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Turbulence
Natural phenomena:
• Atmospheric currents 
• Oceanic currents 
• Lava flows 
• Arterial blood flows

Industrial applications:
• Aerospace 
• Automotive 
• Chemistry

Turbulence is a common phenomenology which is:
• Random 
• Three-dimensional and multi-scale 
• Irregular 
• Unsteady 
• Unpredictable

Turbulence studies: DNS (LES, RANS), statistical 
approach, energy spectrum, experimental approach
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Objectives:

• Better spatial characterization 
• Behavior of Taylor’s and Kolmogorov’s scales 
• Complementary approach  
• Gaining synthetic informations from a multipoint analysis

Turbulence is a complex system, therefore it may be 
studied with the complex network theory
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Johns Hopkins Turbulence Databases (JHTDS)
http:\\turbulence.pha.jhu.edu

Forced isotropic turbulence:

• DNS of 10243 nodes, Reλ = 433 
• Energy injected by keeping constant total energy 
• Storage of data after reaching stationary state 
• 1024 time steps from 0 to 2.048 
• Duration of stored data of about one large eddy turnover: TL = 2.02 
• Domain: 2π x 2π x 2π 
• Kolmogorov scale  η = 0.00287 
• Inserire scala Taylor λ = 0.118 
• Integral scale  L = 1.376
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Validation of the dataset: isotropic scaling
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• Longitudinal autocorrelation function • Transverse autocorrelation functions

• Isotropy at small scales 
• Divergence for bigger r (a bigger number of sample may be used)
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• Second-order structure functions • Third-order structure functions
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• Spectral analysis (1D, 3D)
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Complex network theory

Graph theory Statistic physics

• 20th century 
• Still developing at fast pace 
• Contributing to different fields of study 
• Gaining contribution from different fields of study

Sociology (Milgram’s 6 degrees of separation), Biology, 
Medicine (Cancer’s spreading), Communications (WWW),  

Economy, Climatology, Earth Science (Earthquakes), 
Engineering (Transports)
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Nodes and links form a network

aij =

⇢
1 if i and j are linked

0 if i and j are not linked

• Degree centrality ki =
PN

j=1 aij

N�1

• Weighted average topological distance Di =
P

j2nn(i) dij

Nci

N�1
Nci

• Betweenness centrality BCk =
P

i,j 6=k
�ij(k)
�ij

• Local clustering coefficient Ci =
e(�i)

ki(ki�1)
2
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Building the network

• Two 800x800x1 grids (z=212,512) 
• 160 circumferences, r = 0.4,  13333 nodes 
• Temporal correlation Rij between nodes of every circumference

• Threshold value τ = 0.5, 0.9 
• A link between nodes i and j occur if:

• Rij > τ 
• At least one between nodes i and j lies 

inside the circumference with ray  r=0.2 
• The physical distance between nodes i and 

j is less or equal to 0.2

• Same potential number of links for every node 
• Focus on a circumference of ray r = 0.2, doubling the Taylor’s scale
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τ=0.5

Circumference (200,600) at z=512
τ=0.9
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• Same pattern, different values of the degree centrality 
• Structures more extended in space

9378 nodes, 1313722 links 3862 nodes, 38770 links
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τ=0.5

Circumference (200,600) at z=512
τ=0.9

• Same pattern, different values of the degree centrality 
• Structures more extended in space

9378 nodes, 1313722 links 3862 nodes, 38770 links
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Circumference (110,350) at z=212, τ=0.9
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• Nodes 120,344 and 100,335 
• Correlation trend different in every direction 
• Directional biases lost in 100,335 node 
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• Spatial homogeneity in less correlated networks 
• Streaky pattern typical of networks with a medium value of the degree 

centrality 
• Streaky pattern breaks down in presence of highly correlated nodes 
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Circumference (280,280) at z=512, τ=0.9
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Circumference (280,280), evolution in the z direction
z=492 z=497 z=502

z=507 z=512 z=517

z=522 z=527 z=532
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Power-law degree distribution
• Scale-free networks: power law distribution having the same form at 

all scales 
• Real networks are scale-free: few of the nodes are highly correlated 

while the rest of the network is barely correlated 
• Power law ranging from -2 to -3

Circumference (150,230) at z=512 Circumference (730,410) at z=212
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Conclusions:
• This turbulent flow shows all the characteristics of a complex network 
• The complex network theory may be a complementary approach for 

the study of turbulence 
• Degree centrality and weighted average topological distance may 

be useful for the spatial characterization of a turbulent flow 
• Out of 160 cuts circa, at least 15-20 networks consisting of 

supernodes (k>0.15) were found 
• A highly correlated network may be associated with the presence of 

energetic patterns. No local isotropy and dishomogeneity 

Improvements:
• Turbulence is intrinsically 3D: spherical networks 
• Community structures 
• Different type of flows, especially the ones with strong 

dishomogeneity
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Thank you for your attention.
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