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Introduzione

Lo strato limite rappresenta, forse, la più importante regione di interesse in un �u-

ido viscido ed è responsabile della maggior parte degli importanti fenomeni che lo

contraddistinguono, come il distacco della vena �uida o i forti gradienti termici e di

velocità. Sicuramente uno dei più importanti fenomeni è la transizione dal campo

laminare a quello turbolento, indicata dal numero di Reynolds. Il campo turbolento

è sicuramente lo stato di maggior interesse ed è oggetto di indagine approfondita in

questa tesi.

In particolare, ci si propone di esaminare lo strato limite tridimensionale, gen-

erato dal fenomeno del �cross�ow� che ha luogo sulle ali a freccia, e di calcolare il

campo di pressione, medio e perturbato, che in esso si viene a creare introducendo

perturbazioni molto piccole.

In primo luogo si fornisce una descrizione delle di�erenze che intercorrono nel

trattare uno strato limite bidimensionale, introdotto concettualmente nel primo capi-

tolo, ed uno tridimensionale �cross�ow�, soprattutto per quanto riguarda le cause che

generano la transizione. Quest'ultimo viene trattato approfonditamente nel secondo

capitolo, dove si introduce la teoria della stabilità dei flussi laminari, in

modo tale da elaborare un metodo tramite il quale calcolare il campo di pressioni e

di velocità, ovvero vengono presentate ed adattate allo strato limite tridimensionale

le equazioni di Navier-Stokes. Inoltre, vengono descritte le principali fenomenologie

legate all'instabilità in uno strato limite cross�ow, primaria e secondaria, fornendone

una descrizione evolutiva e qualitativa, in modo tale da inquadrare il campo in cui

ci si trova a calcolare il campo di pressione.

Nel terzo capitolo si fornisce la formulazione analitica necassaria al calcolo del

campo di velocità, ovvero il problema ai valori iniziali, attraverso la quale si può

risalire ai metodi utilizzati per la simulazione numerica del campo di pressione per-

turbato. Viene ricavato analiticamente, inoltre, il fattore di ampli�cazione, utile

come confronto con gli andamenti temporali ottenuti delle pressioni.

Nel quarto capitolo, punto focale di questa tesi, si espongono i risultati ottenuti
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tramite la simulazione numerica su matlab e si e�ettua l'analisi delle curve di

pressione, nello spazio e nel tempo, al variare dei parametri caratteristici del �usso

di cross�ow, per con�gurazioni del �usso ritenute stabili ed instabili.

Nell'ultimo capitolo, in�ne, si dimensionalizza il campo di pressione perturbato e

lo si sovrappone al campo medio di pressione, così da ottenere il campo di pressione

reale dimensionale e fornire un ordine di grandezza dei valori presenti nel campo.

Tutto ciò viene realizzato per proporre un'applicazione del metodo a campi di studio

reali come quelli strutturale ed aeroelastico.
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Abstract

Boundary layer represents the most important region in a viscid �ow and it is respon-

sable for the main signi�cant phenomena which mark it, as the stream separation

or strong thermal and velocity gradients. Certainly, one of the most important phe-

nomena is the laminar-turbulent transition, suggested by the Reynolds number. The

turbulent �eld is the state of major interest and it is the subject of deep investigation

in this thesis.

In particular, the three-dimensional boundary layer, caused by the �cross�ow�

which is generated in swept-back wings, is investigated and the pressure �eld, mean

and perturbative, is computed. This perturbative pressure �eld is due to the intro-

duction of very small disturbances.

First, a description of the di�erences between a bidimensional boundary layer,

introduced in the �rst chapter, and a cross�ow three-dimensional boundary layer is

given, mainly of the reason why transition is generated. This cross�ow boundary

layer is deeply treated in the second chapter, where the theory of stability of

laminar flows is introduced, in order to develop a method to compute the pres-

sure and velocity �elds. So the Navier-Stokes equations are presented and modi�ed

for the three-dimensional bounadry layer. Moreover, main phenomena related to the

instability, primary and secondary, in a cross�ow boundary layer, giving an evolu-

tionary and qualitative description, in order to focus on the �eld where the pressure

�eld is computed.

In the third chapter mathematical formulation, needed to compute the velocity

�eld, is given; This permits to develop the methods for the numerical simulation

of the perturbative pressure �eld. Furthermore, the ampli�cation factor, which is

useful as a comparison between obtained temporal pressure trends, is derived.

In the fourth chapter, focal point of this thesis, obtained results are shown,

through the numerical simulation on matlab, and an analysis of pressure curves,

in time and space, is made on varying characteristic parameters of the cross�ow

boundary layer, for stable and unstable �ow con�gurations.
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In the last chapter, �nally, perturbative pressure �eld is made dimensional and

it is superimposed to the mean pressure �eld in order to obtain dimensional total

pressure �eld and give an idea of pressure quantities orders of magnitude. This

is made in order to suggest an application of the method for practical studies as

structural problems and aeroelasticity.
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1 Boundary layer

1.1 Introduction

Boundary layer is the �eld we refer to, during the whole analysis, focusing on compu-

tation and parametric analysis of pressure �eld, which generate in it under some �xed

�ow conditions, after having shown main phenomenologies, both in two-dimansional

�eld and three-dimensional �eld. Then it is useful to introduce, historically and

theoretically, the boundary layer [1].

During the week of 8 August 1904, a small group of mathematicians and scien-

tists gathered in Heidelberg, Germany, where the Third International Mathematics

Congress took place. During the meeting, professor Ludwig Prandtl introduced e

described a new concept that would revolutionized the understanding and analysis of

�uid dynamics. His presentation, and the subsequent paper, introduced the concept

of boundary layer in a �uid over a surface. The modern world of aerodynamics

and �uid dynamics is still dominated by Prandtl's idea.

To set the stage in which this inovative concept, let us take a quick journey back

over the history and development of �uid dynamics. Archimede introduced some

basic ideas in �uid statics, and Leonardo da Vinci observed and drew sketches of

complex �ows over objects in streams. A quantitative physical and mathematical

understanding of �uid �ow began when Isaac Newton made examination of �uid

dynamics and �uid statics in Book II of Principia Mathematica, published in 1687.

E�orts to obtain a mathematical formulation of a �uid �ow took shape during

next century with the contributions Bernoulli, D'Alambert and Euler. Euler, in par-

ticular, described �ow in terms of spatially varying three-dimensional pressure and

velocity �elds and modeled the �ow as a continuous collection of in�nitesimally small

�uid elements. By applying the basic principles of mass conservation and Newtons

second law, Euler obtained two coupled, nonlinear partial di�erential equations in-

volving the �ow �elds of pressure and velocity. But obtaining general solutions of

them was realy di�cult. Moreover, Euler did not account for the e�ect of friction
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acting on the motion of the �uid elements, that is he ignored viscosity.

It was another hundred years before a system of even more elaborate nonlinear

partial di�erential equations, called the Navier-Stokes equations, were introduced in

order to count viscosity e�ects. This system of equations are the gold standard in

the mathematical description of a �uid �ow, and no one has yet obtained a general

analytical solution of them.

The inability to solve the NavierStokes equations for most practical �ow prob-

lems was particularly frustrating to those investigators interested in calculating the

frictional shear force on a surface immersed in a �ow. This di�culty became acute

at the beginning of the 20th century, with the invention of the �rst practical airplane

by Orville and Wilbur Wright and with the subsequent need to calculate the lift and

drag on airplanes. The �uid, indeed, exerts a net aerodynamic force on the airfoil,

caused by �uid pressure and the shear stress that results from friction between the

surface and the �ow, as one can notice from �gure 1.

Figure 1: Pressure (a) and shear-stress (b) distribution on an airfoil [1].

To determine the force, aerodynamicists need to calculate both the pressure and

shear-stress distributions and then integrate them over the surface of the airfoil.
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Calculating the shear-stress distribution requires the inclusion of internal friction

and the consideration of viscous �ow.

1.2 Boundary layer concept

Prandtl, in his paper, theorized that an e�ect of friction was to cause the �uid

immediately adjacent to the surface to stick to the surface (no-slip condition at the

surface) and that frictional e�ects were experienced only in a boundary layer, a thin

region near the surface. Outside the boundary layer, the �ow was essentially the

inviscid �ow.

A graphic rappresentation of the boundary leyer ragion is given in �gure 2, where

one can observe, in types of �ows associated with a body in �ight, that the boundary

layer is very thin compared to the size of the body.

Figure 2: Airfoil boundary layer [1].

This id the Prandtl's description of boundary layer:
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A very satisfactory explanation of the physical process in the boundary layer

[Grenzschicht] between a �uid and a solid body could be obtained by the hypothesis of

an adhesion of the �uid to the walls, that is, by the hypothesis of a zero relative ve-

locity between �uid and wall. If the viscosity was very small and the �uid path along

the wall not too long, the �uid velocity ought to resume its normal value at a very

short distance from the wall. In the thin transition layer [Übergangsschicht] however,

the sharp changes of velocity, even with small coe�cient of friction, produce marked

results.

One of those marked results is illustrated in �gure 2: The velocity changes enor-

mously over a very short distance normal to the surface of a body immersed in a

�ow. In other words, the boundary layer is a region of very large velocity gradients.

According to Newtons shear-stress law, which states that the shear stress is propor-

tional to the velocity gradient, the local shear stress can be very large within the

boundary layer. As a result, the skin-friction drag force exerted on the body is not

negligible. Moreover, most of the drag is due to skin friction.

1.3 Analitical solutions for the boundary layer

Once the concept of boundary layer is de�ned, we need to reach a satisfying analitical

solution, concerning its mathematical modelling.

The outer inviscid �ow strongly a�ects the boundary-layer properties; indeed,

the outer �ow creates the boundary conditions at the outer edge of the boundary

layer and dictates, at the same time, the velocity pro�le within the layer. On the

other hand, the boundary layer is so thin that it has virtually no e�ect on the outer

inviscid �ow.

Prandtl showed that for the boundary layer, the Navier-Stokes equations can be

reduced to a simpler form, applicable only to characteristic region of the �ow. The

result of such a reduction processes the formulation of so called boundary layer equa-

tions, which are similar to Navier-Stokes in that each system consists of coupled,

nonlinear partial di�erential equations and they will be useful hereafter in the thesis.
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Boundary layer equations exhibit a completely di�erent mathematical behavior than

Navier Stokes equations system. The latter has an elliptic behavior, that is to say, the

complete �ow �eld must be solved simultaneously, in accord with speci�c boundary

conditions de�ned along the entire boundary of the �ow. In contrast, the boundary-

layer equations have parabolic behavior, which a�ords tremendous analytical and

computational simpli�cation. They can be solved �step-by-step� by marching down-

stream from where the �ow encounters a body, subject to speci�ed in�ow conditions

at the encounter and speci�ed boundary conditions at the outer edge of the bound-

ary layer. The systematic calculation yields the �ow variables in the boundary layer,

including the velocity gradient at the wall surface, from which shear stresses at the

wall, hence the skin-friction drag on the surface, is directly obtained.

With those solutions, it became possible to predict with some accuracy the skin-

friction drag on a body, the locations of �ow separation on the surface, and, given

those locations, the form drag, the pressure drag due to �ow separation. In the

paper Prandtl gave the boundary-layer equations for steady two-dimensional �ow,

suggested some solution approaches for those equations, made a rough calculation

of friction drag on a �at plate, and discussed aspects of boundary-layer separation

under the in�uence of an adverse pressure gradient.

Studies about two-dimensional boundary layer �ows over a �at plate and a circu-

lar cylinder were took back by Blasius, one of the Prandtl's students. He solved the

boundary-layer equations in both cases. For the �at plate, he obtained an even more

accurate solution for skin-friction drag than appeared in Prandtls previous calcula-

tions. It is important to notice how boundary layer equations, though simpler than

NavierStokes, are still coupled, nonlinear partial di�erential equations. However, for

certain types of pressure gradients in the �ow, they reduce to a single ordinary di�er-

ential equation. That simpli�cation happens, for example, for the constant pressure

along a �at plate oriented parallel to the �ow. Indeed, the equation that applies to

a �at plate at zero attack angle is known, today, as the Blasius equation.

Then, in 1921, Theodore von Kármán, a former student of Prandtls obtained a

momentum-integral equation through the simple expedient of integrating the boundary-
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layer equations across the boundary layer. That equation proved to be directly ap-

plicable to a large number of practical engineering problems and, thanks to this

extension, the boundary layer theory can be used in practical technical appli-

cations. The �rst serious industrial application of boundary-layer theory occurred

in the last century when designers began to use the theorys results to predict skin-

friction drag on airships and airplanes. Prior to that time, they had been limited to

using empirical data obtained primarily from wind tunnels, but such results concern

total drag and the e�ect of skin friction was di�cult to cull out.

From that time, sevaral books, about various aspects of boundary-layer theory,

were written. The most complete of them is, without doubt, Hermann Schlichting's

�Boundary Layer Theory�, on which we will base for next arguments of the thesis.

1.4 Laminar-turbolent boundary layer transition

The instability of laminar boundary layer �ows and the transition to turbulence

are objects of studies in �uid mechanics problems. This interest results from the

fact that transition controls important aerodynamic quantities such as drag or heat

transfer. For example, the heating rates generated by a turbulent boundary may be

several times higher than those for a laminar boundary layer, so that the prediction

of transition location is of great importance for aerospace applications such as hy-

personic re-entry spacecraft, because the thickness of the thermal protection system

(TPS) is strongly dependent upon the altitude where transition occurs.

Furthermore, it is important to concentrate on the speci�c aspects of transition

in three-dimensional �ows. This phenomenon is the so-called cross�ow instabil-

ity, which exhibit features and properties completely di�erent from those of two-

dimensional instability. The thesis will be focalize on such a speci�c �eld showing

this particular cross�ow instability for certain Reynolds numbers.

To describe the laminar-turbulent transition process in two-dimensional (2D) or

threedimensional (3D) �ows, it is usual to distinguish three successive steps [2]. The

�rst step, which takes place close to the leading edge, is called �receptivity�. It de-
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scribes the means by which forced disturbances such as free-stream noise, free-stream

turbulence, vibrations, small roughness elements enter the laminar boundary layer

and excite its eigenmodes. In the second phase, these eigenmodes take the form of

periodic waves, the energy of which is convected in the streamwise direction. Some

of them are ampli�ed and will be responsible for transition. Their evolution is well

described by the linear stability theory, mentioned before. When the wave ampli-

tude becomes �nite, non linear interactions occur and lead rapidly to turbulence.

The general features of these three steps are brie�y described below, teorically and

analitically.

Receptivity. Describes the link between the excitation sources and the initial

amplitude A0 of the boundary layer eigenmodes. Two important results are:

i) A0 increases when the amplitude of the excitation increases

ii) a perturbation of frequency f excites waves having the same frequency.

If there is no excitation of frequency f , then there is no chance to observe waves of

frequency f travelling in the boundary layer, even if these waves are unstable ac-

cording to the linear stability theory. The receptivity process is completely di�erent

for two-dimansional and for three-dimansional �ows.

Linear stability theory. The principle of this theory is to introduce small

sinusoidal disturbances into the Navier- Stokes equations in order to compute the

range of unstable frequencies. Any �uctuating quantity r (velocity, pressure, density

or temperature) is expressed by:

r = r̂(y) · exp[i(αx+ βz − ωt)]

where r̂ is an amplitude function and y is normal to the surface. In the particular

case of a swept wing, x is often measured along the wing surface in the direction

normal to the leading edge, z is the spanwise direction. In general, α, β and ω are

complex numbers. α and β represent the wave number components, in the x and z

directions, and the wave frequency.
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The �uctuating quantities are very small, so that the quadratic terms of the

disturbances are neglected in the Navier-Stokes equations. It is also assumed that the

mean �ow quantities do not vary signi�cantly over a wavelength of the disturbances.

Mean �ow velocity components, U and W , in the x and z directions, as well as

the mean temperature T are functions of y alone, and the vertical velocity V is

equal to zero. The implication of this �parallel �ow� assumption is that the stability

of the �ow at a particular location (x, z) is determined by the local conditions at

that location independently of all others. This leads to a system of homogeneous,

ordinary di�erential equations for the amplitude functions. For two-dimensional,

low speed �ows, these equations reduce to the well-known Orr-Sommerfeld equation,

the solutions of which represent the classical Tollmien-Schlichting waves, showed in

�gure 3. The transition process, represented in �gure below, in the boundary layer,

is referred to the case of a �ate plate, wraped by low turbolence intencity free �ow.

As one can easily notice, the �ow move throw subsequent steps, starting from the

leading edge.

Figure 3: Laminar-turbolent transition (point 6) and �ow evolution inside the bound-
ary layer on a �at plate with zero angle of attack [3].

Due to the homogeneous boundary conditions, the problem is an eigenvalue one.
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For a given mean �ow �eld, non trivial solutions exist for certain combinations of

the parameters α, β, ω and R, where R is the Reynolds number.

The transition process, shown in �gure 3, inside the boundary layer is referred to

the case of a �at plate wrapped by a slow turbulence intensity outer �ow. As it can be

noticed, the �ow is moving through following states, beginning from the leading edge.

Taking into account a spatial theory, concerning transition mechanisms governed by

a convective instability, ω can be express as real number and α as a complex. For

the sake of simplicity, it will be assumed that β is also real. Therefore r is expressed

by:

r = r̂(y) · exp(−αix) · exp[i(αrx+ βz − ωt)]

The spatial growth rate−αi is the opposite of the imaginary part of α, αr being

the real part. The wave number vector k⃗ = (αr, β) makes an angle ψ with respect

to the x direction. When the mean �ow is speci�ed, the eigenvalues αr and αi are

computed for imposed values of β, ω and R. On the R − ω diagram, also called

stability diagram, showed in �gure 4, a neutral curve (−αi = 0) separates the stable

region where the disturbances are damped (−αi < 0), from the unstable region

(−αi > 0), where the disturbances are ampli�ed.
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Figure 4: R− ω diagram, in which one can notice the neutral instability curve [2].

Non-linear phase. On this stage, disturbances are expressed as a double series

of (n,m) modes of the form:

r =
n=+∞∑
n=−∞

m=+∞∑
m=−∞

r̂nm(x, y) · exp[i(
ˆ
αnm(ξ)dξ +mβz − nωt)]

where αnm is complex, β and ω are real numbers.

The integers n and m characterise the frequency and the spanwise wave number,

respectively. When these disturbances are introduced into the Navier-Stokes equa-

tions, a system of coupled partial di�erential equations is obtained, which is solved

by a marching procedure. Any non linear computation requires to choose the most

interesting interaction scenario between particular modes which are referred to as

�major modes� and to impose initial amplitudes A0 for these modes. For 2D �ows,

non linear computations end with a sudden increase of the major modes and of their

harmonics; this simulates the breakdown to turbulence. On the other hand, for 3D

�ows, the non linear interactions result in a saturation of the amplitude of all the

18



modes, without any indication of breakdown. It is then necessary to use a secondary

instability theory to predict transition, as will be presented up ahead.

1.4.1 �Natural� transition in two-dimensional �ows

An important aspect of instability for compressible �ows is the e�ect of the wave

number direction �ϕ�, the so called obliquity angle, on the ampli�cation rates. Up

to Mach numbers of the order of 0.7 to 0.8, the maximum value of −αi, for a given

Reynolds number, usually corresponds to ϕ = 0o. At transonic Mach numbers, the

largest growth rates are obtained for non zero values of ϕ (oblique waves). Typically,

the most unstable direction is around 40◦ o 50◦ for Mach numbers close to unity.

For �at plates up to M = 2, 2 , on adiabatic wall, the unstable region in the

R−ω diagram is contained into a single curve. At higher Mach numbers, the waves

become supersonic relative to the mean �ow close to the wall; this results in the

generation of higher modes on the diagram. In �gure 5 two stability diagram are

showed, for M = 4, 5 and two di�erent values of ϕ: 0◦ and 60◦. Variables which

appears in the diagram are: Rδ, the displacement thickness Reynolds number, αi,

made dimensionless with δ, and ω, made dimensionless with δ and the free stream

velocity Ue.

Figure 5: E�ect of wave orientation ϕ on the growth rate −αi [2].

