+1;
39 for k=1:1024
40 for j=1:800
41 D LLL(j,80+cont,k)=(abs(U3(j,i,k)-U3(1,i,k)))ˆ3;
42 end
43 end
44 end
45

46

47 load U4.mat
48

49

50 cont=0;
51 for i=1:5:200
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52 cont=cont+1;
53 for k=1:1024
54 for j=1:800
55 D LLL(j,120+cont,k)=(abs(U4(j,i,k)-U4(1,i,k)))ˆ3;
56 end
57 end
58 end
59

60

61 D LLL cont=mean(D LLL,2);
62 D LLL nuova=squeeze(D LLL cont);
63 D LLL mediata=mean(D LLL nuova,2);

Listing C.3 : Transversal autocorrelation function f(u) and two-point correlation
function R11

1 clc
2 close all
3 clear all
4 load U1.mat
5

6 U U=zeros(160,800,1024);
7 U 2=zeros(160,800,1024);
8

9 cont=0;
10 for i=1:5:200
11 cont=cont+1;
12 for k=1:1024
13 for j=1:800
14

15 U U(cont,j,k)=(U1(1,i,k)*U1(j,i,k));
16 U 2(cont,j,k)=(U1(1,i,k)ˆ2);
17 end
18 end
19 end
20

21

22 load U2.mat
23

24

25 cont=0;
26 for i=1:5:200
27 cont=cont+1;
28 for k=1:1024
29 for j=1:800
30 U U(40+cont,j,k)=(U2(1,i,k)*U2(j,i,k));
31 U 2(40+cont,j,k)=(U2(1,i,k)ˆ2);
32 end
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33 end
34 end
35

36

37 load U3.mat
38

39 cont=0;
40 for i=1:5:200
41 cont=cont+1;
42 for k=1:1024
43 for j=1:800
44 U U(80+cont,j,k)=(U3(1,i,k)*U3(j,i,k));
45 U 2(80+cont,j,k)=(U3(1,i,k)ˆ2);
46 end
47 end
48 end
49

50

51 load U4.mat
52

53

54 cont=0;
55 for i=1:5:200
56 cont=cont+1;
57 for k=1:1024
58 for j=1:800
59 U U(120+cont,j,k)=(U4(1,i,k)*U4(j,i,k));
60 U 2(120+cont,j,k)=(U4(1,i,k)ˆ2);
61 end
62 end
63 end
64

65

66 R=mean(U U,1);
67 U=mean(U 2,1);
68 RR=squeeze(R);
69 UU=squeeze(U);
70 f=RR./UU;
71 f mediata=mean(f,2);

Listing C.4 : Longitudinal autocorrelation function g(v)

1 clc
2 close all
3 clear all
4 load V1.mat
5

6 U U=zeros(160,800,1024);
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7 U 2=zeros(160,800,1024);
8

9 cont=0;
10 for i=1:5:200
11 cont=cont+1;
12 for k=1:1024
13 for j=1:800
14

15 U U(cont,j,k)=(V1(1,i,k)*V1(j,i,k));
16 U 2(cont,j,k)=(V1(1,i,k)ˆ2);
17 end
18 end
19 end
20

21

22 load V2.mat
23

24

25 cont=0;
26 for i=1:5:200
27 cont=cont+1;
28 for k=1:1024
29 for j=1:800
30 U U(40+cont,j,k)=(V2(1,i,k)*V2(j,i,k));
31 U 2(40+cont,j,k)=(V2(1,i,k)ˆ2);
32 end
33 end
34 end
35

36

37 load V3.mat
38

39 cont=0;
40 for i=1:5:200
41 cont=cont+1;
42 for k=1:1024
43 for j=1:800
44 U U(80+cont,j,k)=(V3(1,i,k)*V3(j,i,k));
45 U 2(80+cont,j,k)=(V3(1,i,k)ˆ2);
46 end
47 end
48 end
49

