Campo di pressione medio e perturbato nello strato limite tridimensionale Perturbative and mean pressure field in the three-dimensional boundary layer

Relatori: Prof. Daniela Tordella Dott. Stefania Scarsoglio Candidato: Andrea Boscolo

The boundary layer concept

1) Ludwig Prandtl's definition on *Third Mathematics Congress*, Heidelberg, 8 August 1904:

«The boundary layer is a thin region near the surface, where effect of friction causes the fluid to stick to the surface (no-slip condition). Ouside the boundary layer the flow is essentially inviscid, while very large velocity and pressure gradients are present within it»

2) Simplification for the boundary layer of:

- Euler equations
- Navier–Stokes equations

Coupled non-linear partial differential equations Viscosity effects (elliptic behavior)

Obtaining: BOUNDARY LAYER EQUATIONS (parabolic behavior)

Three-dimensional boundary layer

Generation and development:

Strong pressure gradient at tip

«Crossflow» Phenomenon:

Motion of fluid particles toward the receding tip

PREMATURE SEPARATION

• Velocity profiles:

«Crossflow» velocity profile w presents: Inflection point leads to INSTABILITY

Crossflow instability

PRIMARY

receptivity process

For very strong inflectional velocity profiles:

SECONDARY 2) SECONDARY VORTICES

FINAL BREAKDOWN (TERTIARY VORTICES)

STATIONARY waves

1) CROSSFLOW VORTICES

Theory of stability

- Method of small disturbances: $u = U + \tilde{u}$ $v = V + \tilde{v}$ $w = W + \tilde{w}$ $p = P + \tilde{p}$
- Orr-Sommerfeld equation: $(U-c)(\phi''-\alpha^2\phi) - U''\phi = -\frac{i}{\alpha R}(\phi''''-2\alpha^2\phi''+\alpha^4\phi)$

Mathematical model

BASE FLOW

Crossflow component generates V_{∞} :

 $\begin{cases} U_s = U(x, Re) \\ W_s = U(x, Re) \end{cases}$

Linearized PERTURBED SYSTEM

 \widetilde{u} , $\widetilde{
u}$, \widetilde{w} \ll $m{U}_{\infty}$, $m{U}_{\infty}$

$$k = \sqrt{\alpha_r^2 + \gamma^2} \longrightarrow \lambda = \frac{2\pi}{k}$$

made DIMENSIONLESS with:

$$\begin{cases} \delta^* = \int_0^\infty (1 - \frac{u}{U_\infty}) \, dy \\ Re_{\delta^*} = \frac{U_\infty \delta^*}{\nu} \end{cases}$$

NAVIER-STOKES equations (Fourier space)

Initial and boundary conditions (y-coordinate) for \widetilde{v} , $\widetilde{\omega}$

Pressure field: NUMERICAL SIMULATION

Two methods implemented by MATLAB[®] software:

Mutual comparison and validity control

Temporal and efficiency evaluations: METHOD 2

 $\begin{cases} \frac{\partial \varphi}{\partial x} \longrightarrow i\alpha \cdot \varphi \\ \frac{\partial \varphi}{\partial z} \longrightarrow i\gamma \cdot \varphi \\ \nabla^2 \varphi \longrightarrow \left(\frac{\partial^2}{\partial y^2} - k^2\right) \cdot \varphi \end{cases}$ Spatial LAPLACE-FOURIER decomposition $\begin{cases} i\alpha \hat{p} = -\frac{\partial \hat{u}}{\partial t} - i\alpha \hat{u} U_s - \hat{v} \frac{\partial U_s}{\partial y} - i\gamma \hat{u} W_s + \frac{1}{Re_{\delta *}} \left(\frac{\partial^2}{\partial y^2} - k^2\right) \hat{u} \\ \frac{\partial \hat{p}}{\partial y} = -\frac{\partial \hat{v}}{\partial t} - i\alpha \hat{v} U_s - i\gamma \hat{v} W_s + \frac{1}{Re_{\delta *}} \left(\frac{\partial^2}{\partial y^2} - k^2\right) \hat{v} \\ i\gamma \hat{p} = -\frac{\partial \hat{w}}{\partial t} - i\alpha \hat{w} U_s - \hat{v} \frac{\partial W_s}{\partial y} - i\gamma \hat{w} W_s + \frac{1}{Re_{\delta *}} \left(\frac{\partial^2}{\partial y^2} - k^2\right) \hat{w} \end{cases}$