As we can see from the �gure above, for ϕ = 0o, two unstable loops are visible.

The unstable region associated with low values of ω is the equivalent of the unique
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unstable region observed at lowMach number and is referred to as the �rst mode. The

second loop, at higher frequencies, is the second mode resulting from the existence

of the supersonic waves. The results for ϕ = 60o, on the right hand side of �gure 5,

show that changing the wave orientation stabilises the second mode, but increases

the instability of the �rst one. This is a general rule: systematic computations

demonstrated that the most unstable �rst mode disturbances are oblique, whilst the

most ampli�ed second mode waves are two-dimensional.

In supersonic and hypersonic wind tunnels, the main factor a�ecting transition

on two-dimensional models is the noise, the origin of which lies in the pressure

disturbances radiated by the turbulent boundary layers developing along the nozzle

walls. This leads to low transition Reynolds numbers, which decrease with increasing

free-stream pressure �uctuations in the nozzle. In order to reduce this noise level, it

is necessary to delay transition on the nozzle walls, because a laminar boundary layer

is less noisy than a turbulent one. This was done in the so called quiet tunnel. A

careful polishing and a careful design of the nozzle walls contour in order to minimise

the development of Görtler vortices. With a laminar boundary layer on the nozzle

walls, the measured pressure �uctuations can be one or two orders of magnitude

below those measured in conventional facilities.

Other factors which a�ect transition are:

• wall cooling

• leading edge bluntness

• real gas e�ects

When wall cooling is applied, the stability properties change dramatically. Cooling

a wall strongly stabilises �rst mode disturbances and has less e�ect on second mode

disturbances. At low Mach numbers, very large values of the transition Reynolds

number Ret can be achieved with a moderate cooling. These trends have been

observed in wind tunnels and in �ight conditions; they have been con�rmed by

linear stability computations.
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In hypersonic �ows, a small nose bluntness of a cone at zero angle of attack or

a small leading edge bluntness of a �at plate strongly a�ects the transition location

because it reduces the local Reynolds number and creates a negative pressure gradient

which stabilises the �ow. As a result, transition is delayed. When the nose or leading

edge bluntness becomes large, the downstream movement of transition is no longer

observed, but, on the contrary, transition begins to move upstream.

At hypersonic speeds, the gas often cannot be modelled as perfect because the

molecular species begin to dissociate due to aerodynamic heating. It is important,

therefore, the analysis of real gas e�ects on stability properties.

Figure 6: Real gas e�ects on stability properties [2].

Figure 6 shows the variation of the growth rate as a function of a dimensionless

frequency F for a �at plate �ow at a Mach = 10, Rex = 4 · 106, Te = 350K

and adiabatic wall. The computations have been performed for ideal gas, chemical

equilibrium and non equilibrium. In the latter two cases, a third unstable mode

appears, and instability is enhanced for the second mode.
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1.4.2 �Natural� transition in three-dimensional �ows

Presenting the natural transition in threedimensional �ow it is useful to note that

the mean velocity pro�le of a boundary layer developing on a three-dimensional body

can be decomposed into a streamwise mean velocity pro�le u, in the direction of the

external streamline, and a �cross�ow� velocity pro�le w, in the direction normal to

this streamline. Figure 7 shows a schematic view of the boundary layer development

on a swept wing, with a negative pressure gradient in the leading edge region and

a positive pressure gradient further downstream. This scheme will be take into

account at the end of the thesis in order to introduce an analitical computation

practical extension.

Figure 7: Laminar boundary layer development on a swept wing [2].

On the graph, xm is the location of the inviscid streamline in�ection point and

β0 is the angle netween the wall and potential streamline.

As the streamwise mean velocity pro�les look like classical two-dimensional ve-

locity pro�les, their instability properties are qualitatively similar to those of two-

dimensional �ows; in particular �rst and second mode disturbances are likely to

exist at large Mach numbers. This corresponds to the �streamwise instability�. On

the other side, an in�ection point is always present in the cross�ow mean velocity
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pro�le. As a consequence a powerful in�ectional instability is expected to occur in

regions where w develops rapidly. This phenomenon is called �cross�ow instability�.

It is observed, for instance, in the vicinity of the leading edge of a swept wing, a

region where the cross�ow mean velocity pro�le w develops rapidly due to the strong

negative pressure gradient.

It is to note that the unstable frequency range is usually wider for cross�ow

instability than for streamwise instability. In particular, linear stability theory shows

that cross�ow instability can amplify zero frequency disturbances. This leads to

the formation of stationary vortices, the axes of which are close to the streamwise

direction. These vortices can be visualised as streaks on the surface, as it can be seen

on the infrared picture presented in �gure 8. The picture corresponds to supersonic

experiments performed at M = 3 on a swept wing. The right hand part shows the

spanwise variation of the mean wall temperature measured in the area of the ellipse

drawn in the left hand part. From this curve a spanwise wavelength close to 1, 5mm

can be deduced, in very good agreement with linear stability theory.

Figure 8: Stationary vortices on a swept wing at supersonic Mach number (M = 3)
[2].

23



For 2D �ows, it has been shown previously that the unstable waves are mainly

excited by the free-stream noise. This is no longer true for 3D �ows when transition

is governed by a pure cross�ow instability. In this case, the stationary vortices

mentioned before play the major role in the transition process by creating a steady

in�ection point in the streamwise mean velocity pro�le. It follows that noise has

only a small e�ect on the receptivity mechanisms and on transition.

According to the statement that waves of frequency f are generated by excita-

tions of the same frequency, one has to look at stationary excitations to explain the

origin of the vortices. For low speed �ows, Radetsky demonstrated that micron-sized

roughness elements are the main factor in�uencing the generation of the stationary

vortices and hence the transition location. This statement seems to remain true for

high speed �ows, at least at supersonic Mach numbers. This was demonstrated by

several series of experiments carried out on a swept wing equipped with a blunt lead-

ing edge, whole results are shown in �gure 8, and on the same swept wing equipped

with a sharp leading edge.
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2 Three-dimensional boundary layer

In the previous chapter, boundary layer concept has been introduced and transition

inside the region close to wall has been analyzed, both in bidimensional and three-

dimensial �eld. Studies now will be focalized on the last boundary layer typology,

caracterized by the so-called cross�ow �ow, and instability linked phenomenon will

be analyzed, in order to explain transition to turbulent.

Problems of two-dimensional and of axially symmetrical �ow have this in common

that the prescribed potential �ow depends only on one space coordinate, and the two

vclocity components in the boundary layer depend on two space coordinates each. In

the case of a three-dimensional boundary layer the external potential �ow depends on

two coordinates in the wall surface and the fIow within the boundary layer possesses

all three velocity components which, moreover, depend on all three space coordinates

in the general case. The fIow about a disk rotating in a fIuid at rest and rotation in

the neighbourhood of a �xed wall establish examples of three-dimensional boundary

layers.

Another important case of a three dimensional boundary layer is that of an

aeroplane wing, whose leading edge is not orthogonal to the stream, as in the case

of �swept-back wings� and �yawed wings�. It is known from experience that on the

suction side considerable quantities of the �uid move towards the receding end, the

phenomenon having a very detrimental e�ect on the aerodynamic behaviour of the

wing.

In two-dimensional motion through a boundary layer, the geometrienl shape of

the body in�uences the �eld of �ow only indirectly. By contrast three-dimensional

boundary layers are a�ected by both: by the external velocity distribution and by

the geometrical shape directly.

For the purpose of establishing the three-dimensional boundary layer equations

it is useful to con�ne ourselves to the case of a curved wall which is developed into

a plan, in analogy with studies about a yawed cylinder as shown in �gure 9.
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Figure 9: Yawed cylinder with yaw angle β (a) and curved surface developed into a
plane (b) .

Let x and z denote the coordinates in the wall surface, while y the coordinate

which is orthogonal to the wall. The velocity vector of potential �ow, V , will be

assumed to have the components U(x, z) and W (x, z), so that, in the steady-state

case, the pressure distribution in the potential �ow is given by:

p+
1

2
ρ[U2 +W 2]
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2.1 Three-dimensional boundary layer equations

Therefore, it is essential to derive equations which control three-dimensional bound-

ary layer [3], proceeding, in order to reach them, with an evaluation similar to the

computation of two-dimensional boundary layer Navier-Stokes equations. A short

summary of this evaluation is listed below in order to formulate equations for con-

sidered three-dimensional case.

The Navier-Stokes equations for incompressible �ow (ρ = cost) assume the fol-

lowing form:

ρ(∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z
) = − ∂p

∂x
+ µ(∂

2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)

ρ(∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z
) = −∂p

∂y
+ µ( ∂

2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

)

ρ(∂w
∂t

+ u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z
) = −∂p

∂z
+ µ(∂

2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

)

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

For a non-stationary, bidimansional �ow, on x−y plane, Navier-Stokes equations
can be reduced to the following system:

∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

= −1
ϱ
∂p
∂x

+ ν(∂
2u
∂x2

+ ∂2u
∂y2

)

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

= −1
ϱ
∂p
∂y

+ ν( ∂
2v
∂x2

+ ∂2v
∂y2

)

∂u
∂x

+ ∂v
∂y

= 0

which gives the three equations for u, v and p.

In general it is possible to state that the thickness of the boundary layer increases

with viscosity or that it decreases as the Reynolds number increases. The boundary-

layer thickness is proportional to the square root of kinematic wiscosity:

δ ≃
√
ν

This thickness is very small compared with a still unspeci�ed linear dimension, L,

of the body, so that �rst sempli�cation of Navier-Stokes eqauations can be considered:
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δ ≪ L

In this way the solutions obtained from the boundary-layer equations are asimp-

totic and and apply to very large Reynolds numbers.

Through parameters introduction, in order to make equations dimensionless, and

a consequent analysis about order of magnitude of each term, tratment of which

is dropped here, a semplify form of the equations system could be obtained. In

particular, by referring velocities to free-stream velocity, V , and all linear dimensions

to a characteristic length L, of the body, which is selected in order to ensure that the

dimensionless derivative ∂u
∂x

do not exceed unity in the region under consideration.

Moreover, the pressure is made dimensionless with ρV 2 and time is referred to L
V
.

Finally, Reynolds number is introduced, which is assumed very large:

Re =
V Lρ

µ
=
V L

ν

A simplify Navier-Stokes equation is obtained, known as Prandtl's boundary layer

equations, which, coming back to dimensioanal quantities, can be expressed by:∂u
∂x

+ ∂v
∂y

= 0

∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

= −1
ϱ
∂p
∂x

+ ν ∂
2u
∂y2

with the boundary conditions:u = v = 0 per y = 0

u = U(x, t) per y = ∞.

and the system can become simpler for stationary �ow.

During the order of magnitude analysis, it can be observed that the Reynolds

number is equal to 1
δ2

and can be expressed as:

1

Re
= δ2
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From this relationship, it can be made a boundary layer thickness valuation:

δ

L
∼ 1

Re
=

√
ν

V L

and this ratio will be useful up ahead in the thesis.

If now perform the same estimation, under the assumption of very large Reynolds

numbers, relative to the three-dimensional Navier-Stokes equations, the conclusion

can be reached that, in the frictional terms of the equations for the x anrl z directions

respectively, it is possible to neglect the derivatives with respect to the coordinates

which are parallel to the wall as against the derivative with respect to the coordinates

with right angles to it. Regarding the equation in the y-direction we again obtain

the result that ∂p
∂y

is very small and may be neglected. Thus the pressure is seen to

depend on x and z alone, and is impressed on the boundary layer by the potential

�ow. Boundary layer equations for three-dimensional �ow are:
u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= −1
ρ
∂p
∂x

+ ν ∂
2u
∂y2

u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

= −1
ρ
∂p
∂z

+ ν ∂
2w
∂y2

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

with the following boundary conditions:u = v = w = 0 per y = 0

u = U ; w = W ; per y = ∞.

The pressure gradients ∂p
∂x

and ∂p
∂z

are known from the potential �ow in accordance

with Bernoulli equations, directly derived from free-stream.

2.1.1 Yawed cylinder

A particular case of three-dimensional boundary-layer �ow is that where the potential

�ow depends on x but not on z, as written below:
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U = U(x)

W = W (x).

These conditions are transferable to the case of a yawed cylinder and yawed

wing with zero lift. The system of equations, seen before, is simpli�ed in that

there is no dependence on z. Taking into account that W = W∞ = cost and that

−(1/ρ) · (∂p/∂x) = U · (∂U/∂x), is obtained:
u∂u
∂x

+ v ∂u
∂y

= U · ∂u
∂x

+ ν ∂
2u
∂y2

u∂w
∂x

+ v ∂w
∂y

= ν ∂
2w
∂y2

∂u
∂x

+ ∂v
∂y

= 0

with the same boundary conditions as before.

Figure 10: Yawed cylinder.

The calculation of three-dimensional boundary layer on a yawed cylinder, shown

in �gure 9, can be carried out, by a method, similar to that used in the case of

two-dimensional �ow about a cylinder, by assuming a series expansion with respect

to the length of arc measured from the stagnation point. For a symmetrical cylinder

it results:

U(x) = u1x+ u3x
3 + ... con W (x) = W∞ = cost.

Moreover, a characteristic coordinate is de�ned:
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η = y

√
u1
ν

Through this coordinate, u(x, y), v(x, y) and u(x, y) can be expressed by a se-

ries expansion with respect to x, where f1, f3,... costants and g0, g2, ... functions are

present, satisfying the following di�erential equations:g
′′
0 + f1g

′
0 = 0

g
′′
2 + f1g

′
2 − 2f

′
1g2 = −12f3g

′
0

whose boundary conditions are:g0 = 0, g2 = 0, ... per η = 0

g0 = 1, g2 = 1, ... per η = ∞

As indicated by Prandt the equation for g0 can be solved by direct integration,

the result being:

g0(η) =

´ η
0

{
exp(−

´ η
0
f1dη)

}
dη´∞

0

{
exp(−

´ η
0
f1dη)

}
dη

where f1 denotes the solution for the two-dimensional stagnation point �ow and

it is expressed by: f1(η) ≡ Φ(η). Functions g0 and g2 are represented in �gure 11.

Figure 11: Functions g0 and g2 for the velocity component w along the axis of the
body, inside laminar boundary layer on a yawed cylinder [3].
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2.1.2 Swept wings and cross-�ow phenomenon

The existence of cross-�ow which occurs in the boundary layer of a yawed cylinder,

described in last paragraph, is important for the aerodynamic properties of swept

wings.

When yawed or swept-back wings operate at higher lift values the pressure on

the suction side near the leading edge shows a considerable gradient towards the

receding tip, the e�ect being due to the rearward shift of the airfoil sections of the

wing. This phenomenon can be inferred from �gure 12, which shows the isobars on

the suction side of a yawed wing.

Figure 12: Origin of cross-�ow on a yawed wing at an angle of incidence [3].

The �uid particles, which become decelerated in the boundary layer, have a

tendency to travel in the direction of this gradient, and a cross-�ow in the direction

of the receding tip results, as seen before. The boundary layer on the receding portion

thickens, the e�ect leading to premature separation. In aircraft equipped with swept
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back wings separation begins at the receding portion, near the ailerons, and causes

the dreaded one-winged stall to occur. It is possible to prevent one-winged stalling,

by equipping the wing with a �boundary layer fence� which consists of a sheet-metal

wall placed on the suction side in the forward portion of the wing, as shown in �gure

12, thus preventing cross-�ow.

Figure 13: Swept-back wings aeroplane (De Havilland DH.110 ).
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2.2 Theory of stability of laminar �ows

In order to explain, with accuracy, process of transition characterizing cross�ow

boundary layer hereafter, a theoretically investigation, relating to stability, is intro-

duced: the theory of stability of laminar flows.

The theory is hased on the assumption that laminar �ows are a�ected by certain

small disturbances, which, in the case of a boundary layer on a solid body placed

in a stream, may be due to wall roughness or to irrogularities in the external �ow,

as seen before. The theory endeavours to follow up in time the behaviour of such

disturbances when they are superimposed on the main �ow, that is the �base �ow �,

bearing in mind that their exact form still remains to be determined in particular

cases. The focal point of the theory is the potential decadence of disturbances:

if they decay with time, the main �ow is considered stable; on the other hand, if

the disturbances increase with time the �ow is considered unstable and there is the

possibility of transition to a turbulent �eld.

In order to establish, indeed, the Reynolds-number critical value, at which turbu-

lent transiton occurs for a certain base �ow, theory of stability has been developed.

2.2.1 Method of small disturbances

As countered in the last paragraph , the stability theory base on introducing

small disturbances inside a �ow, caused by several potential triggering factors. The

theory of stability of Iaminar �ows decomposes the motion into a �base �ow �, whose

stability constitutes the subject of the investigation, and into a �disturbed �ow �

superimposed on it.

Let the base �ow, which may be regarded as steady, be described by its Cartesian

velocity components U, V,W and its pressure P . The corresponding quantities for

the non-steady disturbance, instead, will be denoted by u′, v′, w′ and p′. Hence,

in the resultant motion, caused by the superimposition of two �elds, the velocity

components are:
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u = U + u′, v = V + v′, w = W + w′

while the pressure results:

p = P + p′

the quantities related to the disturbance are small compared with the correspond-

ing quantities of the base �ow.

The investigation of the stability of such a disturbed can he carried out with the

small disturbances method, which analyzes, through appropriate di�erential equa-

tions, the manner in which �ows develop in the �ow.

It shall be now considered a two-dimensional incompressible mean �ow and an

equally two-dimensional diaturbance. The resulting motion, described by equations

above, satis�es the two-dimensional form of the Navier-Stokes equations. The prob-

lem shall be further simpli�ed by stipulating that the mean velocity U depends only

on y, resulting U = U(y), whereas the remaining two components are supposed to

be zero everywhere. Such an assumption can also be made because the dependence

of the velocity U in the main �ow on the z-coordinnte is very much smaller than

that on y, in analogy with the case of parallel �ows. As far as the pressure in the

main �ow is concerned, it is necessary to assume a dependence on x as well as on y,

that is P = P (x, y), because the pressure gradient ∂P/∂x maintains the �ow. Thus a

base �ow can be assumed with:

U(y), V ≡ W ≡ 0, P (x, y)

Upon tho mean �ow is assumed superimposed a two-dimensional disturbance

which is a function of time and space. Its velocity components and pressure are,

respectively:

u′(x, y, t), v′(x, y, t), p′(x, y, t)
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Hence the resultant motion is described by:

u = U + u′, v = v′, w = 0, p = P + p′

It is assumed that the base �ow is a solution of the Navier-Stokes equations,

and it is required that the resultant motion must also satisfy these equations. The

superimposed �uctuating velocities, moreover, are taken to be "small" in the sense

that all quadratic terms in the �uctuating components may be neglected with respect

to the linear terms.

Now, the task of the stability theory consists in determining whether the distur-

bance is ampli�ed or whether it decays for a given mean motion and, therefore, the

�ow is considered unstuble or stable depending respectively.

Substituting motion equations into the Navier-Stokos equations for a two-dimensional,

incompressible, non-steady �ow, and neglecting quadratic terms in the disturbance

velocity components, it is obtained:
∂u′

∂t
+ U ∂u′

∂x
+ v′ ∂U

∂y
+ 1

ϱ
∂P
∂x

+ 1
ϱ
∂p′

∂x
= ν(∂

2U
∂y2

+∇2u′)

∂v′

∂t
+ U ∂v′

∂x
+ 1

ϱ
∂P
∂y

+ 1
ϱ
∂p′

∂y
= ν∇2v′

∂u′

∂x
+ ∂v′

∂y
= 0

where ∇2 denots the Laplacian operator : ∂2/∂x2 + ∂2/∂y2.

If it is considered that the base �ow itself satis�es the Navier-Stokes equations,

the above equations can be simpli�ed to:
∂u′

∂t
+ U ∂u′

∂x
+ v′ ∂U

∂y
+ 1

ϱ
∂p′

∂x
= ν∇2u′

∂v′

∂t
+ U ∂v′

∂x
+ 1

ϱ
∂p′

∂y
= ν∇2v′

∂u′

∂x
+ ∂v′

∂y
= 0

Three equal.ions for u′, v′ and p′ are obtained. The boundary conditions spec-

ify that the turbulent velocity components u′ and v′ vanish on the walls (no-slip

condition).
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2.2.2 The Orr-Sommerfeld equation

In order to achieve a stability analysis of �ow through the stability theory, it is

necessary to apply a method based on the use of the Orr-Sommerfeld equation.