50

51

52 load V4.mat
53

54

55 cont=0;
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56 for i=1:5:200
57 cont=cont+1;
58 for k=1:1024
59 for j=1:800
60 U U(120+cont,j,k)=(V4(1,i,k)*V4(j,i,k));
61 U 2(120+cont,j,k)=(V4(1,i,k)ˆ2);
62 end
63 end
64 end
65

66

67 R=mean(U U,1);
68 U=mean(U 2,1);
69 RR=squeeze(R);
70 UU=squeeze(U);
71 f=RR./UU;
72 g mediata=mean(f,2);

Listing C.5 : Longitudinal autocorrelation function f(v)

1 clc
2 close all
3 clear all
4 load V1.mat
5

6 U U=zeros(160,800,1024);
7 U 2=zeros(160,800,1024);
8

9 cont=0;
10 for j=1:5:800
11 cont=cont+1;
12 for k=1:1024
13 for i=1:200
14

15 U U(cont,i,k)=(V1(j,1,k)*V1(j,i,k));
16 U 2(cont,i,k)=(V1(j,1,k)ˆ2);
17 end
18 end
19 end
20

21

22 load V2.mat
23

24

25 cont=0;
26 for j=1:5:800
27 cont=cont+1;
28 for k=1:1024
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29 for i=1:200
30 U U(cont,200+i,k)=(V1(j,1,k)*V2(j,i,k));
31 U 2(cont,200+i,k)=(V1(j,1,k)ˆ2);
32 end
33 end
34 end
35

36

37 load V3.mat
38

39

40 cont=0;
41 for j=1:5:800
42 cont=cont+1;
43 for k=1:1024
44 for i=1:200
45 U U(cont,400+i,k)=(V1(j,1,k)*V3(j,i,k));
46 U 2(cont,400+i,k)=(V1(j,1,k)ˆ2);
47 end
48 end
49 end
50

51

52 load V4.mat
53

54

55

56 cont=0;
57 for j=1:5:800
58 cont=cont+1;
59 for k=1:1024
60 for i=1:200
61 U U(cont,600+i,k)=(V1(j,1,k)*V4(j,i,k));
62 U 2(cont,600+i,k)=(V1(j,1,k)ˆ2);
63 end
64 end
65 end
66

67

68 R=mean(U U,1);
69 U=mean(U 2,1);
70 RR=squeeze(R);
71 UU=squeeze(U);
72 f=RR./UU;
73 f mediata=mean(f,2);

Listing C.6 : Transversal autocorrelation function g(u)
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1 clc
2 close all
3 clear all
4 load U1.mat
5

6 U U=zeros(160,800,1024);
7 U 2=zeros(160,800,1024);
8

9 cont=0;
10 for j=1:5:800
11 cont=cont+1;
12 for k=1:1024
13 for i=1:200
14

15 U U(cont,i,k)=(U1(j,1,k)*U1(j,i,k));
16 U 2(cont,i,k)=(U1(j,1,k)ˆ2);
17 end
18 end
19 end
20

21

22 load U2.mat
23

24

25 cont=0;
26 for j=1:5:800
27 cont=cont+1;
28 for k=1:1024
29 for i=1:200
30 U U(cont,200+i,k)=(U1(j,1,k)*U2(j,i,k));
31 U 2(cont,200+i,k)=(U1(j,1,k)ˆ2);
32 end
33 end
34 end
35

36

37 load U3.mat
38

39

40 cont=0;
41 for j=1:5:800
42 cont=cont+1;
43 for k=1:1024
44 for i=1:200
45 U U(cont,400+i,k)=(U1(j,1,k)*U3(j,i,k));
46 U 2(cont,400+i,k)=(U1(j,1,k)ˆ2);
47 end
48 end
49 end
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50

51

52 load U4.mat
53

54

55 cont=0;
56 for j=1:5:800
57 cont=cont+1;
58 for k=1:1024
59 for i=1:200
60 U U(cont,600+i,k)=(U1(j,1,k)*U4(j,i,k));
61 U 2(cont,600+i,k)=(U1(j,1,k)ˆ2);
62 end
63 end
64 end
65