Hereafter, the procedure requested to achieve this formulation is shown.

The base laminar �ow in the x direction with a velocity U(y) is assumed to

be in�uenced by a disturbance which is composed of a number of discrete partial

�uctuations, each of which is said to consist of a wave which is propagated in the x

direction. As it has already been assumed that the perturbation is two-dimensional,

it is possible to introduce a stream function ψ(x, y, t) thus integrating the equation of

continuity. The stream function representing a single oscillation of the disturbance

is assumed to be of the form:

ψ(x, y, t) = ϕ(y)ei(αx−βt)

Any arbitrary two-dimensional disturbance is assumed expanded in a Fourier

series and each of its terms represents such a partial oscillation. In equation above,

α is a real quantity and λ = 2π/α is the wavelength of the disturbance, while the

quantity β is complex:

β = βr + iβi

where βr is the circular frequency of the partial oscillation, whereas βi, ampli�-

cation factor, determines the degree of ampli�cation or damping. The disturbances

are damped, as said before, if βi < 0 and consequently the laminar mean �ow is

stable. If βi > 0 instability sets in. Apart from α and β it is convenient to introduce

their ratio:

c =
β

α
= cr + ici

Here cr denotes the velocity of propagation of the wave in the x direction, that is

phase velocity, whereas ci again determines the degree of damping, or ampli�cation,
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depending on sign it presents. The amplitude function, ϕ, of the �uctuation is

assumed to depend on y only, because the mean �ow depends on this coordinate

alone.

Perturbation velocity components can be now achieved with respect to this am-

plitude function: u′ =
∂ψ
∂y

= ϕ′(y)ei(αx−βt)

v′ = −∂ψ
∂x

= −iαϕ(y)ei(αx−βt)

lntroducing these values into Navier-Stokes equations, it is obtained, after the

elimination of pressure, the following, ordinary, fourth-order, di�erential equation

for the amplitude ϕ(y):

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ = − i

αR
(ϕ′′′′ − 2α2ϕ′′ + α4ϕ)

This is the fundamental di�erential equation for the disturbance or stability equa-

tion which forms the point, of departure for the stability theory of laminar �ows.

It is commonly referred to as the Orr-Sommerfeld equation and it has been cast in

dimensionless form. All lengths have been divided by a suitable reference length

or boundary-layer thickness δ, while velocities have been divided by the maximum

velocity Umax of the base �ow. Reynolds number, which is a characteristic of the

mean �ow, in this case results:

Re =
Umaxδ

ν

whose boundary conditions are:u′ = v′ = 0 : ϕ = 0, ϕ′ = 0 per y = 0

u′ = v′ = 0 : ϕ = 0, ϕ′ = 0 per y = ∞.

in order to nullify perturbation velocity components at wall.

It is possible to note that disturbances superimposed on a two-dimensional �ow
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pattern need not to be two-dimensional, if a complete analysis of the question of

stability is to be achieved. Thanks to Squire theorem it can be proved that, by

assuming disturbances which are periodic in the z-direction, a two-dimensional �ow

pattern becomes unstable at a higher Reynolds numbers when the disturbance is

assumed three-dimonsional than when it is supposed to be two-dimensional. So

this approach become �conservative�. The two-dimensional disturbances are "more

dangerous" than three-dimensional �ows and lower stability limit of the �ow.

2.2.3 The eigenvalue problem

The problem of stability has now been reduced to an eigenvalue problem of the

Orr-Sommerfeld equation with the boundary conditions de�ned in previous section

(2.2.2). When the mean �ow U(y) is speci�ed, Orr-Sommerfeld equation contains

four parameters, namely α,Re, cr and ci. Of these the Reynolds number is speci�ed

and the wavelength, λ = 2π/α, of the disturbance is to be considered given. In this

case the di�erential equation , together with the boundary conditions, furnish one

eigenfunction ϕ(y) and one complex eigenvalue c = cr + ici, for each pair of values

α and Re. As said before, the sign of ci determines whether the wave is ampli�ed

(ci > 0) or damped (ci < 0). For ci < 0, the corresponding �ow (U,Re) is stable for

the given value of α, whereas ci > 0 denotes instability condition. The limiting case

ci = 0 corresponds to neutral disturbances.

The result of such an analysis, for a prescribed laminar �ow U(y), can be rep-

resentod graphically in an α − Re diagram, as in �gure 14, because every point, of

this plane corresponds to a pair of values of cr and ci.
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Figure 14: Curves of neutral stability for a two-dimensional boundary layer with
two-dimensional disturbances, on α−Re diagram, represented for a non-viscous (a)
and a viscous (b) �ow [3].

In particular, the locus ci = 0 separtes the region of stable from that of unstable

disturbances and is called the curve of neutral stability. The point on this curve at

which the Reynolds number present its smallest value (tangent parallel to the α-axis)

indicates that value of the Reynolds number below which all individual oscillations

decay, whereas above that value at least some are ampli�ed. This smallest Reynolds

number is the critical Reynolds number or limit of stability with respect to the type

of laminar �ow under cousideration.

The experimental evidence concerning transition from laminar to turbulent �ow

leads us to expect that, at small Reynolds numbers for which laminar �ow is ob-

served, all wavelengths would produce only sltable disturbances, whereas at large

Reynolds numbers, for which turbulent �ow is observed, unstable disturbauces ought

to correspond to at least some wavelengths.

However, it is necessary to remark, at this point, that the critical Reynolds

number calculated from stability considerations cannot be expected to be equal to
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the Reynolds observed at the point of transition. If attention is �xed on the �ow in

the boundary layer along a wall, then theoretical critical Reynolds number indicates

the point on the wall at which ampli�cation of some individual disturbances begins

and proceeds downstream of it. The transformation of such ampli�ed disturbances

into turbulence takes up some time and the unstable disturbances have a chance

to travel some distance in the downstream direction, inside the boundary layer. It

must, therefore, be expected that, the observed position of the point of transition

will be downstream of the calculated, theoretical limit of stability, or, in other words,

that the experimental critical Reynolds number execeds its theoretical value. In

order to distinguish between these two values, it is usual to call the theoretical

critical Reynolds number the �point of instability�, whereas the experimental critical

Reynolds number is called the �point of transition�.

2.3 Three-dimensional �ows instability

Up to this point, 2D �ows stability with two-dimensional disturbances has been

discussed. These �ows, as explained, result the most unstable and then lead to a

more conservative evaluation of stability. The experimental evidence also shows that

transition is started as a result of the ampli�cation of two-dimensional disturbances.

It also turned out that the ampli�cation of the unstable plane waves produces a

distinctly three-dimensional �ow structure. After the amplitude of the wave has

reached a certain magnitude, there sets in a period of strong and non-linear ampli-

�cation of the disturbance. This process is accompanied by a transfer of energy in

the transverse direction and this distorts the original, two-dimensional character of

the base �ow. Thus, the breakdown of laminar �ow and, hence, the birth of turbu-

lence appear to be a consequence of the development of the unstable disturbances

in three dimensions. This is accompanied by the appearance to a certain extent in

the boundary layer too, of vortices whose axes lie in the direction of the �ow.

In this section, cross�ow instability linked phenomenology will be investigated

and the consequent propagation of such vortices [4].
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Transition to turbulence in swept-wing �ows has resisted correlation with linear

theory because of its sensitivity to freestream conditions and 3-D roughness and

because one of the principal instability modes quickly becomes non-linear.

The basic idea is that the combination of sweep and chordwise pressure gradient

within the boundary layer creates a velocity component orthogonal to the inviscid

streamline (base �ow). This cross�ow pro�le is in�ectional and exhibits both trav-

eling and stationary unstable waves called crossflow vortices that are approx-

imately aligned along the inviscid streamlines. Under conditions of low freestream

turbulence levels, the dominant cross�ow wave is stationary, while moderate to high

turbulence levels initiate dominant traveling waves. The mechanism is relatively

insensitive to sound and 2-D surface roughness but very sensitive to 3-D roughness

near the attachment line.

Although, the v′ and w′ components of the disturbances are very small, by con-

vecting streamwise momentum in the wall-normal direction, they produce remarkable

changes in u′. Thus the mean �ow is highly distorted with localized in�ection points.

Transition is then triggered by a high-frequency secondary instability of the distorted

mean pro�le.

Transition, therefore, is now triggered by an high frequency secondary instability

of the in�ectional mean pro�le, as it is shown in �gure 15. One can notice, from this

�gure, that, because the cross�ow velocity must vanish at the wall and at the edge

of the boundary layer, an in�ection point exists and provides a source of an inviscid

instability. The instability appears as co-rotating vortices whose axes are aligned to

within a few degrees of the local inviscid streamlines.
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Figure 15: Cross�ow boundary layer velocity contour with in�ection point and re-
sultant velocity contour, caused by the combination of transversal and streamwise
components [5].

The study of three-dimensional boundary layers is motivated by the need to

understand the fundamental instability mechanisms that cause transition in swept-

wing �ows. Research has identi�ed four types of instabilities for these �ows, which

are listed below.

• The attachment-line problem is caused by a basic instability of the attachment-

line boundary layer or by its contamination with turbulent disturbances and

develops, in general, on swept wings with a large leading edge radius.
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• The streamwise instability is not unlike the familiar Tollmien-Schlichting wave

(TS) in two-dimensional �ows, shown in �gure 16. This mechanism is associ-

ated with the chordwise velocity component and is generally stabilized by a

favorable pressure gradient.

Figure 16: Tollmien-Schlichting (TS) waves.

• Centrifugal instabilities can appear over concave regions on the surface and

result in the development of Görtler vortices (�gure 17).

Figure 17: Görtler vortices visualization inside the boundary layer.
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• Cross�ow waves are an inviscid instability mechanism caused by the combined

e�ect of wing sweep and pressure gradient.

All of these instabilities can appear individually or together depending on the com-

bination of Reynolds number, wall curvature, wing sweep, pressure gradient, and

external disturbances.

2.3.1 Cross�ow primary instability

The cross�ow instability that occurs on swept wings in regions of strong, favorable

pressure gradient. The phenomenon overview is very useful, for proceeding of the

thesis, in order to set �ow �eld and conditions in which next chapters analysis will

take place.

Unlike TS instability, the cross�ow problem exhibits �stationary� (f = 0) as well

as �traveling disturbances� that are ampli�ed. Even though both types of waves are

present in typical swept wing �ows, transition is usually dominated by either the

stationary or the traveling waves. linear theory predicts that the traveling dis-

turbances are more highly ampli�ed, however many experiments are dominated by

stationary waves. Whether the stationary or traveling waves dominate is directly re-

lated to the receptivity process, as said in section 1.4 yet. Stationary waves dominate

transition in low-disturbance environments, while traveling waves are more impor-

tant in high-disturbance environments. For the last case, linear theory makes the

cross�ow waves behavior explicit, while, for the �rst one, the mean �ow is distorted

and quickly reach a non-linear behavior, such as the linear analysis become inad-

equate. Since the low-disturbance environment is more characteristic of �ight, the

stationary waves are expected to be more important.

As far as the receptivity process is concerned, it could be explained through the

description of factors that strongly a�ect the occurence of such a phenomenon [5]:
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• role of freestream fluctuations, that is the e�ect of freestream tur-

bulence on cross�ow transition. Turbulence intensities about Tu > 0, 0015

produced transition behavior dominated by traveling waves. for increased tur-

bulence levels where traveling waves dominate but the turbulence intensity is

not too high, 0, 0015 < Tu < 0, 0020 , transition was actually delayed relative

to low-turbulence cases at the same Reynolds number. The explanation for

this is that the traveling waves excited by the increased freestream turbulence

were su�ciently strong to prevent stationary waves from causing transition but

were not strong enough to cause transition as quickly as the stationary waves

they replaced.

• role of surface roughness, that is the receptivity mechanism for the

stationary vortices that are important for transition in environments with very-

low-amplitude turbulent �uctuations.

• role of turbulence/roughness interactions, that is the receptivity

of freestream turbulence interacting with surface roughness. It is to take in

account that turbulent �uctuations play a much more signi�cant role in the

transition process than acoustic �uctuations. Stationary waves dominate tran-

sition, but when the roughness array is activated, the saw-tooth transition

front is replaced by a di�use spanwise transition front indicative of traveling

waves dominated transition. Traveling waves do result from an interaction of

freestream velocity �uctuations with surface roughness and not from turbulence

intensity alone.

The rotational components of stationary cross�ow waves are typically very weak,

hence analytical models have long been based on linear theory. However, experiments

often show evidence of strong nonlinear e�ects. The resolution of this apparent

paradox lies in the understanding of the physical mechanism by which the stationary

waves disturb the boundary layer. The key to the stationary disturbance is that

the wave fronts are �xed with respect to the model and nearly aligned with the
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potential-�ow direction (the wavenumber vector is nearly orthogonal to the inviscid

streamline). Consequently, although the rotational motion of the wave is weak,

its stationary nature produces an integrated e�ect that causes a strong streamwise

distortion in the streamwise boundary-layer pro�le. This integrated e�ect and the

resulting local distortion of the mean boundary layer leads to the modi�cation of the

basic state and the early development of non-linear e�ects.

An interesting feature of the stationary cross�ow waves, which will be explained

in the next section, is the destabilization of secondary instabilities. The streamwise

distortions created by the stationary wave are time-independent, resulting in a span-

wise modulation of the mean streamwise velocity pro�le. As the distortions grow,

the boundary layer develops an alternating pattern of accelerated, decelerated, and

doubly in�ected pro�les. The in�ected pro�les are �inviscidly unstable�, and as such,

are subject to a high-frequency secondary instability. This secondary instability is

highly ampli�ed and leads to rapid local breakdown. Because transition develops

locally, the transition front is nonuniform in span and characterized by a saw-tooth

pattern of turbulent wedges, as represented in �gure 18.

Figure 18: Transition front characterized by a saw-tooth characteristic pattern of
turbulent wedges, along the spanwise direction [5].
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2.3.2 Absolute instabilty

In this paragraph, the link between rotating disk and cross�ow boundary layers are

highlighted in order to present the absolute instability concept.

The boundary layer on the surface of a rotating disk, shown in �gure 19, can be

used as a model problem for swept wing �ow because the velocity pro�les on the

disk provide a basic state and stability behavior very similar to that of the swept

wing boundary layer. The advantage of the rotating disk is the existence of a well-

known similarity solution for the basic �ow that features a boundary layer of constant

thickness.

Figure 19: Rotating disk boundary layer (a), velocity and pressure pro�les along z
coordinate (b, c).
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The most important recent development in the study of the rotating-disk prob-

lem is the theory of lingwood, which state that rotating-disk boundary layers

support an absolute instability at Re = 510. The implication of this �nding is that

the steady, laminar basic state cannot exist beyond this Reynolds number regardless

of the care taken in preparing and conducting each numerical simulation of such a

�ow �eld. Basing on this criterion, indeed, suitable Reynolds numbers will be choose,

up ahead, in order to best simulate cross�ow boundary layer, strictly linked, as said

yet, with the rotating disk problem. This �nding is in good agreement with various

rotating disk experiments, most of which do not maintain laminar �ow much beyond

Re = 500.

Lingwood follow Briggs method, which prescribes the means to evaluate the

Fourier-Laplace integral that arises from considering an initial-boundary-value prob-

lem for impulsive forcing in a developing �ow. If the group velocity of a disturbance

wave packet goes to zero while the temporal growth rate is positive, then the �ow

is absolutely unstable. Lingwood applied Briggs method by using a parallel-�ow

approximation and observed a pinch between two neutral branches of the disper-

sion relationship that yields a positive temporal growth rate at a Reynolds number

Re ≥ 510, 625. As Re is increased, the absolutely unstable wave-number range ex-

pands and, at large Reynolds numbers, tends toward the limits found for the inviscid

case.

The absolute instability then arises from an inviscid mechanism and that the good

correlation between the Reynolds number limit for absolute instability, indicated

by Lingwood, and the experimental transition Reynolds numbers makes a case for

transition being triggered by the absolute instability.

Moreover, studies about rotating disk instabilities includes a number of routes to

turbulence. First, high-amplitude traveling disturbances may be ampli�ed at very

low Reynolds numbers, while at higher Reynolds numbers stationary waves dominate,

as it has been said before. If the disturbance levels are high, then high-frequency

secondary instabilities lead to rapid transition. On the other hand, if disturbance

levels are low and secondary instabilities do not appear, the �ow becomes absolutely
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unstable for Reynolds numbers above Re = 510, and transition occurs.

2.3.3 Primary instability development in the cross�ow boundary layer

In this paragraph, the �ow evolution, characterized by instability, inside cross�ow

boundary layer, is going to be analyzed, graphically and on a quality level, gradually

introducing several aspects which a�ect �ow development [4].

Natural roughness In the absence of arti�cial surface roughness, naturally oc-

curring stationary cross�ow waves are nonuniform in span due to submicron surface

irregularities near the leading edge. This is shown in �gure 20, which displays a con-

tour plot of the normalized boundary-layer velocity at x/c = 0, 55 for Re = 2, 4×106.

Figure 20: Contour plot of the normalized boundary-layer velocity u/Ue at x/c = 0, 55
for Re = 2, 4× 106, without surface roughness [4].

The �gure shows that the streamwise velocity u/Ue, in the Y − z plane. The

�ow is toward the reader and the stationary vortices are turning in the right-handed

sense. The wave-like structure of �gure 20 represents the integrated e�ect of the weak
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stationary vortices on the streamwise velocity. It also displays a dominant feature

at a 12mm spanwise spacing, which is approximately the most ampli�ed stationary

wavelength according to the linear theory.

Critical forcing Figure 23 shows the streamwise velocity contour with the rough-

ness installed. The dominance of the 12mm mode is striking, and allows a direct

calculation of the stationary disturbance amplitude.

Figure 21: Contour plot of the normalized boundary-layer velocity u/Ue at x/c = 0, 45,
with arti�cial surface roughness installed [4].

Figure 22, instead, compares the experimental ampli�cation factor, �N-factor �,

for the 12mm forcing with the predictions of the OrrSommerfeld equation (OSE),

the linear parabolized stability equations, and the full nonlinear parabolized stability

equations.

The early growth shows excellent agreement with linear PSE, however strong

nonlinear e�ects develop well before transition at (x/c)tr = 0, 52. The importance of
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nonparallel e�ects is indicated by the �failure� of traditional linear stability theory

(OSE) to accurately predict the growth even in the linear range. When nonlinearity

is added, the agreement is remarkable over the entire measurement region and all as-

pects of the growth are predicted. This correspondence is due to curvature inclusion

in the computation problem. The sensitivity to very weak curvature is due to the

strong stabilizing Görtler e�ect with convex curvature. This is the reason for the

disagreement between the linear experiments and linear theory without curvature.

Figure 22: Measured and theoretichal ampli�cation factors, N-factor, for the condi-
tion of �gure 23 [5].

Role of spanwise spacing It was be noted that unstable waves occur only at

integer multiples of the primary disturbance wavenumber. In other words, spacing
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the roughness elements 12mm apart excites disturbances with spanwise wavelengths

of 6mm and 4mm.

As far as this statement is concerned, it is possible to continue with the wave

front development qualitative description. Figure 23, instead, shows the normalized

velocity pro�les for Re = 2, 4 × 106, at x/c = 0, 40. The 18mm spacing is observed

with a very strong 9mm modulation.

Figure 23: Contour plot of the normalized boundary-layer velocity u/Ue at x/c = 0, 40,
with arti�cial surface roughness installed and k = 6µm, at 18mm spacing [4].

Even at x/c = 0, 45, the small arti�cial roughness yields boundary layer distortions

that are very uniform and periodic is span. Boundary layer pro�les from which

the contour map of last �gure is made are shown in �gure 24, in order to give an

approximate idea of the velocity trend in the considered ragion and to compare with

next results.
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Figure 24: Spanwise array of 100 velocity pro�les spaced 1mm apart at x/c = 0, 40
(a) and stationary cross�ow mode shapes (b), at the same conditions of (a) [4].

In �gure 24 (a) the mean pro�le is also shown and as with the no roughness case,

the stationary disturbance has dramatically distorted the mean boundary layer. The
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spanwise-average pro�le is doubly in�ected even for x/c ≥ 0, 30. 24 (b) presents the

total disturbance mode shape pro�les for x/c ≥ 0, 30.

As far as individual mode amplitude is concerned, a full set of spanwise scans

are presented to extract the modal content of the disturbance. The height scanned

corresponds to the maximum of the total disturbance mode shape at each x/c. The

power spectral density computations for these scans are computed. Integration of

the peaks of these data are used to form �gure 25.

Figure 25: Total and single-mode disturbance amplitudes and �N-factors�, at condi-
tions of �gure 24 [4].

The spectrum at this location shows energy in the (0,2) mode, that is λz = 9 mm.

It is interesting that the mode contains more energy than the fundamental mode for

λz = 18 mm. The fundamental mode is not measurable until x/c = 0, 20. Although

the fundamental is detected, the �rst harmonic at λz = 9 mm still contains most of

the disturbance energy. The fundamental disturbance grows rapidly for 0, 35 ≤ x/c ≤
0, 45, where the (0,2) mode actually shows some decay. Higher harmonics become

unstable for x/c ≥ 0, 25. The spectrum at x/c = 0, 45 shows detectable disturbances

for the (0,3) and (0,4) modes, at λz = 6 mm and λz = 4, 5 mm respectively.

The (0,2) mode shows exponential growth up to x/c = 0, 25, at which point the

mode begins to saturate. It reaches a maximum amplitude of 13% at x/c = 0, 40, after
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which it decays. It is in this �saturation and decay region� where the fundamental

disturbance shows strong growth. This is also the region of strong nonlinear e�ects

as seen by the growth of the second lobe in the total disturbance mode-shape pro�les

in �gure 24.

Normalized velocity pro�les for Rec = 2, 4 × 106 and roughness are shown in

�gure 26 for chord locations x/c = 0, 30 (a) and x/c = 0, 60 (b), respectively.

Figure 26: Streamwise velocity pro�les at x/c = 0, 30 (a) and x/c = 0, 60 (b), for
Rec = 2, 4× 106, k = 6µm, at 8 mm spacing [4].

The disturbance is �rst measurable at x/c = 0, 10, and a very uniform and domi-

nant λz = 8 mm mode develops for 0, 10 ≤ x/c ≤ 0, 25. At x/c = 0, 30 (a), although

the contour plot still shows a dominant 8 mm mode, there is noticeable development
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of some slight nonuniformity. This nonuniformity becomes more dramatic with in-

creasing chord, and the 8 mm structure fades out in favor of some longer wavelength

disturbances. By x/c = 0, 50, the dominance of the fundamental mode is gone, while

x/c = 0, 60 (b) the fundamental mode is indistinguishable in the velocity pro�les.

The total disturbance amplitude, N-factors, computed from the mode shapes

show that the total disturbance grows rapidly from 0, 10 ≤ x/c ≤ 0, 30, at which

point the amplitude saturates and then slows strong decay. At x/c = 0, 30, the

second lobe high in the mode shape is evident, indicating strong nonlinear e�ects.

The amplitude continues to decay up to x/c ≤ 0, 45, where the amplitude levels o�

and then shows a second region of strong growth for 0, 50 ≤ x/c ≤ 0, 60.

In short, considered Reynolds number and roughness delays transition past that

of the natural roughness case. Strong early growth of the 8 mm mode e�ectively sup-

presses initial growth of the very unstable 9 mm and 12 mm near the leading edge,

which the linear stability theory predicts to be the region where these modes have

the largest growth rates. Moreover, the dramatic decay allows for longerwavelength

background disturbances to become unstableb due to submicron surface irregulari-

ties. The growth of these longer wavelength broadband disturbances eventually leads

to transition.
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2.3.4 Secondary instability

After the process, leading to primary instability, has been fully described in last

paragraphs, the process by which the saturated vortices produced by this instability

�break down� and lead to turbulence will be well-documented in this section [6, 7].

What is observed in stationary-wave-dominated transition experiments is that, at

some point aft of where the vortices saturate, breakdown to turbulence occurs very

rapidly along a jagged front. These studies suggest that the �nal stage of transition

occurs over a very short streamwise distance and that turbulence originates at �xed,

distinct points in the boundary layer from which it spreads in a characteristic wedge

pattern.

In order to describe saturated-vortex breakdown is that the distorted mean �ow

produced by these vortices includes very strong and in�ectional shear layers and

thus becomes unstable to secondary instabilities. These instabilities grow to large

amplitudes over a very short streamwise distance and lead to breakdown and turbu-

lence.

The cross�ow velocity pro�le ws(y) is in�ectional and causes a strong primary

spatial instability of the �ow with respect to so-called cross�ow eigenmodes, which

can be steady or unsteady. In physical space, strong co-rotating vortices are formed

with their axes oriented approximately along the outer streamline. As said before,

upon downstream vortex saturation, the mean �ow is deformed resulting in the for-

mation of strong shear layers, which are connected to local wall-normal and crosswise

in�ectional mean pro�les us(y) and us(z). They trigger a convective high-frequency

secondary instability with explosive spatial growth of unsteady modes. The frequency

of the most ampli�ed secondary mode is about one order of magnitude higher than

the frequency of the most ampli�ed primary cross�ow mode.

These instabilities are localized in physical space and they move focused along

the primary vortical structure. They appear mostly in the low-momentum upwelling

region, where especially the spanwise gradients in the mean�ow become extreme. The

growth of these secondary instabilities is connected to the appearance of secondary
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�nger-vortices twining around the cross�ow vortices from their upward moving side.

This phenomenon is graphically shown in �gure 27. The �nal breakdown by tertiary

vortices in between the secondary �nger vortices.

Figure 27: Secondary �nger-vortices wrapped around the cross�ow primary vortices.

Principally, three di�erent classes of secondary instability mode were identi�ed,

which are listed below.

• The high-frequency �mode I � or �z � mode, induced by the minimum of the

spanwise gradient of the streamwise velocity component (∂U/∂z); this mode

seems to be most important;

• the high-frequency mode II or y mode, induced by the local maximum of the

wall-normal gradient (∂U/∂y);

• the low-frequency mode III , most probably linked to the maximum of the

spanwise gradient.
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The modes exhibit their amplitude maxima in the respective regions of the deformed

three-dimensional mean �ow. For istance, the most ampli�ed z mode is located at

the updraft cross�ow vortex side, and the y mode on top of the vortex. The weaker

ampli�ed �mode-III � class is found under the vortex close to the wall.

Moreover, in another series of experiments, the secondary instability was observed

in boundary layers in which a combination of travelling and stationary primary dis-

turbances was forced by variable leading edge roughness. The secondary-instability

�uctuations were only observed for certain combinations of the travelling and sta-

tionary primary waves, suggesting that under some conditions neither the station-

ary nor travelling primary-instability waves are su�ciently strong to destabilize the

secondary instability, but that superposition of both is capable of producing su�-

cient mean-�ow deformation to destabilize the secondary instability for certain phase

ranges of the superposition.

Such a non-linear interaction can generates vortical interaction structures that

lead the transitional process before some kind of known secondary instabilities come

into play. Moreover, one can notice, at clean conditions, that an unsteady pure single

cross�ow wave cannot lead to transition because it generates only non-zero diagonal

elements in the frequency spanwise wavenumber space.

Growth rates of a secondary instability induced by travelling primary cross�ow

waves on a swept cylinder have been calculated, as described in section 2.1.1, using

secondary instability analysis in a reference frame moving with the spanwise phase

speed of the primary wave. They found the rates twice as high as in the case with

steady primary disturbances, and at somewhat lower frequencies, but did not further

analyse this �nding because in the corresponding experiment the frequency of the

secondary instability connected to the steady primary vortices dominated.

2.3.5 Secondary instability development in the cross�ow boundary layer

In analogy with section 2.3.3, in this paragraph, secondary-instability spatial evo-

lution inside cross�ow boundary layer is described, for Rec = 2, 4 × 106 and with
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roughness installed, in order to give a qualitative idea of the phenomenon described

in last paragraph.

The �rst measurement station is at x/c = 0, 30, which is the �rst position for

which the quantity ∂U/∂y equals zero somewhere inside the boundary layer, indicating

that signi�cant mean-�ow distortion has developed. Figure 28 shows a collection of

mean�ow velocity pro�les (a) and the spanwise mean of the individual pro�les (b).

Figure 28: mean�ow velocity pro�les (a) and the spanwise mean of the individual
pro�les (b) [6].

The curve, represented by the continuous line, ideti�es the root mean square

(r.m.s.) of stationary mode disturbance (a). For this condition, although there is

some distortion of the mean �ow, the disturbance evolution may still be consistent

with linear stability theory because the r.m.s. curve has not yet developed the upper

lobe that accompanies the advent of signi�cant nonlinearities. The development of

an upper lobe is due to the rollover phenomenon that brings low-momentum �uid

into the upper part of the boundary layer signalling the onset of signi�cant mean-

�ow distortion, and hence, nonlinear disturbance evolution. In �gure righten-side

(b), dark shades are low-momentum regions, while light shades are high-momentum

regions.
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Figure 29: Velocity-�uctuation r.m.s. distribution at x/c = 0, 35 (a) and mean-�ow
velocity pro�les (U/U∞) at x/c = 0, 40 (b) [6].

In �gure 30 it can be noted that, moving to x/c = 0, 35, the earliest stage of non-

linear evolution is apparent in the mean �ow. Both �gure (a) and �gure (b) show that

overturning of the low-momentum upwelling is well under way. Figure (a) shows that

travelling-wave �uctuations are strongly modulated due to an interaction with the

stationary disturbance. The modulation is simply a result of the nonlinear interaction

of the stationary and travelling disturbances that becomes more pronounced as the

disturbance amplitudes increase. In �gure (b), instead, stationary-mode amplitude

is substantially increased.

As far as the spatial distribution of the 3 kHz �uctuations is concerned, �gure

30 shows that these �uctuations lie along the shear layer to the left of the upwelling

region and extend over much of the span of the stationary structure. The high

frequencies represent a secondary instability in the strictest sense because neither

the high-frequency band nor the spatial location at which the �uctuations exist are

associated with an instability of the undistorted mean �ow.

Because the secondary instability is situated where it is, aligned on the high-

velocity shear layer along the left edge of the low-momentum upwelling, it appears

that this is an inviscid, in�ection-point-driven instability. As such it is manifested

as vortex lines that lie in the (y, z) plane and convect in the stream direction.
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Figure 30: High frequency velocity-�uctuation r.m.s. at x/c = 0, 40 [6].

A visual representation of secondary instability can be achieve through rolls that

wrap along the left side of and extend above the stationary structure, as shown in

�gure 31.

Figure 31: Visual representation of secondary instability.

Proceeding streamwise, up to x/c = 0, 45, the �uctuation spectra show that the

3 kHz and 6, 1 kHz modes continue to grow rapidly, closer to half the span locations

participating. The spatial distribution of the 6, 1 kHz lies clearly along the shear

layer to the left of the low-momentum upwelling zone coincident with the location

of the 3 kHz. In �gure 32 are shown these modes at x/c = 0, 45.
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Figure 32: 3 kHz (a) and 6, 1 kHz (b) velocity �uctuations r.m.s. at x/c = 0, 40 [6].

Finally, at x/c = 0, 46, localized breakdown occurs. Figure 33 shows that much

of the �ne structure of the mean �ow has been eliminated. The low-momentum

upwelling no longer has a narrow apex; instead this region is wider and �atter.

What is most important, in �gure below, is the velocity gradient near the wall

to the left of the low-momentum upwelling. This region looks quite di�erent from

previous cases; in particular the contour lines are now very close together, indicating

that the wall shear here is quite high. What are responsible for these changes in

the mean �ow are of course the muchincreased velocity �uctuations brought on by

breakdown to turbulence.

Figure 33: Mean-�ow velocity pro�les at x/c = 0, 46 [6].
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Downstream of the breakdown location we expect the stationary structure to

dissolve quickly in the face of the enhanced �uctuation levels. This is evident at

x/c = 0, 47 in the mean-�ow velocity pro�les of �gure 34.

Figure 34: Mean �ow velocity pro�les at x/c = 0, 47 [6].

This �gure shows the continuing breakup of the low-momentum zone high in the

boundary layer and the extension of the high-wall-shear zone. For that �nal location,

the low-momentum upwelling region is fully turbulent, with spectral amplitudes

decreasing away from the wall.
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3 Mathematical model

After the phenomenology regarding both primary and secondary instability inside

a cross�ow three-dimensional boundary layer has been presented in last chapter

and, even before, equations governing bidimensional boundary layer (Navier-Stokes

equations for boundary layer), in this chapter, mathematical model is obtained

in order to compute the pressure �eld inside a three-dimensional boundary layer.

The model will be useful no only for the calculation of pressures themselves, both

dimensional and dimensionless, but also for their analysis and their comparison with

results obtained for the instability growth factor (energy). This formulation is called

initial-value problem.

3.1 Base �ow

First, it is necessary to de�ne the base �ow, which it is assumed viscous and incom-

pressible.

Figure 35: De�nition of parameters related to the base �ow.
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As shown in �gure 35 and remembering reference system presented in the chapter

2, x coordinate is taken parallel to the freestream velocity, whereas y coordinates

orthogonal to it. The potential �ow cut the airfoil with velocity U∞, but a com-

ponent W∞, characteristic of cross�ow, adds to it and generates resultant velocity

V∞, oriented of a certain θ angle, the so called cross�ow angle. This angle ensures

that V∞ velocity presents two components, U and W , tangent and orthogonal to

streamline respectively, and this fact is explicable, as seen in section 2.1.2, with the

presence of strong spanwise pressure gradients on a swept wing.

Streamlines, resulting from superimposition of freestream and induced velocity,

are not necessary parallel neither to the x-axis nor to the freestream �ow, but they

are at an angle θ, which is not steady becouse of potential changes of components U

and W .

3.2 Initial values formulation

The base �ow, described above, is perturbed with small arbitrary three-dimensional

perturbations. The perturbed system then is linearized, thereafter continuity equation

and Navier Stokes equations, which describe its space-time evolution, can be adapted

to the three-dimensional perturbed �ow.

Cross�ow �ow is characterized by following parameters [8]:Us = U(x,Re)

Ws =W (x,Re)

that are velocity components resulting from the base �ow and, di�erently from

the apsumptions made presenting method of small disturbances in section 2.2.1, in

the mathematical model for cross�ow boundary layer it is adopted:

u = Us + ũ, v = ṽ, w = Ws + w̃, p = P + p̃.
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Navier Stokes equations for three-dimensional boundary layer are listed below:

∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

= − ∂p
∂x

+ 1
Reδ∗

(∂
2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

= −∂p
∂y

+ 1
Reδ∗

( ∂
2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

)

∂w
∂t

+ u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

= −∂p
∂z

+ 1
Reδ∗

(∂
2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

)

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

Assuming that disturbances are small enough to considere the hypothesis:

u, v, w ≪ U∞,W∞

and substituting velocity expressions, obtained by the superimposition of the base

�ow with the perturbed system, equations become:

∂ũ
∂x

+ ∂ṽ
∂y

+ ∂w̃
∂z

= 0

∂ũ
∂t

+ Us
∂ũ
∂x

+ ṽ ∂Us

∂y
+Ws

∂ũ
∂z

+ ∂p̃
∂x

= 1
Reδ∗

∇2ũ

∂ṽ
∂t

+ Us
∂ṽ
∂x

+Ws
∂ṽ
∂z

+ ∂p̃
∂y

= 1
Reδ∗

∇2ṽ

∂w̃
∂t

+ Us
∂w̃
∂x

+ ṽ ∂Ws

∂y
+Ws

∂w̃
∂z

+ ∂p̃
∂z

= 1
Reδ∗

∇2w̃

where: 

ũ(x, y, z, t)

ṽ(x, y, z, t)

w̃(x, y, z, t)

p̃(x, y, z, t)

are the components of the perturbation velocity and pressure, respectively.

U ,W , ∂Us/∂y and ∂Ws/∂y are the terms related with the base �ow and, in particular,

last two terms represent U and W derivatives with respect to the shear direction.

Variables x, y and z are de�ned from [0,+∞], [0,+∞] and [−∞,+∞], respectively.

From this formulation, we proceed in order to reach equations fundamental for
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pressure �eld computation inside cross�ow boundary layer, through the transfer from

physical space to Fourier �eld, which is explained in this section.

Moreover, one can notice that all the physical quantities are made dimensionless

with respect to freestream �ow velocity U∞ and to boundary-layer displacement

thickness, de�ned as:

δ∗ =

ˆ ∞

0

(1− u

U∞
)dy

Displacement thickness δ∗ allows to de�ne the Reynolds number which appears

in the equation system written above:

Reδ∗ =
ρU∞δ

∗

µ
=
U∞δ

∗

ν

where ν represents kinematic viscosity.

It is useful to remember also the relation between this Reynolds number, iden-

tifying perturbated system, and the one related to the base �ow, that is the global

Reynolds number de�ned with respect a characteristic dimension �L� of the body:

Reδ∗ = 1, 72 ·
√
Re
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3.2.1 Perturbation velocity computation

Since previous dormulation is given, it is necessary now to present the method helpful

to obtain introduced perturbation velocity, ũ,ṽ,w̃, that are terms necessary to solve

boundary layer equations, making exlicit pressures, which are the object and goal of

studies underway.

Equations of the system are then combined to eliminate the pressure, provision-

ally, and the vorticity vector is de�ned as:

−→̃
ω = [ω̃x, ω̃y, ω̃z]

By introducing, further, the kinematic quantity:

∇2ṽ = Γ̃ =
∂ω̃z
∂x

− ∂ω̃x
∂y

The system then adopts a reduced form in terms of vorticity and velocity :
( ∂
∂t
+ Us

∂
∂x

+Ws
∂
∂z
)Γ̃− ∂2Us

∂y2
∂ṽ
∂x

− ∂2Ws

∂y2
∂ṽ
∂z

= 1
Reδ∗

∇2Γ̃

( ∂
∂t
+ Us

∂
∂x

+Ws
∂
∂z
)ω̃y +

∂Us

∂y
∂ṽ
∂x

= 1
Reδ∗

∇2ω̃y

∇2ṽ = Γ̃

First equation is none other than Orr-Sommerfeld equation, obtained in section

2.2.2, expressed by di�erent variables, while the second one is the Squire equation.

For every dependent variable, a combined spatial Laplace-Fourier decomposition

in the x and z directions it is performed and de�ned by:

ĝ (y, t, α, γ) =

+∞ˆ

−∞

+∞ˆ

0

g̃(x, y, z, t)e(−iαx−iγz)dxdz

where g̃ is the general dependent variable, α, which is the longitudinal wave

number, is complex (α = αr + iαi), and γ, which is the transversal wave number, is

real.
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The system transfered in the Fourier space, �nally, substituting changed quatities,

can be expressed by:



[
∂2

∂y2
−
−→
k
]
∂v̂
∂t

= (−i (k cosϕ+ iαi)Us + ik sinϕWs)
[
∂2v̂
∂y2

−
−→
k v̂

]
+ i (k cosϕ+ iαi)

∂2Us

∂y2
v̂

+ik sinϕ∂
2Ws

∂y2
v̂ + 1

Reδ∗

[
∂4v̂
∂y4

− 2
−→
k ∂2v̂
∂y2

+
−→
k 2̂v

]
∂ω̂y

∂t
= (−i (k cosϕ+ iαi)Us − ik sinϕWs) ω̂y − ik sinϕ∂Us

∂y
v̂ + i (k cosϕ+ iαi)

∂Ws

∂y
v̂

+Us
∂
∂x

+Ws
∂
∂z
)ω̃y +

1
Reδ∗

[
∂2ω̂y

∂y2
−

−→
k ω̂y

]
[
∂2v̂
∂y2

−
−→
k v̂

]
= Γ̂

where, as said in section 2.2.2, αi is the complex part of the α parameter and

is called spatial damping factor. In the modi�ed equations system, moreover,
−→
k

vector and ϕ angle, that is obliquity angle, turn up and the last one is an important

parameter in order to compute pressures, as it will be seen next. These parameters

can be de�ned, basing on the graphical scheme in �gure 36 [9].