66

67 R=mean(U U,1);
68 U=mean(U 2,1);
69 RR=squeeze(R);
70 UU=squeeze(U);
71 f=RR./UU;
72 g mediata=mean(f,2);

Listing C.7 : Transversal autocorrelation function g(u) (or g(v)) derived from the
derivative definition in eq. 1.26

1 clc
2 clear all
3 close all
4

5 load f u.mat %or f v.mat, it contains the data from the longitudinal
autocorrelation function.

6

7 N=[1:1:800];
8 r=N*0.00611;
9 g(1)=1;

10 for i=2:length(N)-1
11 g(i)=f mediata(i)+0.5*r(i)*(f mediata(i+1)-f mediata(i-1))/(r(i+1)-r(i

-1))
12 end

Listing C.8 : One-dimensional spectra

1 clc
2 clear all
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3 close all
4

5

6 L = 800; % Length of signal
7 dx = 0.0061;
8 r = (0:L-1)*dx; % Spatial vector
9 ks = 2*pi/dx; % Sample space

10 cont=0;
11

12 load V1.mat %or U1.mat
13

14

15 cont=0;
16 pwr = zeros(1,L);
17 der v= zeros(1,L-2);
18

19

20 for j=1:2:200
21 for k=1:1024
22 cont=cont+1;
23 [Fou,kappa] = centeredFFT1D(V1(:,j,k).',ks);
24 power = abs(Fou.*conj(Fou)/L);
25 derivative = (power(3:end)-power(1:end-2))./(kappa(3:end)-kappa

(1:end-2));
26 der v = der v + derivative;
27 pwr = pwr + abs(power);
28 end
29

30 end
31

32 load V2.mat %or U2.mat
33

34

35

36 for j=1:2:200
37 for k=1:1024
38 cont=cont+1;
39 [Fou,kappa] = centeredFFT1D(V2(:,j,k).',ks);
40 power = abs(Fou.*conj(Fou)/L);
41 derivative = (power(3:end)-power(1:end-2))./(kappa(3:end)-kappa

(1:end-2));
42 der v = der v + derivative;
43 pwr = pwr + abs(power);
44 end
45

46 end
47

48

49
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50 load V3.mat %or U3.mat
51

52

53

54 for j=1:2:200
55 for k=1:1024
56 cont=cont+1;
57 [Fou,kappa] = centeredFFT1D(V3(:,j,k).',ks);
58 power = abs(Fou.*conj(Fou)/L);
59 derivative = (power(3:end)-power(1:end-2))./(kappa(3:end)-kappa

(1:end-2));
60 der v = der v + derivative;
61 pwr = pwr + abs(power);
62 end
63

64 end
65

66

67

68 load V4.mat %or U4.mat
69

70

71

72 for j=1:2:200
73 for k=1:1024
74 cont=cont+1;
75 [Fou,kappa] = centeredFFT1D(V4(:,j,k).',ks);
76 power = abs(Fou.*conj(Fou)/L);
77 derivative = (power(3:end)-power(1:end-2))./(kappa(3:end)-kappa

(1:end-2));
78 der v = der v + derivative;
79 pwr = pwr + abs(power);
80 end
81

82 end
83

84 pwr = pwr/cont;
85 kappa V=kappa;
86 save spectrum1D V der v kappa V cont -v7.3

Listing C.9 : Three-dimensional spectrum

1 clc
2 clear all
3 close all
4

5 load spectrum1D V.mat
6 load spectrum1D U.mat %These files contain the 1D spectrum for U and V
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7 kappa=kappa U;
8 E 3D = -0.5*kappa(2:end-1).*(der u+der v)/cont;
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Appendix D