Figure 36: Gemometrical scheme of disturbance, where the disturbance dove la per-
turbazione spreads along the polar wave number k direction [9].
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First parameter can be de�ned with respect to the polar wave number , k:

k =
√
α2
r + γ2

−→
k = k2 − α2

i + 2iαik cosϕ

where ϕ is the obliquity angle and de�ned by geometrical link:

ϕ = tan−1

(
γ

αr

)
and allows to express single geometrical links, which exists between polar wave

number and wave number along x e z directions:

αr = k cosϕ

γ = k sinϕ

The polar wave number is also related to the wave lenght by the relationship:

λ =
2π

k

All the presented parameters turn out to be fundamental for the resolution of

computational problem in order to obtain both velocities and pressures, as they

in�uence signi�cantly motion �eld inside the three-dimensional boundary layer, and

it is necessary to choose them opportunely.

The system is now of the fourth order, two orders upper than the previous system

de�ned on the physical plane, and can be solved by the introduction of suitable initial

and boundary conditions. The last conditions are de�ned at the limits of the domain

under consideration:
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y = 0 →

v̂ = 0

∂v̂
∂y

= 0

y = ∞ →

v̂ = 0

∂v̂
∂y

= 0

Boundary conditions, just exspressed, impose no-slip conditions at wall both on

velocity and its derivative. At the same time annulment of these components is

imposed outside the boundary layer.

The vorticity, instead, must submiti to two imposed conditions:

y = 0 → ω̂y = 0

y = ∞ → ω̂y = 0

Finally, initial conditions are arbitrarily imposed to the two variables:

v̂(y, t = 0) = y2e−y
2

ω̂y(y, t = 0) = 0

The problem, under imposed conditions and through the choice of characteristic

parameters, can be solved and provides perturbative velocities which appear in the

three-dimensional boundary layer equations inside the physical space.
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3.3 Mathematical methods for the pressure �eld computation

In this section, mathematical method for the pressure �eld computation is presented.

Two methods, more precisely, have been taken into account during the work, which

are variation of the base concept derived from the small disturbances theory. These

two methods have been implemented on matlab software in order to compute the

three-dimensional pressure �eld inside a cross�ow boundary layer. Two methods are

also necessary for a mutual comparison and validity control. Basing both on time

and e�ciency evaluations using the software, one of the two methods has been chosen

and used for all the following analysis.

The two methods are explained in the next two paragraphs, which present changed

formulations of the governor equations and the process of the Fourier transformation.

3.3.1 First method

The fundamental idea, in both methods, is that of making explicit the terms related

to pressure gradients ∂p̃/∂x, ∂p̃/∂y e ∂p̃/∂z in Three-dimensional boundary layer equa-

tions seen in section 3.2 and then then integrating these pressure gradients, after the

simulation, in order to �nd the pressure values in all the motion �eld.

In the �rst method, described here, velocities, obtained with the method ex-

plained in section 3.2.1, which are taken from the database saved during previous

simulations achieved in politecnico di torino department of mechanical

and aerospace engineering, are immediatly anti-transformed from the Fourier

�eld to the physical �led and then put in the system of boundary layer equation.

As seen before, for every dependent variable, a combined spatial Laplace-Fourier

decomposition in the x and z directions has been performed and de�ned by:

ĝ (y, t, α, γ) =

+∞ˆ

−∞

+∞ˆ

0

g̃(x, y, z, t)e(−iαx−iγz)dxdz
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The anti-transformation can be ideally expressed as:

û(y, t, α, γ) F−1

−−→ ũ(x, y, z, t)

where û is the generic velocity component in the Fourier space, whereas ũ is the

generic velocity in the physical space, which will be used in this �rst method.

When the velocity components û, v̂ and ŵ are all transformed to the physical

space, depending now on x, y, z space variables and t time variable, and the reference

velocities Us and Ws of the base �ow are given, the system of three-dimensional

boundary layer equations can be espressed as:



∂p̃
∂x

= −∂ũ
∂t

− Us
∂ũ
∂x

− ṽ ∂Us

∂y
−Ws

∂ũ
∂z

+ 1
Reδ∗

∇2ũ

∂p̃
∂y

= −∂ṽ
∂t

− Us
∂ṽ
∂x

−Ws
∂ṽ
∂z

+ 1
Reδ∗

∇2ṽ

∂p̃
∂z

= −∂w̃
∂t

− Us
∂w̃
∂x

− ṽ ∂Ws

∂y
−Ws

∂w̃
∂z

+ 1
Reδ∗

∇2w̃

∂ũ
∂x

+ ∂ṽ
∂y

+ ∂w̃
∂z

= 0

From this system one can get pressure gradients values all over the domain con-

sidered in the problem and, through a numerical integration in matlab software,

the pressure �eld in the cross�ow boundary layer is obtained, that is p̃ = p̃(x, y, z)

in the physical space.

Having all the pressure values in the considered �eld it is easy to achieve each

wanted visualization along x, y or z axis. But it has been noted, during tests on the

method, that it is quite slow, taking many times to solve the equations. Moreover,

in order to remove some failings at the initial limit of the domain, it has been found

that integrating the second equation of the system, which explicits ∂p̃
∂y

gradient, to

compute the pressure, these problems are signi�cantly, but not completly, reduced.

Although this equatons is used, few failings still remain.
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3.3.2 Second method

In previous paragraph, problems of the �rst method have been presented. With

the necessity to remove them, a second method has been introduced, considering a

di�erent approach.

The equations are now �rst transformed with the spatial Laplace-Fourier decom-

position in the x and z directions and perturbative velocities û, v̂ and ŵ are directly

introduced in the system in the Fourier space. The transformation is obtained sub-

stituting each mathematical operator in the equations as:
∂φ
∂x

−→ iα · φ
∂φ
∂z

−→ iγ · φ

∇2φ −→
(
∂2

∂y2
− k2

)
· φ

where φ is a generic variable and k2 = α2 + γ2.

The system transfered to the Fourier space then turns out as:


iαp̂ = −∂û

∂t
− iαûUs − v̂ ∂Us

∂y
− iγûWs +

1
Reδ∗

(
∂2

∂y2
− k2

)
û

∂p̂
∂y

= −∂v̂
∂t

− iαv̂Us − iγv̂Ws +
1

Reδ∗

(
∂2

∂y2
− k2

)
v̂

iγp̂ = −∂ŵ
∂t

− iαŵUs − v̂ ∂Ws

∂y
− iγŵWs +

1
Reδ∗

(
∂2

∂y2
− k2

)
ŵ

As said before, perturbative velocities are directly introduced into the system,

whereas ∂Us

∂y
and ∂Ws

∂y
base �ow gradients are given and so unchanged after the trans-

formation.

The second equation is taken into account again in order to minimize failings at

the edge of the domain and it is integrated with respect to y coordinate. The result

of this numerical integration, implemented on matlab, is the pressure �eld itself in

the Fourier space, all over the computational domain:

p̂ = p̂(y, t, α, γ)
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So it is necessary to transfer pressure values form this space to the physical

space, dependant on x, y, z and t coordinates. The anti-transformation process can

be expressed now as:

p̂(y, t, α, γ) F−1

−−→ p̃(x, y, z, t)

Hence the perturbed pressure �eld in the physical space is derived, coming to the

same results as the �rst method.

However, too long times of computing are drastically reduced, proceeding with

this method, and failings at the domain origin are totally removed. As far as the

results of the two method are concerned, they perfectly agree both for the pressure

gradients and pressure themselves. The second method has proved to be more ef-

�cient and faster than the �rst one, so it has been chosen for the simulation and

parametric analysis, implemented in the next chapter.

3.4 Ampli�cation factor

At the end of the present chapter, it is necessary to shortly present another param-

eter, which will useful up ahead during the parametric analysis for a comparison

with the results obtained for the dimensionless pressure �eld, that is the ampli�ca-

tion factor G. Such a parameter represents a functional indication of the instabilty

of the �ow, on varying several characteristic paremeters, inside a three-dimensional

boundary layer, region taken into account by this thesis.

To measure the growth of the perturbations, kinetic energy density is de�ned:

e(t;α, γ,Re) =
1

2

1

2yd

ˆ +yd

−yd

(
|û2|+ |v̂2|+ |ŵ2|

)
dy =

=
1

2

1

2yd

1

|α2 + γ2|

ˆ +yd

−yd

(
|∂û
∂y

|2 + |α2 + γ2||v̂2|+ |ω̂y2|
)
dy

where +yd and −yd are the computational limits of the domain along the orthog-
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onal direction to the surface, while û(y, t, α, γ), v̂(y, t, α, γ) and ŵ(y, t, α, γ) are the

transformed velocity components of the perturbed �eld.

The ampli�cation factor, G, is then introduced, as the kinetic energy density

normalized with respect to its initial value:

G(t;α, γ) =
e(t;α, γ)

(t = 0;α, γ)

This parameter indicates the disturbance growth, thus its ampli�cation or damp-

ing. Basing on the asymptotic trend of G so the �ow results stable or unstable. More-

over, the ampli�cation factor derivative indicates the achievement of the asymptotic

limit for the perturbed �ow.

In the next chapter, G will be the basis for comparison with the pressure �eld, in

order both to comprehend if a link between the two trends could exist and to choose

which con�guration, stable or unstable, meaningful, is to be simulated.
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4 Perturbative pressure �eld parametric analysis

The three-dimensional boundary layer perturbative pressure �eld, p̃ = p̃(x, y, z, t)

has been computed thanks to the analytical method explained in section 3.3.2 of

the previous chapter. The focus now will be pointed on a parametric analysis of the

perturbed pressure �eld in order to consider e�ects of boundary layer �ow character-

istic parameters on the perturbed motion �eld, also analysing initial and asymptotic

pressure trends.

It is important to remember that pertubed pressure computed is dimensionless,

as it is divided by the freestream typical quantities:

p̃ =
p̃dim
ρU2

∞

and the time, t, is made dimensionless as:

tcar =
δ∗

U∞

where tcar is the so-called characteristic time, which will be merely written as t

up ahead. So a dimensionless perturbed pressure �eld is taken into accout in order

to make all pressure trends along each direction �self-similar�, allowing a correct

parametric comparison.

4.1 Simulation parameters

It can be useful to list all the characteristic parameters, some of which have been

introduced in section 3.1 and 3.2.1, that will be varied during the analysis. Referring

to �gure 37 showing the cross�ow boundary layer velocity-�eld, such parameters are

listed below giving a functional statement for the analysis understanding.
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Figure 37: Reference systems and characteristic parameters of the cross�ow bound-
ary layer.

crossflow angle θ First, one can notice that the [xs, y, zs] reference system

is associated with directions tangent and orthogonal to the streamlines respectively.

These directions are de�ned, with respect to the generic [x, y, z] reference system, by

the well-known cross�ow angle θ, which measures the inclination of streamlines due

to cross�ow component, W , and so θ coincides with the angle between U velocity,

parallel to x axis, and Us base �ow velocity, parallel to xs axis. The value of this

80



angle is assumed costant taking into account a certain value computed at 20% of the

chord lenght.

The values of cross�ow angle chosen for the parametric analysis of the simulated

three-dimensional pressure �eld are:

θ =
[π
6
,
π

4
,
π

3

]
obliquity angle ϕ The second fundamental parameter to be introduced is the

angle which the perturbation creates with the xs, zs axes, that are the directions

parallel and orthogonal to the streamline motion as seen above, and it is called

obliquity angle ϕ. In other words, it represents the incidence the perturbative wave

comes in the boundary layer with.

The values of obliquity angle chosen for the parametric analysis of the simulated

three-dimensional pressure �eld are:

ϕ =
[
0 ,

π

4
,
π

2

]
These values coincide with longitudinal, oblique and orthogonal perturbative waves,

respectively.

polar wave number k Another important parameter is the polar wave number

or merely the wavelength number k. As seen in section 3.2.1, it is de�ned as:

k =
√
α2
r + γ2

and is also related to wave lenght as:

λ =
2π

k
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For the implementing simulations and next analysis some of these values, consid-

ered the most signi�cant and representative of short and long wase, are chosen:

k = [0.02 , 0.06 , 0.1 , 0.6 , 1 , 1.2 , 1.6]

As can be noticed, this is a quite wide range of wave numbers that represents

three di�erent order of magnitude.

dimensionless pressure gradient β The dimensionless pressure gradient

β or Hartree parameter is related to the de�nition of the diedral angle and has the

following mathematical expression:

β =
2m

m+ 1

where m, as it will be seen in the next chapter, is a characteristic parameter of

the �ow.

The dimensionless pressure gradient characterizes di�erent �ow typologies, as

cross�ow boundary layers, if β ̸= 0, or Blasius boundary layers, if β = 0. Since the

�eld under examination is the cross�ow boundary layer, two di�erent values of β are

chosen:

β = [−0.1988 , 1]

where the negative value suggests a positive pressure gradient along x-coordinate,

which involves, for the Bernoulli equation, a deceleration of the �ow. This deceler-

ation is a strongly destabilizing factor, so we will refer to β < 0 as an unfavourable

pressure gradient. On the other hand, the positive value of β suggests a negative

pressure gradient and an acceleration of the �ow along x-axis. This is, on the con-

trary, a favourable pressure gradient.
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reynolds number Reδ∗ The last parameter to be decided is the Reynolds

number Reδ∗ related to the displacement thickness δ∗. This choice is made basing

on linear stability studies, mentioned in section 1.4, and on theory of Lingwood,

which states, as written in section 2.3.2, that rotating-disk boundary layers support

an absolute instability at Re = 510. Stable and unstable behaviours, respectively,

are expected for:

Reδ∗ = [100 , 5000]

and these will be the Reynolds numbers considered in the following numerical

simulations in order to compare pressure behaviours both inside a well-known stable

and in an unstable boundary layer.

In order to have a statement of chosen parameters for the following numerical

simulations of the cross�ow boundary layer, the summarizing table 1 is shown below.

reynolds number Reδ∗ Re=100 , Re=5000
pressure gradient β 1 , -0,1988
crossflow angle θ π

6
, π

4
, π

3

obliquity angle ϕ 0 , π
4
, π

2

wavelength number k 0.02 , 0.06 , 0.1 , 0.6 , 1 , 1.2 , 1.6 , 2

Table 1: Summarizing table of the parametrs chosen for the numerical simulation of
the cross�ow boundary layer pressure �eld.
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4.2 Simulation results

This section represents the fulcrum of this thesis because now all the results of several

numerical simulations implemented in order to compute the pressure �eld of a three-

dimensional boundary layer, are shown and analysed. Studying the e�ects of each

parameter variation on the pressure �eld inside the cross�ow boundary layer is the

goal of this chapter and of the entire thesis.

The pattern we have decided to follow is to vary one parameter a time at a certain

values. In this way it is possible to compute and analyse di�erent con�gurations of

the boundary layer and incoming perturbative waves, not only showing signi�cant

changes in the pressure �eld, but also looking for links between pressure and ampli�-

cation factor G temporal trends, related to instability phenomenon. In addition, the

computation of G is useful to decide which con�guration of the �ow is to be chosen,

from time to time, in order to simulate either a stable or an unstable �eld.

Basing on these preliminary remarks it has been decided to simulate certain con-

�gurations of the perturbed cross�ow boundary layer, expecting a priori a signi�cant

behavior and trend of the pressure. The simulations to be made are shortly listed be-

low and will be completely presented, shown and explained in following paragraphs.

1. variation of wavelength number k for two di�erent con�gurations:

- θ = 30o , ϕ = 45o , β = 1 for Re = 100

- θ = 60o , ϕ = 90o , β = 1 for Re = 5000.

2. variation of obliquity angle ϕ for the �xed con�guration:

- θ = 60o , k = 0.4 , β = 1 for Re = 5000.

3. variation of crossflow angle θ for the �xed con�guration:

- ϕ = 45o , k = 0.4 , β = 1 for Re = 5000.

4. variation of pressure gradient β for the �xed con�guration:

- θ = 30o , ϕ = 0o , k = 0.1 for Re = 5000

5. pressure surfaces on x, y and y, z planes for the con�gurations listed above.

84



For each implemented simulation, the graphs reporting pressure results will be shown

in order to achieve the parametric analysis. The graphs realized are:

• Graphs showing p̃ = p̃(x), p̃ = p̃(y) and p̃ = p̃(z), at characteristic time t = 40,

in order to evaluate the spatial evolution of the pressure �eld.

• Graphs showing p̃ = p̃(y) at characteristic times t1 = 15, t2 = 40 and t3 = 95

in order to evaluate the spatial and temporal evolution of the pressure �eld.

• Graph showing the temporal trend of the pressure at �xed spatial points

(x, y, z) in order to compare results achieved with the ampli�cation factor G.

Then, in the following paragraphs, results obtained from each numerical simulation

will be listed and the trends of the pressure �eld inside the cross�ow boundary layer

will be carefully investigated.

Finally, the domains �xed for the three spatial coordinates x, y, z and the tem-

poral coordinate t, in the matlab numerical simulations are:
x ∈ [5÷ 150] with △x = 0.05

z ∈ [−50÷ 50] with △z = 0.05

t ∈ [0÷ 900]

whereas for y coordinate the domain is included between:
y ∈ [0÷ 250] with △y = 0.05 for k < 0.2

y ∈ [0÷ 100] with △y = 0.05 for 0.2 ≤ k ≤ 1.2

y ∈ [0÷ 50] with △y = 0.05 for k > 1 .2

where all the values of the domain are dimesionless and the origin of the reference

system, as said before, is at the wing leading edge.
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4.2.1 Variation of polar wavenumber k

In this paragraph, the e�ects of the variation of polar wavenumber k on the per-

turbative pressure �eld are shown and investigated in order to �nd a correlation

between the wavelength of the disturbances introduced in the pressure �eld. The

perturbative pressure �eld, in this chapter, is not refered to a reference mean pres-

sure, which will be add during the dimensional total �ow analysis in the last chapter;

all the variations, positive and negative, are not to be considered �nal total value,

but only sums and decrements, respectively, which will be added to the reference

mean pressure afterwards.

As listed above, the �rst con�guration to be analysed is:

1. θ = 30o , ϕ = 45o , β = 1 for Re = 100

which is a �ow tipology, arbitrarily chosen, with intermediate values of the char-

acteristic parameters. We espect a stable behaviour for this Reynolds numbers and

that the perturbative waves a�ects the pressure �eld both along x and z direction.

The graph, accounting the simulation results, are shown and analysed below;

the same description procedure will be followed in next paragraphs for all the other

con�gurations.

In �gure 38 (a) perturbative pressure pro�les along x direction, p̃ = p̃(x), are

shown, by varying wavenumber from k = 0.02, a long wave with λ ≈ 314.15, to

k = 2, related to a small value of the wavelength λ ≈ 3.14. As it can be seen, this

parameter signi�cantly a�ects pressure pro�les of the �ow under investigation, even

if di�erently for each of its values. Large wavenumbers, related to small wavelengths,

up to k = 0.6, slightly a�ect the pressure �eld, and small periodic �uctuations in the

range of zero value are shown (c). In particular, observing �gure 38 (b), pressure

for k = 0.6 presents small oscilaltion periods and oscillations around zero, about

p̃ ≃ ±2 ·10−4, that are very small with respect to longer waves, which are two orders

of magnitude higher.
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(a) (b)

(c)

Figure 38: Pressure pro�les along x direction (a), with �xed y = 10 and z = 3,
and enlargement (b,c), on varying wavenumber k, at characteristic time t = 40, for
θ = 30o , ϕ = 45o , β = 1 and Re = 100 con�guration.

On the contrary, this sinusoidal trend is highly clear going on to smaller wavenum-

bers, which present higher maximum and minimum points, that are higher ampli-

tudes of the �uctuations. An higher amplitude, in particular, is noticed for k = 0.1,

which represents a wavelength a�ecting p̃ along x coordinate with a very larger

oscillation period than k = 0.6.
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(a) (b)

(c)

Figure 39: Pressure pro�les along z direction (a), with �xed x = 10 and y = 10, and
enlargement (b,c), on varying wavelength number k, at characteristic time t = 40,
for θ = 30o , ϕ = 45o , β = 1 and Re = 100 con�guration.

Proceeding forward to smaller values of k, the period continues to increase and

the amplitude increases as well. At k = 0.02, the oscillation period and amplitude

signi�cantly further increase and the period presents a doubled value than the shorter

wavelengths. This trend could have a signi�cant in�uence on the mean pressure �eld,

as it will be investigated more deeply in the next chapter, and we expect a certain
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in�uence on the �ow by intermediate wavelengths too. The results obtained show a

periodic trend similar to the one of the velocity pro�le along x coordinate, as it is

shown in �gure 36, since the pressure term, according to Bernoulli, is directly related

to the inverse of the velocity term.

As far as the pressure contour along z is concerned, �gure 39, it is important to

remember that, along this direction, the velocity pro�le is considered to be periodic,

as along x axis, and the periods of the velocity �uctuation are quite similar. This fact

can be noticed in �gure 39 (a) where the pro�le is clearly sinusoidal and the period of

the oscillation around the mean value is similar to the one along the x direction. All

wavelengths have the same oscillation period values and amplitudes of the pressure

trend along x. This is what is exactly expeceted with ϕ = 45o con�guration.

Disturbances so seem to equally a�ect the pressure pro�les along both directions,

having wavelength variations the same in�uence too.

In �gure 40 and 41, perturbative velocities pro�les ũ(y), ṽ(y) and w̃(y) along y-

direction are now shown in order to compare the velocity and pressure perturbative

�elds and give an idea about the starting velocities.
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(1a) (1b)

(2a) (2b)

Figure 40: Spatial evolution along y-axis of velocity ṽ = ṽ(y), ṽ = ṽ(y), w̃ = w̃(y)
and pressures p̃ = p̃(y) (1b, 2b) at times t1 = 25 (1a, 1b), and t3 = 95 (2a, 2b), for
x = 10, z = 3 and k = 0.06.
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(3a) (3b)

(4a) (4b)

Figure 41: Spatial evolution along y-axis of velocity ṽ = ṽ(y), ṽ = ṽ(y), w̃ = w̃(y)
and pressures p̃ = p̃(y) (1b, 2b) at times t1 = 25 (1a, 1b), and t3 = 95 (2a, 2b), for
x = 10, z = 3 for k = 1.6.

In �gure 42 the spatial evolution of dimensionless perturbative pressure, p̃ = p̃(y),

at three �xed characteristic times, t = 25, t = 60, t = 95, is shown in order to give

an idea also of the temporal development of the �ow along the coordinate orthogonal

to the wall.

At t = 15 (1a), that is a time in which the perturbation is very strong, the pressure

assumes positive starting values at wall for wavelengths from k = 0.06 to k = 0.1,
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(1a) (1b)

(2a) (2b)

(3a) (3b)

Figure 42: Spatial evolution of pressure p̃ = p̃(y) at characteristic times t1 = 15 (1a),
t2 = 40 (2a) and t3 = 95 (3a), for x = 10 and z = 3, and enlargements at the wall
(1b, 2b, 3b).
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while k = 0.02 and others lower wavelengths present negative perturbative pressure

quantities close to the wall with the lower one for k = 0.02 itself. This pressure

goes to zero, at y ≃ 200, while for short wavelengths, �gure 42 (b), from k = 0.6 to

k = 1.6, pressure goes to zero at y ≃ 3 ÷ 10. For k = 0.06 and k = 0.1, instead,

the symptotic state is reached for y ≃ 60; as it can be seen in the enlargment, then

an increase of the wavelength leads to higher thickness of the perturbative pressure

pro�les.

It is also to be noticed that, very close to the wall, high wave-numbers induce

a certain oscillation in their pro�les with a change in the pressure gradient sign,

about at y ≃ 2, generating maximum points as greater as the wavelength number is

decreased.

At t = 40 (2a), low wavelength numbers, up to k = 0.6, present elevated per-

turbative pressures along y direction, but with one order of magnitude lower values

than previous time step, beyond p̃ = 0.06 ÷ 0.02, and the same thickness. On the

other hand, for high wavelength numbers, pressures are almost steady around the

mean value, since the perturbation is made damped for low wavelength. Near the

wall (2b) a change in pressure slope is noticed only for k = 0.6.

Finally, at t = 95 (3a), the in�uence of the disturbance introduced is lower than

before, as it can be noticed from the low pressures at wall, because the pressure �eld

is reaching a steady and stable state, since the perturbations are going to blow over.

Only a signi�cant change is noticed, that is for k = 0.1, which presents a change in

the pressure gradient sign. This phenomenon may be related to the beginning of the

disturbance damping, since every temporal decreasing of pressure pro�le is marked

by such a variation in sign. This fact can be interesting as an indicator about the

damping of perturbative pressure pro�le along y coordinate.
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(a) (b)

Figure 43: Temporal development of G (a) and p̃ (b) for 100 characteristic time,
at �xed spatial point, x = 10, y = 10, z = 3, on varying wavelength number k, for
θ = 30o , ϕ = 45o , β = 1 and Re = 100 con�guration.

In �gure 43 (a) ampli�cation factor G development in time is shown. As it

can be seen, the con�guration under analysis is a stable one because G reaches a

zero value within about 100 characteristic times for all the considered wavelength

numbers. The highest peaks are shown for k = 1 , 1.2 , 1.6 , 2 with an oscillating

transient growth, that, however, reaches quickly the zero value. The most particular

behaviour is related to k = 0.6, which cancels out at about t = 100, whereas lower

wavelength numbers present decreasing trends over thus time and so they have a

longer transient period. Such a behaviour is well-noticeable in temporal development

of the perturbative pressure, p̃, refered to its initial value p̃/p̃rif , taking into account a

spatial �xed point [x, y, z] in the computational domain, for 100 characteristic times,

shown in �gure 43 (b) .

The graph shows a clear correlation between the ampli�cation factor G and the

trend of the perturbative �eld pressure p̃. As for G, also for pressure, high wavelength

numebers k = 1 , 1.2 , 1.6 , 2 show a shorter transient period than the lower ones,

with several oscillations around the mean value, that present higher maximum and

lower minimum points proceeding toward lower wavelength, up to p̃/p̃rif = 6 at t = 5

94



and p̃/p̃rif = −5 at t ≥ 10 respectively, and also wider oscillation periods. The

asymptote is reached, exactly as in previous graph, at about t = 20÷ 50.

As far as the k = 0.6 pressure trend behaviour is concerned, this is signi�cantly

di�erent from the others, presenting much larger oscillation periods and lower peaks

than k = 1. The asymptotic value is reached for t = 100, as it is expected from the

G graph.

This periodic transient attenuates or completely disappears, as in the previous

graph, for lower values of k. These pressures reach the asymptotic state for signi�cant

characteristic times until t = 200, not shown here.

For Re = 100 then a good correlation between the two quantities is found and it is

possible to con�rm that, at this low Reynolds number, a stable state �ow is present.

Pressures, indeed, for each changing k parameter, go to an asymptotic value, which

represent an indication of stability.

Finally, for this con�guration, pressure �eld bidimensional surfaces are shown in

�gure 44 in order to give a qualitative idea of the region under analysis.

Equal and signi�cant oscillating trends are shown for pressures along x and z

directions, whereas along y the pressure cancels out away from the wall. Strong

oscillating perturbative pressure waves then pass obliquely through the x, y plane

with lower intensities going away from the wall.
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(a) (b)

(c)

Figure 44: Pressure �eld bidimensional surfaces on x − y (a), x − z (b), y − z (c)
planes at k = 1 and t = 60, for θ = 30o , ϕ = 45o , β = 1 and Re = 100 con�guration.
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The second con�guration to be analysed is:

2. θ = 60o , ϕ = 90o , β = 1 for Re = 5000

It is chosen basing on the ampli�cation factor G diagram, for this �ow scheme,

presented in �gure 45 (a) below.

(a) (b)

Figure 45: Temporal development of G (a) and p̃ (b) for 900 characteristic time,
at �xed spatial point, x = 10, y = 10, z = 3, on varying wavelength number k, for
θ = 60o , ϕ = 90o , β = 1 and Re = 5000 con�guration..

As it is expected to be, the graph shows, for k = 0.02 ÷ 1, an increasing trend,

related to a certain instability in time of the �ow. The ampli�cation factor continues

to increase for many characteristic times, t = 900 in this simulation, and does not

reach an asymptotic value. This is due to combined e�ects of Re = 5000, that, as

said before, identi�es an unstable �eld, and the increasing of obliquity and cross�ow

angles, ϕ and θ, toward extreme values. For k = 0.6, the G curve signi�cantly and

suddenly increases, immediately showing an strong ampli�cation. For high wave-

length numbers from k = 1.2 to k = 1.6, lower values of energy are reached and a

transient growth characterizes the initial behaviour. For k = 0.06 and k = 0.1, G

slower goes toward instability state. For k = 1, the G �rst grows and then reaches a

mean value around which it �uctuates slowly decreasing its amplitude.
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Also for this con�guration, �gure 45 (b) shows a good correlation with ampli�-

cation factor curves, on varying wavelength number k. Pressure curves related to

intermediate and great wavelengths, with respect to the time, diverge and tend to

progressively reach higher values. These con�gurations reveal an unstable behav-

ior in time, hich could be symptomatic of a �turbulence blast�. According to this

conjecture, the increasing periodic temporal trend of the pressure is meaningful and

lead to a great increase of pressure perturbative values. As one can notice, the limit

behaviours mentioned above, for k = 1 and k = 0.6, are signi�cant in this graph,

as they presents realy elevated oscillation periods and amplitudes; the �rst one also

shows the same behaviour seen for G, since it reaches an unstable oscillation trend,

which tends to signi�cantly increase in time. All the lower wavelength numbers

than k = 1 presents stable behaviours, reaching the asymptotic zero value for time

between t = 300 ÷ 900. Since, for k = 0.6, a sudden increase toward a very high

maximum point is shown, the pressure related to this wavelength could be the most

unstable for this �ow. Very low wavelength numbers, k = 0.02 and k = 0.06, lead to

higher oscillation periods and lower amplitudes of the pressure curves, because, as

G graph shows, they become unstable after few temporal scales.

Moreover, it is to note that maximum and minimum points for perturbative

pressure come before than those related to G. This delay of energy with respect

to pressure is noticed in every implemented simulation. This phase delay can be

justi�ed by the fact that, increasing the perturbative pressure �eld, the energy �eld

could perceive this variation at few istants laters.

Finally, as far as intermediate and higher wavelength numbers are concerned, it

can be say that pressure trend in time re�ects the unstable and diverging behaviour

we are waiting for. So the �eld related to Re = 5000, great obliquity and cross�ow

angles and medium-low wavelengths, can be de�ned unstable.

Pressure curves along x, y and z coordinates are now shown in �gure 46, 47

and 50 in order to remarke di�erences with the stable con�guration analysed at the

beginning of this section.

The �rst thing to note is that the curves along x direction, �gure 46, are not af-
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fected by the disturbance introduced, as it is expected, because now the perturbative

wave enters the cross�ow boundary layer with an obliquity angle ϕ = 90o causing

a perturbative component only along the direction orthogonal to the streamline.

Moreover, higher values are shown for higher wavelength numbers, as the previ-

ous con�guration, whereas lower wavelength numbers lead to negative perturbative

values.

Figure 46: Pressure pro�les along x, with �xed y = 10 and z = 3 on varying
wavelength number k, at characteristic time t = 40, for θ = 60o , ϕ = 90o , β = 1
and Re = 5000 con�guration.

In �gure 47 (a), perturbative pressure curves along z direction are shown. In this

case, the pressure curves are strongly a�ected by the disturbance introduced, since

they have the typical oscillating trend around a mean value. The oscillation ampli-

tudes and periods increase with the decrease of the wavelength number For instance,

for k = 0.1, perturbative pressure presents an higher point for about p̃ = 0.075, lower

than the maximum for Re = 100 and ϕ = 45o. Lower values of wavelength num-

bers lead to increasing oscillation amplitudes and periods, as previous con�guration.

Figure 47 (b) shows how pressure amplitudes for small wavelength disturbances are

one or two orders of magnitude lower than the higher one and present very short

oscillation periods.
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(a) (b)

(c)

Figure 47: Pressure pro�les along z, with �xed x = 10 and y = 10 (a), on varying
wavelength number k, and enlargements (b,c), at characteristic time t = 40, for
θ = 60o , ϕ = 90o , β = 1 and Re = 5000 con�guration.

Then introducing the perturbative wave in the direction perpedicolar to the

streamlines, it mostly a�ects that direction and the e�ect on the longitudinal di-

rection is almost void. This is what it is expected for this con�guration and pressure

pro�les prove it.

Pressure pro�les along y coordinate are now shown for three di�erent �xed char-
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acteristic times, t = 15, t = 40, t = 95 with enlargements focused on their behaviours

at the wall in �gure 50 (1a, 2a, 3a and 1b, 2b, 3b). First velocities ũ(y) and w̃(y)

along direction orthogonal to the wall are presented in �gure in order to give an idea

of the three-dimensional perturbative velocity pro�le.

Pressure pro�les along y direction orthogonal to the wall are not so di�erent from

the previous con�guration, showing lower values for lower wavelength numbers, that

correspond to higher wave lengths, while higher k present more signi�cant values

at wall than before. Proceeding in time, perturbative pressure increases its values

inside the boundary layer, as it is expected, due to the �pressure blast�.

Changes in pressure gradient signs take place more frequently, also for longer

wavelehgth, since initial times, as t = 15. The maximum points induced by this

variations increase signi�cantly in time, for wavelengths from k = 0.6 to k = 1.2,

reaching both negative and positive values due to their temporal oscillations. At

t = 95, some of this maximum values overtake the pressures ralated to longer wave-

lengths. Only for k = 0.06 and k = 1.6 a decrease of their value is noticed, probably

suggested a damping of the perturbative pressure in the second case, whereas a

translation toward negative value is expected for the �rst one.

As far as the perturbative pressure pro�les thicknesses are concerned, these do

not change in time, but their di�erent spatial values are related to the wavenumber

considered, as, in general, its decrease lead to more elavated thicknesses. Making a

comparison between �gures 48, 49 and 50, it is easy to note that the thicknesses of

perturbative pressure and velocity pro�les are smaller than the ones of perturbative

pressures and the velocity pro�les related to Re = 100 con�guration seen previously.

This can be related to the fact that the di�usive component inside the boundary

layer is higher when Re = 100 and leads to larger thicknesses for the pro�les than

Re = 5000. On the other hand, as written before, the increase of Reynolds number,

together with the previous thickness decrease, leads to greater amplitudes of pressure

values than Re = 100.
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(1a) (1b)

(2a) (2b)

Figure 48: Spatial evolution along y-axis of velocity ṽ = ṽ(y), ṽ = ṽ(y), w̃ = w̃(y)
and pressures p̃ = p̃(y) (1b, 2b) at times t1 = 25 (1a, 1b), and t3 = 95 (2a, 2b), for
x = 10, z = 3 and k = 0.06.
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(3a) (3b)

(4a) (4b)

Figure 49: Spatial evolution along y-axis of velocity ṽ = ṽ(y), ṽ = ṽ(y), w̃ = w̃(y)
and pressures p̃ = p̃(y) (1b, 2b) at times t1 = 25 (1a, 1b), and t3 = 95 (2a, 2b), for
x = 10, z = 3 for k = 1.6.
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(1a) (1b)

(2a) (2b)

(3a) (3b)

Figure 50: Spatial evolution of pressure p̃ = p̃(y) at times t1 = 25 (1a), t2 = 60 (2a)
and t3 = 95 (3a), for x = 10 and z = 3, enlargements at wall (1b, 2b, 3b).
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Finally, for this con�guration, pressure �eld bidimensional surfaces are also shown

in �gure 51 giving a representation of the pressure �eld at Re = 5000 all over the

computational domain.

(a) (b)

(c)

Figure 51: Pressure �eld bidimensional surfaces on x − y (a), x − z (b), y − z (c)
planes at k = 1 and t = 60, for θ = 30o , ϕ = 45o , β = 1 and Re = 100 con�guration.

The oscillating perturbative pressure wave now goes through the boundary layer

along the cross z-direction respect to the streamlines, as it can be clearly noticed,

while it is steady along the longitudinal direction. This fact con�rms the steatments

reported before.
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4.2.2 Variation of obliquity angle ϕ

In this paragraph, the e�ects of the variation of obliquity angle ϕ on the perturbative

pressure �eld are shown and investigated. Basing on con�guration listed at the

beginning of the section, the con�guration to be analysed is:

• θ = 60o , k = 0.4 , β = 1 for Re = 5000.

Observing which obliquity angle values leads to instability in the cross�ow bound-

ary layer is one of the main goals of following simulation.

First of all, the comparison between ampli�cation factor G and pressure curves

with respect to time is shown in �gure 52, as done in previous section.

(a) (b)

Figure 52: Temporal development of G (a), and p̃ (b) for 400 characteristic time, at
�xed spatial point, x = 10, y = 10, z = 3, on varying obliquity angle ϕ, for θ = 60o ,
k = 0.4 , β = 1 and Re = 5000 con�guration..

The ampli�cation factor graph, in �gure 52 (a), shows di�erent behaviours by

varying the obliquity angle ϕ. In particular, if the perturbation is introduced with a

zero angle with respect to the streamline, ϕ = 0o, the G presents only a weak initial

transient growth and becomes asymptotically stable at t = 20. For ϕ = 45o, the G

curve presents a slightly higher growth but reaches the stability state at t = 300,
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when the perturbation blows over, with a maximum of energy at about t = 90, but

not very elavated. On the contrary, being these previous con�gurations stable, the

third, related to ϕ = 90o, is strongly unstable and reaches progressively higher values

of the ampli�cation factor. For this obliquity angle, G presents a divergent trend

without any initial oscillating transient growth.

In order to �nd a correlation with the ampli�cation factor trends, a second graph

is shown, in �gure 52(b), that is the perturbative pressure p̃ curve with respect to

time, where p̃ is referred to a initial reference pressure prif in order to better compare

the two quantities.

It is easy to notice that, along 400 characteristic time, the trends expected from

the graph of G is con�rmed, as longitudinal and oblique disturbances cause a very

low pressure increase until t = 300 when they reach the asymptotic state, whereas

orthogonal waves generate a diverging oscillatory pressure trend along time reaching

progressively higher maximum points.

This obliquity angle value ϕ = 90o can be so related to the instability growth

and the pressure curves seems to be indicators of a stable or unstable state, being

well-interrelated with the ampli�cation factor G. The ampli�cation factor in turn

gives an hint about either the growth or the decrease of the pressure �eld in time.

As it is expected, cross waves are the most dangerous because they lead quickly to

an explosion of the pressure, which continue to increase reaching very high values.

The last fact to note is that the higher points of the perturbative pressure an-

ticipate the ones of the ampli�cation factor, as the pressure have the �rst maximum

point at t = 40, whereas G at t = 90 for ϕ = 45o.

As far as the spatial developments along x, y, z are concerned, �gures 53 and 54

are presented.

First, in �gure 53 (a), the curve of perturbative pressure along x direction, at

t = 60, is shown, by varying the obliquity angle. The domain is not completely drawn

because, as one can note, the oscillatory behaviour tends to periodically repeat itself

along all the computational �eld and it is more simple observing a certain region for

the analysis of the parameters e�ects.
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(a) (b)

Figure 53: Pressure pro�les along x, with �xed y = 10 and z = 3 (a), and along z,
with �xed x = 10 and y = 10 (b), on varying obliquity angle ϕ, at characteristic time
t = 60, for θ = 60o , k = 0.4 , β = 1 and Re = 5000 con�guration.

The graph con�rms what is expected by varying ϕ, that is a progressive instability

caused by the increase of the obliquity angle, the disturbance is introduced with in

the three-dimensional boundary layer, along z direction (b), and by the ϕ decrease,

along x direction (a). The increasing instability is well highlighted both along x and

z coordinate, �gure 53 (b), , for ϕ = 90o, which represents an orthogonal wave and

it is expected to be the most destabilizing along this direction. At the same time,

lower values of ϕ cause oscillations in the pressure �eld along x, where the ϕ = 90o

pressure tends to be costant. On the other hand, along z direction, ϕ = 0o pressure

become costant, but with an amount slightly higher than zero.