Codes: A complex network
analysis

Listing D.1 : Degree centrality

1 clc
2 close all
3 clear all
4

5 x new tau 09=load('x new tau 09.txt');
6 y new tau 09=load('y new tau 09.txt');
7 A tau 09=load('A tau 09.txt');
8 x 09=((2*pi)/1023)*x new tau 09;
9 y 09=((2*pi)/1023)*y new tau 09;

10

11 p=length(x new tau 09)
12 for k=1:p
13 dc(k)=sum(A tau 09(k,:));
14 end
15 dc=dc.';
16 dc=dc./(p-1);

Listing D.2 : Weighted average topological distance

1 clc
2 clear all
3 close all
4

5 x new tau 09=load('x new tau 09.txt');
6 y new tau 09=load('y new tau 09.txt');
7 A tau 09=load('A tau 09.txt');
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8 p09=size(A tau 09,1);
9 A09=sparse(A tau 09);

10

11 for i=1:p09
12 d(:,i)=shortest paths(A09,i); %this is a customed function for the

computation of the shortest paths
13 end
14 d=d.';
15 cont=zeros(1,p09);
16 for i=1:p09
17 for j=1:p09
18 if isinf(d(i,j))==0 && i~=j
19 d new(i,j)=d(i,j);
20 cont(i)=cont(i)+1;
21 end
22 end
23 cc(i)=(sum(d new(i,:)))/(cont(i))*(p09-1)/(cont(i));
24 end
25 cc=cc.';

Listing D.3 : Betweenness centrality

1 clear all
2 close all
3 x new tau 09=load('x new tau 09.txt');
4 y new tau 09=load('y new tau 09.txt');
5 A tau 09=load('A tau 09.txt');
6 p09=size(A tau 09,1);
7 A09=sparse(A tau 09);
8 bet cen09 = betweenness centrality(A09); %this is a custom function to

calculate the betweenness centrality
9 z m=bet cen09;

10 c = log(z m+1);
11 x 09=x new tau 09*(2*pi/1023);
12 y 09=y new tau 09*(2*pi/1023);

Listing D.4 : Local clustering coefficient

1 clc
2 clear all
3 close all
4

5 x new tau 09=load('x new tau 09.txt');
6 y new tau 09=load('y new tau 09.txt');
7 A tau 09=load('A tau 09.txt');
8 p09=size(A tau 09,1);
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9 A09=sparse(A tau 09);
10 loc cl coef = clustering coefficients(A09); %this is a custom function

to calculate the clustering coefficient
11 glo cl coef=mean(loc cl coef);
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[32] Serrano M.A. and Boguná M. Topology of the world trade web. Physical
Review, 68(1), 2003.

[33] Onnela J. P., Chakraborti A., Kaski K., Kertesx J, and Kanto A. Dynamics of
market correlations: Taxonomy and portfolio analysis. Physical Review, 68(5),
2003.

[34] Abe S. and Suzuki N. Complex-network description of seismicity. Nonlin.
Processes Geophys., 13:145–150, 2006.

[35] Scarsoglio S., Laio F., and Ridolfi L. Climate dynamics: A network-based
approach for the analysis of global precipitation. Plos One, 8(8), 2013.

[36] Donges J. F., Zou Y., Marwan N., and Kurths J. Complex networks in climate
dynamics. European Physical Journal, Special Topics, 174:157–179, 2009.

[37] Kim D.-H. and Motter A. E. Fluctuation-driven capacity distribution in com-
plex networks. New Journal of Physics, 10, 2008.

[38] Donges J.J., Zou Y., Marwan N., and Kurths J. Complex networks in climate
dynamics. Eur Physics Journal Special Topics, 174:157–179, 2009.

[39] Donges J.J., Zou Y., Marwan N., and Kurths J. The backbone of the climate
network. Europhysics Lettures, 87, 2009.

[40] Albert R and Barabási A.-L. Emergence of scaling in random networks. Sci-
ence, 286:509–512, 1999.

[41] Girvan M. and Newman M. E. J. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, 2002.

128