However, it is to noticed that pressure, for ϕ = 0o along x and for ϕ = 90o along

z, presents lower oscillation amplitudes and periods than for ϕ = 45o, which seems to

more a�ect both the directions, validating what has been observed in section 4.2.1.

Finally, it is important to observed the pressure pro�les along y direction, which

is a very meaningful coordinate for the boundary layer. Graphs are drawn for three

di�erent �xed time, t = 25, t = 60, t = 95, and x, z coordinates in order to analyse

the pressure development at di�erent istants.
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Thanks to the enlargements of the domain, �gure 54 (1b, 2b, 3b), one can notice

that p̃ cancels out for y = 5 ÷ 7 at all the times in the ϕ = 90o con�guration,

whereas the others present a zero value for y = 3. When the perturbative pressure

p̃ tends to zero value it means that the disturbance fully dissolves going outside the

boundary layer where, if the base �ow pressure value P is superimposed, the mean

�eld pressure quantity must be found.

The main changes, �gure 54 (1a, 2a, 3a), on varying the obliquity angle, are

noticed for the pressure values at wall and for the sign of maximum points from

time to time. The greatest values of perturbative pressure are shown for ϕ = 90o

again, which generate important growths inside the bounadry layer, leading to peaks

about 2 ÷ 4% higher or lower than the mean reference quantity. Furthermore, it is

to note that p̃, for a cross wave, oscillates from positive p̃ = 0.3 at t = 25 to negative

p̃ ≃ −0.3 to t = 60, until an higher negative value of p̃ ≃ −0.45 reaching 100

characteristic times; this con�rms that the �ow is increasingly reaching an unstable

state. At t = 60, �gure 54 (b), a sudden change in pressure gradient ∂p̃/∂y is noted

and may be necessary to carry back pressure to outer value.

Decreasing the obliquity angle ϕ, instead, signi�cant changes in pressure are

mainly noted at t = 25, when the perturbation is strongly developed for this con�g-

urations. For ϕ = 45o the pressure at wall is 15% higher then the asymptotic value.

On contrary, at t = 95 perturbative pressures almost null, since they have reached

their temporal asymptotic state.
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(1)

(2)

(3)

Figure 54: Spatial evolution of pressure p̃ = p̃(y) at times t1 = 25 (1), t2 = 60 (2)
and t3 = 95 (3), for x = 10 and z = 3.
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4.2.3 Variation of cross�ow angle θ

The e�ects of the variation of cross�ow angle θ on the perturbative pressure �eld are

now shown and investigated. Basing on con�guration listed at the beginning of the

section, the con�guration to be analysed is:

• ϕ = 45o , k = 0.4 , β = 1 for Re = 5000.

This analysis is very similar to the previous one and is achieved in order to com-

prehend how the θ characteristic parameter, linked to cross�ow streamwise direction,

could a�ect the pressure �eld, in time and space, and if could lead to an unstable

state, in term of pressures, as disturbances obliquity angleϕ.

The same scheme of analysis is followed again starting from the ampli�cation

factor G graph, which gives an information about either the growth to an unstable

state of the �ow or the achievement of an stable state. In �gure 55 below a comparison

between the G and p/prif is presented.

(a) (b)

Figure 55: Temporal development of G (a), and p̃ (b) for 100 characteristic time, at
�xed spatial point, x = 10, y = 10, z = 3, on varying cross�ow angle θ, for ϕ = 45o

, k = 0.4 , β = 1 and Re = 5000 con�guration.
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For the considered con�guration corrisponding to an intermediate wavelength

k = 0.4 and perturbation introduction angle ϕ = 45o, increasing θ, the ampli�cation

factor progressively tends to a growing initial transient growth. In �gure 55 (a) this

is clearly drawn, as, forθ = 30o and θ = 45o, G after an higher point begins to decade

toward an asymptotic state, that is the typical transient growth behaviour toward

the stability condition, whereas, for θ = 60o, when the �ow is strongly inclined, G

maximum point becomes doubly greater than the previous θ = 45o value. In general

the variation of the cross�ow angle leads the G maximum point to increase twice

and the transient behavior to grow.

This behaviour is noticed also in the p/prif temporal diagram in �gure 55 (b),

in which curves for θ = 30o and θ = 45o di�erently tend to the stable asymptote,

characterizing the annulment of the perturbation, for t = 300 ÷ 400, while θ =

60o clearly leads the pressure toward a greater oscillating transient, which presents

oscillating pressures for longer time, until t = 700. However, also this cross�ow angle

value is related to stability, since it reaches the asymptotic mean zero quantity for

long times.

As far as the maximum points are concerned, also in this simulation it is to notice

that the ones concerning the pressure temporal curves are shown, at t = 40 ÷ 50,

before the peaks of G, at t = 60÷70 and t = 100÷110. Moreover, higher maximum

points are shown for θ = 60o, even if they are progressively smaller in time, and in

general increasing cross�ow angle θ leads to higher maximum and lower minimum

points respectively. For θ = 30o and θ = 45o, maximum variations in perturbative

pressure correspond to about 4% and 6% with respect to the asymptotic value,

respectively. Not only the amplitude of oscillating pressures increases, but also their

oscillating periods, leading to progressively longer transient times until an instability

behaviour.

This �rst comparison completely con�rm what it is expected on varying the

cross�ow angle, since the in�uence of θ on the perturbative pressure is very close

to that of the obliquity angle ϕ, even if it do not lead to the pressure blast and

instability state; in general, however, combined extreme values of these angles lead
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to a diverging pressure temporal trend. For instance, two unstable con�guration

have been noticed in the numerical simulations of both θ = 30o, ϕ = 0o and θ = 60o,

ϕ = 90o con�gurations, which will be further investigated in the next chapter.

In order to validate this statement the spatial behaviour of perturbative pressure p̃

is now analysed. In �gure 56 pressure developments along x (a) and z (b) coordinates

are drawn.

(a) (b)

Figure 56: Pressure pro�les along x, with �xed y = 10 and z = 3 (a), and along z,
with �xed x = 10 and y = 10 (b), on varying obliquity angle ϕ, at characteristic time
t = 15, ϕ = 45o , k = 0.4 , β = 1 and Re = 5000 con�guration.

The pressure trends along both directions being equally a�ected since an interme-

diate obliquity angle ϕ = 45o is taken into account, the graphs are similar presenting

the typical oscillating trend around a mean value. The oscillations of perturbative

pressure around the mean value, instead, are equal and reach the same maximum

and low points in both directions. As for the temporal evolution, the e�ects of the

cross�ow angle on pressures along x and z directions cause a growth in oscillating

amplitude, but not in spatial periods. Increasing the cross�ow angle higher pertur-

bative values are reached, until about 0.015 respect to mean value, but changes seem

to be not really signi�cant.
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Finally, pressure development along the direction orthogonal to the wall is in-

vestigated, �gure 57. The simulations are made again for three di�erent �xed times

t = 15, t = 40 and t = 95, that is when the disturbance is completely developed and

almost disappeared respectively.

As for other simulations, perturbative pressure p̃ shows oscillations from negative

to positive values developing in time and this fact is noticed in this one too.

Focusing on e�ects of changing in cross�ow angel θ, the usual increase or decrease

in maximum or minimum values is shown, when this angle is increased or decreased

respectively. For instance, higher pressure values take place for θ = 60o as it is

expecetd. These maximum values decrease signi�cantly at t = 95, even if it preserves

a certain variation in its values. Pressures present changings in slope at every oserved

time and for the lowest cross�ow angle θ = 30o pressure quantities are very small.

Moreover, it is to notice that the disturbance of the pressure cancels out, along

y coordinates, at y = 15 at all the times, so θ does not a�ect the reaching of the

symptotic value along y coordinate.

Finally, it can be said that the cross�ow angle θ a�ects the pressure �eld leading

it to instability state, but variation, on vaying θ, are less signi�cant than the e�ects

of other characteristic parameters. For certain con�gurations, called �extreme� in

this section, as θ = 30o, ϕ = 0o and θ = 60o, ϕ = 90o, the instability is shown,

leading to a progressive increase in pressure along time and higher maximum and

minimum values.
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(1)

(2)

(3)

Figure 57: Spatial evolution of pressure p̃ = p̃(y) at times t1 = 15 (1), t2 = 40 (2)
and t3 = 95 (3), for x = 10 and z = 3.
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4.2.4 Variation of pressure gradient β

In this last paragraph, the e�ects of the variation of pressure gradient β on the

perturbative pressure �eld are now shown and investigated. Basing on con�guration

listed at the beginning of the section, the con�guration to be analysed is:

• θ = 30o , ϕ = 0o , k = 0.1 for Re = 5000

First, the comparison between the ampli�cation factor G and the p/prif(t) graphs

is shown, by varying the pressure gradient β from a negative value, β = −0.1988,

related to a positive pressure gradient ∂p/∂x > 0 along x axis and so to decelerated

destabilized �ow, to a positive value, β = 1, related to an accelerated, being ∂p/∂x < 0,

and stabilized �ow. This fact is well-rendered in �gure 58 (a) and (b), where the

trends of both quantities diverge for di�erent β.

(a) (b)

Figure 58: Temporal development of G (a), and p̃ (b) for 100 characteristic time, at
�xed spatial point, x = 10, y = 10, z = 3, on varying pressure gradient β, θ = 30o ,
ϕ = 0o , k = 0.1 and Re = 5000 con�guration.

In particular, for 300 characteristic times considered, negative pressure gradient

leads to instability, as it can clearly seen in �gure 58 (a), since the related curve
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goes toward a progressive higher value, whereas a positive value of β presents an

asymptotic stable state for G, that slightly changes respect to its initial value, as

shown in in �gure 58 (a) enlargement. These trends are shown also for the pressure

development in time, �gure 58 (b), for a �xed spatial coordinate. A negative pres-

sure gradient leads to a strong growth of the perturbative pressure, which tends to

progressive higher values. An oscillation near t = 100 is noticed, which causes an

high maximum point of the pressure, about 15% higher than the asymptotic condi-

tion. This higher point, as it is expeceted, only anticipates a further pressure growth

at longer simulation characteristic times, t = 300. A positive pressure gradient, in-

stead, quickly takes the pressure to extinguish, at about t = 300, as seen for G, and

variation around the mean value are really lower than the negative pressure gradient

con�guration. For the �rst case, the transient is characterized by a strong increasing

trend, while the second presents an almost steady value at the beginning and then,

from t ≃ 25 to t = 70, the pressure decays to very low quantities.

The destabilizing e�ect of a negative β, which leads the �ow to decelerate along x

direction, is so �rst con�rmed from this analysis. Pressure �eld greatly grows under

the e�ects of this positive pressure gradient, causing a strong deceleration which

makes the �ow unstable. A positive β, instead, helps the �ow to become stable,

damping in time the perturbative pressure.

As far as the pressure development along x and z coordinates are concerned,

�gure 59 (a) and (b) respectively are introduced.

It is to notice that, for this particulare con�guration, where disturbances are

lengthwise introduced into a �ow with a very small cross�ow angle, oscillations are

present only along the longitudinal direction, but not along cross-direction.
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(a) (b)

Figure 59: Pressure pro�les along x, with �xed y = 10 and z = 3 (a), and along z,
with �xed x = 10 and y = 10 (b) on varying pressure gradient β, at characteristic
time t = 15, for θ = 30o , ϕ = 0o , k = 0.1 and Re = 5000 con�guration.

The graph in �gure 59 (a) precisely shows the perturbed direction and pressure

has the typical oscillating trend, which changes only in phase and slightly in ampli-

tude, but not in period. In particular, β = 1 pressure has a phase delay with respect

to the one for β = −0.1988. On contrary, pressure along z coordinate, �gure 59 (b),

does not present oscillations, but only a translation of perturbative pressure steady

value caused by its phase delay for a �xed x, y point by varying β.

Finally, pressure curves along y direction are shown at three �xed times t = 15,

t = 40 and t = 95 and �xed coordinates, x = 10 and z = 3.

At t = 15, �gure 60 (a), perturbative pressures, by varying β, present similar

pro�les, except for the starting values close to the wall, where pressure for β =

−0.1988 has a lightly lower value.

At t = 40, �gure 60 (b), pressure pro�les are very di�erent since β = −0.1988

leads pressure to a lower negative starting value, p̃ = −1 and to cover a larger

position of the y domain, y ≃ 70, to reach the asymptotic null state, when it cancels

out. On the other hand, for β = 1, the variation along y direction and starting value

are signi�cantly reduced, as seen in �gure 58 (b).
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(a)

(b)

(c)

Figure 60: Spatial evolution of pressure p̃ = p̃(y) at times t1 = 15 (a), t2 = 40 (b)
and t3 = 95 (c), for x = 10 and z = 3, on varying pressure gradient β, for θ = 30o ,
ϕ = 0o , k = 0.1 and Re = 5000 con�guration.
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At t = 95, �gure 60 (c), pressures for the two con�gurations completely diverge,

since, for β = 1 and higher characteristic times, pressure continues to oscillate around

a value very close to zero, positive here, whereas for β = −0.1988 pressure reaches a

lower negative starting value diverging progressively in time.

The pressure gradient parameter so can a�ect the pressure �eld and lead to an

�explosion� of its values, causing instability phenomena. This fact is well-rendered

if the temporal development of perturbative pressure is observed, but also along y

ccordinate the pressure shows signi�cant changes, on varying β. Ultimately it has

been noticed and proved that a positive pressure gradient, β = −0.1988, greatly

a�ects the pressure �eld and causes an instability state for the �ow. Because of

that, this case will be taken into account in the next chapter, where two unstable

dimensional con�gurations will be analysed in order to investigate the e�ects of the

superimposition of this perturbative pressure �eld on a dimensional pressure mean

�eld.
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5 Mean and perturbative pressure �eld dimensional

analysis

In the previous chapter, the dimensionless perturbative pressure �eld has been inves-

tigated, by varying di�erent characteristic parameters, in order to understand how

the introduced disturbances rule the perturbative pressure a�ecting the cross�ow

boundary layer. This kind of analysis has been achieved as dimensionless because it

was easier to compare di�erent characteristic parameters e�ects on the perturbative

�ow in that way. Moreover, only the perturbative pressure �eld has been taken into

account and no mean �eld, related to the base �ow, has been added, refering all

quantities to a null mean value.

In this chapter, the mean pressure �eld is introduced and added to the pertur-

bative �eld. Furthermore, these two �elds are made dimensional in order to achieve

real and functional pressure quantities. This investigation can be useful not only in

the context of �uid dynamics, but also for structural and aeroelastic applications,

since real physical values will be given.

5.1 Dimensional problem

As written in section 3.2, the total pressure �eld is given by the superimposition of

mean and perturbative �elds, as:

p = P + p̃

where p is the total �eld pressure, while P and p̃ are the mean �eld and per-

turbative �eld pressures respectively. It is assumed that P is only depending on x

coordinate, being steady on y and z directions:

P = P (x)

whereas is well-known that the perturbative pressure is p̃ = p̃(x, y, z, t).
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Thus, P depends only on the x-coordinate and this will be the assumption used

in the following analysis for the base �ow pressure �eld.

Moreover, in chapter 4, precisely in section 4.2.3, it has been noticed that two

simulations are to be considered very unstable, that is θ = 30o, ϕ = 0o and θ = 60o,

ϕ = 90o. These con�guration will be now presented through dimensional quantities

and it is expected that they could a�ect the mean pressure �eld the most. From

the previous chapter, furthermore, it has been found that a negative β, linked to a

positive pressure gradient along x-axis, causing a deceleration of the �ow, can mostly

improve the growth of the perturbative pressure �eld. The value β = −0.1988 is then

also taken into account together with the ones reported above, since the goal of the

dimensional analysis is to observe the e�ects of the most destabiling perturbative

pressure waves on the base �ow.

It is to notice, �gure 61, that if an airfoil is considered, β = −0.1988 matches the

pressure gradient at 50% of the airfoil chord, where the pressure is increasing, while

the velocity decreases. This is the spatial point ehere we put the origin of x-axis for

the following con�gurations. It is assumed that, starting from this point, the mean

pressure increases up to the trailing edge, where it reaches the �xed pressure outer

value.

Figure 61: Generic airfoil taken into account in the numerical simulation with shown
pressure gradients and simulation domain.
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In particular, this analysis is refered to an airfoil of about 1m chord, in�nite

spanwise and dipped into a zero-level standard enviroment :
p∞ = 1 atm = 101350Pa

ρ∞ = 1.225 kg/m3

ν = 1.5 · 10−5 m2/s

These can be the conditions of an experimental test implemented in a medium-

size wind tunnel at Tamb with free �ow speed U∞ related to the chosen Reδ∗ = 5000,

that is:

U∞ =
Reδ∗ν

δ∗
= 210.4626 m/s ≃ 757.665 km/h

So the mean pressure pro�le along x coordinate, having an increasing trend, must

reach the outer value, p∞ = 10135Pa, at trailing edge, which takes place 0.5m far

from the starting simulation point at x/c = 0.5.

The mean pressure then must have an increasing trend along x and this is reached

by the introduction of the approximation suggested by Rosenhead [10] for a steady

�ow inside a boundary layer on a revolutionary surface near the stagnation point.

The base idea is to introduce a series expansion along x coordinate for the velocity

of the base �ow:

U(x) = u1x+ u2x+ u3x+ ...

which can reduce as:

U(x) = Umx
m

where the reference velocity is Um = U∞in this speci�c case and x is the spatial

variable used in the actual numerical simulation. Them parameter is, instead, linked

to the pressure gradient parameter β as:

123



β =
2m

m+ 1

and, for β = −0.1988, m = −0.0904, while m = 1 for β = 1.

This expression of U(x) can be introduce in the Bernoulli formulation in order

to make the pressure gradient along x direction explicit, as shown below:

∂P

∂x
= −ρU ∂U

∂x

∂P

∂x
= −ρU2

∞mx
2m−1

and through the integration of this expression, the dependence of the mean �eld

pressure P on x coordinate is obtained:

P (x) = −ρU2
∞x

2m + c

where the integration costant c can be achieved �xing a boundary condition, that

is related to the free stream pressure value at the end of the airfoil. As said above, the

pressure is assumed to be equal to its outer value when the x coordinate is exactly

at x = 0.5m, starting from x/c = 0.5. So the boundary condition introduced is:

P (xt.e.) = p∞

In this way the pressure of the base �ow tends to its outer value at the end of the

computational domain, as it will be observed next in the graphs showing the trend

of mean pressure �eld along x axis.
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5.1.1 Dimensional quantities

As far as the simulation quantities are concerned, perturbative pressures are made

dimensional, basing on formulations given at the beginning chapter 4, with respect

to the characteristic quantity ρU2
∞ and become:

p̃dim[Pa] = p̃ · ρU2
∞

On the other hand, time tdim is made dimensional as:

tdim[s] = t · tcar

where tcar is:

tcar =
δ∗

U∞
= 1.69 · 10−6 s

In the formulations above, as in in the previous paragraph, U∞ is achieved from

the linked Reynolds number Reδ+ = 5000, being the value of displacement thickness,

δ∗, of the boundary layer well-known. This can be obtained from [11]:

δ(x) ≈ 4.99 · x√
Rex

where Rex = (Reδ∗/1.72)2 and x is taken �xed at x/c = 0.5. So the thickness of the

boundary layer is:

δ(0.5c) ≈ 0.00086 m

and then:

δ∗(x) ≈ 0.346 · δ(x)
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which is, at x/c = 0.5:

δ∗(0.5c) ≈ 0.0002975 m

Now x, y, z coordinates can be made dimensional with respect to δ∗(0.5c) as:
x[m] = x · δ∗(0.5c)

y[m] = y · δ∗(0.5c)

z[m] = z · δ∗(0.5c)
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5.2 Simulation results

This is the actual chapter main section, as section 4.2 was in the previous one. In

order to compute the total pressure �eld numerical simulation on matlab are newly

implemented superimposing the dimensional perturbative pressure �eld, dimension-

less analysed in section 4.2, to the mean pressure �eld of the base �ow, as explained

above. This methodology refers to themethod of small disturbances described

in section 2.2.1, which introduces small disturbances in a mean �eld and leads to

compute the total �eld quantities.

In particular, two �ow con�gurations, as written previously, are taken into ac-

count, since they are unstable:

1. θ = 30o, ϕ = 0o , β = −0.1988 , Re = 5000

2. θ = 60o, ϕ = 90o , β = −0.1988 , Re = 5000

Both the cases are computed for four di�erent values of wavenumber k, being this

the characteristic parameter a�ecting the most the cross�ow boundary layer stability

and pressure trends:

k = [ 0.06 , 0.4 , 1 , 1.6 ]

First of all, for both �ow typologies, the graph related to mean �ow pressure,

costant along y, z and varying only along x-coordinate, is shown with the graph show-

ing the superimposed perturbative pressure. Then total pressure �eld behaviours,

in space and time, are drawn mainly in order to give an idea of orders of magnitude

caused by the disturbances introduction. It is important to remember that, since

destabilizing perturbative �ow con�guration have been identi�ed in previous para-

metric analysis, now the focus is on the trends and achieved real values of the total

pressure �eld.

The numerical simulations are investigated up ahead.
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5.2.1 Simulation for θ = 30o, ϕ = 0o , β = −0.1988 , Re = 5000

As it has been said at the beginning of the chapter, mean pressure P changes only

along x-coordinate with a positive pressure gradient ∂P/∂x > 0, at �xed x/c = 0.5,

which identi�es an un-favorable contribution to stability, up to the end of the con-

sidered airfoil section 1m long. This trend is very clear in �gure 62 (a), where the

pressure increases until the freestream pressure atmosferic value.

(a) (b)

Figure 62: Mean pressure (a) and superimposed perturbative pressure (b) along x-
coordinate, belonging to 0.5m long computational domain and starting from x/c =
0.5, for θ = 30o, ϕ = 0o , β = −0.1988 and Re = 5000, with �xed x = 10 = 3.46mm,
z = 3 = 1.04mm and initial t ≈ 1.69 · 10−5 s.

Alongside of the mean pressure graph, the superimposed perturbative pressure

is drawn in �gure 62 (b). As it can be noticed and expeceted, the greater distur-

bances are shown for higher wavelengths, k = 0.06, both in terms of ampltudes and

oscillation periods, even if these perturbative pressures are one order of magnitude,

p̃ ≥ 6000Pa, lower than mean pressures, P = 7, 5 · 104 ÷ 10, 135 · 104. Shorter

wavelengths are even lower, p̃ ≈ 1000Pa, and expected to less a�ect the mean �ow.

Finally, for k=1.6 the disturbe is very small, as it slightly �uctuates around the mean

value.

Basing on these conjectures, the results about the total pressure �eld are now
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shown. In �gure 63, the total pressure p along x-coordinate with �xed y, z are drawn

and the expected e�ects are now observed.

(1) (2)

Figure 63: Total �eld pressure p along x-coordinate with �xed y = 10, z = 3 and
initial t, (1) and enlargement close to the computational starting point for x =
0÷ 0.07m (2) for θ = 30o, ϕ = 0o , β = −0.1988 and Re = 5000.

These results con�rm the signi�cant in�uence of longer wavelengths on the mean

pressure �eld. As it can be noticed high positive and negative variations, about

∆p = ±4000Pa ≈ ±0.039 atm, of the pressure are reached with respect to the mean

value and the oscillating trend equally repeats itself along all the computational

domain, until x = 0.5m, when it reaches the p = p∞. For k = 0.4, instead, changes

are more contained than before. The in�uence on the �ow and the oscillation period

have signi�cantly decreased. Proceeding toward smaller wavelengths, these do not

a�ect the mean �ow, as their disturbance values are really smaller than the mean

pressure �eld, and the base �ow pressure remains almost unchanged.

As far as the oscillation periods and the wavelengths are concerned, in �gure 63

(2) the enlargment of the region close to initial computational point clearly shows

lengths of the perturbative pressure waves of, that are for k = 0.06 and k = 0.4 2 cm,

for k = 0.06, and 5mm long, for k = 0.4, but their �uctuations around the mean

quantity are very di�erent, as said just above.
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The higher pressure values are obviously achieved close to the trailing edge of the

airfoil, where the increasing pressure gradient ∂P/∂x leads also pressure �uctuations

to signi�cantly increase. In this region pressure values of about p ≃ 10, 77 · 104 Pa
are achieved, representing an increase of ±0.1 atm with respect to the mean value,

which corresponds to an altitude variation of about 1000m.

Figure 64: Total �eld pressure along z-coordinate for θ = 30o, ϕ = 0o , β = −0.1988
and Re = 5000, with �xed x = 10 = 3.46mm, y = 10 = 3.46mm and initial
t ≈ 1.69 · 10−5 s.

In �gure 64 the pressure total �eld along z-coordinate is presented. As it is

expected from the previous chapter, this �ow tipology presents pressure �uctuations

only along x-direction, whereas p along z-axis is costant. This trend is then to be

considered less meaningful.

The pressure total �eld along the y direction orthogonal to the wall is now drawn

in �gure 65 (1a, 2a, 3a) with its respective enlargements (1b, 2b, 3b), taking into

account that mean pressure P does not change along this coordinate. For instance,

k = 0.06, related to one of the most unstable wavelengths, generates, just at small

characteristic times as t = 5 ≈ 8.5·10−6 s and t = 10 ≈ 1.69·10−5 s, a strong pressure

variation at the wall of about ∆p ≃ 10.000Pa ≃ 0.1 atm with respect to the mean

pressure outer value, while k = 0.4 leads pressure to lightly less signi�cant changes.
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(1)

(2)

(3)

Figure 65: Spatial evolution of pressure p = p(y) at characteristic times t1 = 5 ≈
8.5 · 10−6 s (1), t2 = 10 ≈ 1.69 · 10−5 s (2) and t3 = 95 ≈ 0.00016 s (3), for x = 10 =
3.46mm and z = 3 = 1.04mm. 131



It is to notice that only after t = 95 ≈ 0.00016 s, �gure 65 (3), for k = 0.06,

the pressure amount at wall have just been changing of about |∆p| ≃ 90.000Pa ≃
0.9 atm with respect to the mean value.

In general, increasing k, pressure variations become smaller. The shorter wave-

lengths, indeed, �rst slightly increase their related pressure quantities at wall and

then make them very small around the outer pressure value.

Observing then pressure pro�les thicknesses, it is to notice that these do not

change much proceeding in time, as they vary from y ≤ 2mm to y = 2 cm, for short

and long wavelengths respectively.

(a) (b)

Figure 66: Temporal development of total �eld pressure at a �xed point in space,
x = 10 = 3.46mm, y = 10 = 3.46mm, z = 3 = 1.04mm, on varying wavelength
number k, for k = 0.06 (a) and enlargement for k = 0.4 and k = 1.6 (b), for θ = 30o,
ϕ = 0o , β = −0.1988 and Re = 5000 .

Being this �ow con�guration, k = 0.06, unstable, a progressive and large increase

in pressure quantities along time is expected. That statment is con�rmed, indeed,

by the simulation of pressure total �eld temporal behaviour for a �xed x, y, z point

in the computational domain, shown in �gure 66.

It is important to notice that global pressure increases in time with an oscillating

behaviour. This pressure growth is related instead to the chosen unstable con�gura-
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tion leading to a strong variation |∆p| ≃ 7 · 106 Pa ≈ 16 atm around its mean value

only after t = 0.0065 s, for k = 0.06. Proceeding toward k = 0.4, pressure presents

a more contained increase with changes that come to about ∆p ≃ ±6 · 104 Pa ≈
0.6 atm.

The oscillation period for k = 0.4 is of ∆t = 0.6·10−4 s which is a very short time,

while pressure for k = 0.06 repeats itself after ∆t = 0.005 s, being the oscillation

time one order of magnitude higher.

Finally, it can be deduced that this great pressure oscillating growth, in time

and space, it is very dangerous both for aerodynamics and structural aspects, as

the turbulent �ow separation due to the strong decelaration of the �ow and aeroe-

lastic e�ects (�attering phenomenon) related to pressure �uctuations on the wing

respectively.

Pressure surfaces are shown below in �gure 67. As it can be seen, the wave enter-

ing the three-dimensional boundary layer is completely longitudinal and oscillating

along this direction very close to the wall, that is the boundary layer region. Proceed-

ing away from the wall, the oscillating trend of the pressure cancels out reaching the

outer free-stream pressure amount. Along z-axis no variation of pressure is shown.
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(a) (b)

(c)

Figure 67: Pressure total �eld bidimensional surfaces on x−y (a), x−z (b), y−z (c)
planes at initial time, for k = 0.06 , θ = 30o , ϕ = 0o , β = −0.1988 and Re = 5000
con�guration within a 2 cm long x-domain.
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5.2.2 Simulation for θ = 60o, ϕ = 90o , β = −0.1988 , Re = 5000

The last simulation presented is related to the highest characteristic angles achiev-

able, that is cross�ow angle θ = 60o and obliquity angle ϕ = 90o, which characterizes

a completely orthogonal wave. The hypothesis of positive pressure gradient along

x-coordinate stays valid.

Being ϕ = 90o linked to an orthogonal wave an in�uence of pressure disturbances

on the mean pressure �eld only along z-direction is expeceted and con�rmed by the

following �gures 68 and 69.

(1) (2)

Figure 68: Mean pressure (a) and pressure of total �eld after the superimposition of
perturbative pressure (b) along x-coordinate, belonging to 0.5m long computational
domain and starting from x/c = 0.5, for θ = 60o, ϕ = 90o , β = −0.1988 and Re =
5000, with �xed y = 10 = 3.46mm, z = 3 = 1.04mm and initial t ≈ 1.69 · 10−5 s.

As it can be seen in �gure 68, the mean pressure P increasing trend (a) does

not practically change along x-axis adding the perturbative pressure �eld (b). The

p is noted to be unchanged with respect to mean pressure �eld, as the perturbative

pressure pro�les do not vary along x coordinate.

On the other hand, in �gure 69, a signi�cant oscillating pressure trend in the total

�eld is clear, mainly for low and intermediate wavelengths, identi�ed by k = 0.06

and k = 0.1 respectively, as just analysed in section 4.2.1.
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Figure 69: Total �eld pressure along z-coordinate for θ = 60o, ϕ = 90o , β = −0.1988
and Re = 5000, with �xed x = 10 = 3.46mm, y = 10 = 3.46mm and initial
t ≈ 1.69 · 10−5 s.

The pressure here reaches low changes for k = 0.4, as the previous �ow tipology,

only about ∆p ≃ ±43Pa ≈ ±4.24 · 10−4 atm with respect to a mean value, at

x = 3.5mm, P = 80102Pa and a period of oscillation around the mean �ow of

z ≈ 2.8mm. Proceeding forward to higher x points, the greatest absolute pressure

quantities are achieved, exactly as the previous con�guration.

On the contrary, increasing the introduced wavelengths, for k = 0.1 and k = 0.06,

changes in pressure are ∆p ≃ ±766Pa ≈ ±7.56 · 10−3 atm and ∆p ≃ ±1135Pa ≈
±1.1 · 10−2 atm respectively. For k = 0.1, oscillation period is of about z ≈ 2.2 cm,

while for k = 0.06 period increases to z ≈ 3 cm.

These changes in pressure with respect to the mean value seem to be less sig-

ni�cant than the ones observed in the previous �ow tipology, which a�ects only

pressure along x-axis. For istance, variations ∆p here results four times lower than

the changes obtained for the longitudinal wave. This may be related to a certain loss

of e�ectiveness of the pressure disturbances if crosswise perturbations with respect

to the streamlines are introduced inside the boundary layer.
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(1a) (1b)

(2a) (2b)

(3a) (3b)

Figure 70: Spatial evolution of pressure p = p(y) at characteristic times t1 = 5 ≈
8.5 · 10−6 s (1a), t2 = 10 ≈ 1.69 · 10−5 s (2a) and t3 = 95 ≈ 0.00016 s (3a), x = 10 =
3.46mm and z = 3 = 1.04mm, and enlargements at the wall (1b, 2b, 3b).

137



As far as pressure trend along y-coordinate is concerned, �gure 70 is shown. Also

for this �ow con�guration, a variation of the pressure inside the boundary layer

is shown. The changes in pressure with respect to the outer freestream pressure

quantity are slightly lower than for the longitudinal pressure wave. This fact is

probably linked to the previous one observed for pressure trend along z-axis, which

presents lower oscillations. Pressure values at wall here change from p = 80800Pa ≈
0.79 atm for short wavelength k = 1.6 to p = 81900Pa ≈ 0.8 atm for long wavelength

k = 0.06, with a variation with respect to the outer value of about ∆p ≃ 7 ·10−3 atm

and ∆p ≃ 1.8 · 10−2 atm respectively.

It is important to notice that, even if pressure values at wall oscillate around the

outer mean quantity, pressure pro�les maintain their thickness steady in time, over-

taking the computed velocity pro�les thickness inside the three-dimensional bound-

ary layer, δ = 0.86mm, for long wavelengths, y ≃ 20mm and y ≃ 30mm, and for

shorter wavelengths, y ≃ 7mm and y ≃ 2mm.

Finally, in �gure 71 the temporal development of the pressure total �eld at a

�xed x, y, z coordinate is presented. The expected signi�cant growth of pressure in

time is con�rmed, as greater as the wave number is decreased.

In �gure 71 (a), instead, the enlargement shows how for k = 1.6 no changes can

be noticed in pressure temporal development, while k = 0.4 leads the pressure �eld to

a temporal growth, which reaches a variation of about ∆p ≃ 2200Pa ≈ 2 · 10−2 atm

just at t = 0.001 s. The temporal oscillation period is of about t ≃ 0.00035 s, which

is a very small quantity.

This quantity almost triples for k = 0.1, as shown in �gure 71 (b), where an higher

time has been taken into account. The time period is now of about t ≃ 0.0006 s,

while the variation in amplitude reaches∆p ≃ 40000Pa ≈ 0.4 atm after t = 0.0025 s.

Higher wavelengths, as k = 0.06, presents higher pressure values. In �gure 71 (c)

then the simulation time is further increased in order to allow a better view of the

pressure development. At t = 0.006 s the pressure reaches a variation with respect to

the mean value of about ∆p ≃ 99900Pa ≈ 0.98 atm, which represents a signi�cant

and dangerous growth. However, the oscillation period is further increased of one
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order of magnitude, t ≃ 0.002 s.

(a) (b)

(c)

Figure 71: Temporal development of total �eld pressure at a �xed point in space,
x = 10 = 3.46mm, y = 10 = 3.46mm, z = 3 = 1.04mm, on varying wavelength
number k, related to k = 0.4 (a), k = 0.1 (b) and k = 0.06 (c), for θ = 60o, ϕ = 90o

, β = −0.1988 and Re = 5000 .

Bidimensional pressure surfaces of the total �eld are shown in �gure 72 in order to

highlight the oscillating behaviour of pressure �eld along z-direction, which however

presents lower peaks than pressure surfaces of the previous �ow tipology.
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(a) (b)

(c)

Figure 72: Pressure total �eld bidimensional surfaces on x−y (a), x−z (b), y−z (c)
planes at initial time, for k = 0.06 , θ = 30o , ϕ = 0o , β = −0.1988 and Re = 5000
con�guration within a 2 cm long x-domain.
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6 Conclusions

The numerical simulation implemented in previous chapters has turned out to be

very useful in order to investigate the pressure �eld in the cross�ow three-dimensional

boundary layer about all its aspects. Investigating and studying the cross�ow bound-

ary layer pressure �eld can be very important and meaningful for practical purposes,

since the swept-back wing is the most used con�guration in aeronautical designs.

matlab software has allowed us to compute the complete pressure �eld regarding

both the perturbative pressures and the pressure total �eld, which derived from the

superimposition of the �rst one on the base �ow. This method is validated by the

theory of small disturbances and through the use of the initial values formulation.

Moreover the numerical computation needs to start from perturbative velocities given

by the database of the Department of Mechanical and Aerospace Engineering.

The parametric analysis has allowed us to reach meaningful results about the

e�ects of characteristic cross�ow parameters k, ϕ, θ, β and Reynolds number on the

pressure perturbative �eld inside the boundary layer. Important links, implementing

temporal simulations, between amplication factor G and the perturbative pressure

�eld p̃ has been also achieved.

In particular, the variation of Reynolds number, from Reδ∗ = 100 to Reδ∗ =

5000, leads the pressure �eld, from a stable condition in which all perturbative

pressures quickly cancel out to an unstable state, for pressure disturbances with low

wavenumbers, k ≤ 1, and a ϕ = 90o obliquity angle. The di�erent amounts of k,

furthermore, cause variations in x, z pressure trends, with higher amplitude and

oscillations periods for lower k, and in pressures pro�les along direction orthogonal

to the wall as well.

Then variations in obliquity angle ϕ and also in cross�ow angle θ generate in-

stability, related to the consequent �blast� which leads to a signi�cant growth of the

pressure. Two �ow con�guration has been detected as the most unstable and mean-

ingful, θ = 30o, ϕ = 0o and θ = 60o, ϕ = 90o, where the perturbative pressure waves

are introduced crosswise the reference streamline, in an inclined �ow, and longitu-
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dinally, in a slightly inclined �ow, respectively. In general high ϕ and θ lead to an

increasing of the temporal transient growth of the perturbative pressure.

Concerning pressure gradient β variation, a negative value, β = −0.1988, related

to a positive pressure gradient along x-axis, ∂p/∂x > 0, results to be very destabilizing

for the pressure �eld, leading to a strong growth indeed.

All these results con�rm the correlation which exists between G and p̃ quantities,

even if a certain phase delay in G maximum and minimum points has been noticed.

This fact can lead to use the ampli�cation factor analysis, for every �xed tipology of

cross�ow on the wing, as a prevision of the possible strong pressure temporal growth

related to instability.

As far as the mean and perturbative pressure field dimensional anal-

ysis is concerned, this can be considered useful for practical purposes. In this thesis

only the two most unstable �ow con�gurations have been investigated, that are given

by the previous parametric analysis and take place in the region downstream the 50%

of the airfoil chord, where the pressure gradient is positive. The computational do-

main, starting from this point, has been extended to the trailing edge and ground

standard conditions has been taken into account. The mean pressure trend has been

given by the Rosenhead mathematical expansion.

The most interesting fact is that the lengthwise introduced perturbative pressure

waves, in the �rst case, strongly a�ect the increasing mean pressure trend along

x-coordinate, while, in second case, the z-direction only shows signi�cant pressure

�uctuations around the mean value. In the �rst case, close to the trailing edge region,

great pressure changes, p ≃ 10, 77 · 104 Pa, are achieved, suggesting that this is the

most dangerous region, in terms of pressure growth, in case of an unstable cross�ow

con�guration presenting low wavelengths.

The strong and quick pressure growth and the oscillating behaviour, in time and

space, suggest the usefulness of further deep studies about this particular three-

dimensional pressure �eld. This computation can also provides useful results for

aeroelastic and structural analysis, since the oscillating pressure �eld could generate

dangerous phenomena, as �attering and vibrations propagation, that can damage the
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structure, periodically stressed, and even make the aircraft uncontrollable.

Since the relevance of this numerical simulation has been highlighted, improve-

ments and expansions of this method may be realized in order to better approach

the real model, that is the swept-back wing. In order to achieve these aims, an

increasing of the spatial domain may be enforced. Thus the whole wing model could

be considered and analised, making also the negative pressure gradient region part

of the computational domain or even computing a variable pressure gradient related

to each chord coordinate. Moreover, di�erent case of altitude and velocity may be

taken into account in order to compare the analysis with real �y conditions.

The temporal computational domain could be also enlarged, coming to seconds,

in order to observe a longer development of the �ow and understand which high

values pressure could reach.

Finally, reasons for justify the interest in studies about pressure �eld, inside the

three-dimensional cross�ow boundary layer, are, as seen, numerous. The �nal and

intrinsic purpose is to provide concrete results and behaviours, for the pressure �eld

of this recurrent �ow tipology, to the design area.
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