NUMERICAL INTEGRATION by MATLAB[®]: $\hat{p} = \hat{p}(y, t, \alpha, \gamma) \xrightarrow{F^{-1}} \hat{p} = \hat{p}(x, y, z, t)$

Simulation results: PARAMETRIC ANALYSIS

$$p = P(x) + \widetilde{p}(x, y, z, t)$$

PERTURBATIVE PRESSURE FIELD

• Effects of crossflow CHARACTERISTIC PARAMETERS:

REYNOLDS NUMBER Re_{δ^*}	Re=100 , $Re=5000$
Pressure gradient β	1 , $-0,1988$
CROSSFLOW ANGLE $ heta$	$\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$
obliquity angle ϕ	$0, \frac{\pi}{4}, \frac{\pi}{2}$
WAVELENGTH NUMBER k	0.02, 0.06, 0.1, 0.6, 1, 1.2, 1.6, 2

• Comparison with **AMPLIFICATION FACTOR**:

$$G(t; \alpha, \gamma) = rac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

1. Flow configuration: $\theta = 30^{\circ}$, $\phi = 45^{\circ}$, $\beta = 1$ for Re = 100 \longrightarrow STABLE

Perturbative and mean pressure field in the three-dimensional boundary layer Campo di Pressione medio e perturbato nello strato limite tridimensionale

<u>Wavenumber k</u>

• Flow configuration: $\theta = 60^{\circ}$, k = 0, 4, $\beta = 1$ for Re = 5000

ORTHOGONAL WAVE for $\phi = 90^{\circ}$

OBLIQUE WAVE for $\phi = 45^{\circ}$

CAMPO DI PRESSIONE MEDIO E PERTURBATO NELLO STRATO LIMITE TRIDIMENSIONA

Obliquity angle ϕ

Crossflow angle θ

- High values increase the TRANSIENT GROWTH in amplitude and time Flow configuration: $\phi = 45^{\circ}$, k = 0, 4, $\beta = 1$ for Re = 5000
- 500 **Unstable configurations:** • 400 $\beta = -0.1988$ 1. $\theta = 30^{\circ}$, $\phi = 0^{\circ}$ for Re=5000 300 2. $\theta = 60^{\circ}$, $\phi = 90^{\circ}$ for Re=5000 200 ₽́/₽́_{rif} 100 C **Pressure gradient** β -100 50 100 150 200 250 300 t flow acceleration **STABILIZING** $\xrightarrow{\text{negative gradient}} \frac{\Delta p}{\Delta x} < 0$ β=1 $\xrightarrow{\text{positive gradient}} \frac{\Delta p}{\Delta x} > 0$ flow deceleration β=-0,1988 DESTABIL Flow configuration: $\phi = 45^{\circ}$, k = 0, 4, $\beta = 1$ for Re = 5000

Simulation results: PRESSURE TOTAL FIELD

Effects of perturbative pressure field on mean pressure field:

$$p = P(x) + \widetilde{p}(x, y, z, t)$$

Simulation settings:

•

• Mean pressure *P(x)* computation:

 $\begin{cases} U(x) = U_{\infty} x^m \\ P(x) = -\rho U_{\infty} x^{2m} + c \end{cases}$

Quantities made dimensional with:

 $ho {U_{\infty}}^2$, δ , δ^* , t_{car}

Perturbative and mean pressure field in the three-dimensional boundary layer Campo di Pressione medio e perturbato nello strato limite tridimensionale

x,y,z pressure trends

1. Flow configuration: $\theta = 30^{\circ}$, $\phi = 0^{\circ}$

2. flow configuration: $\theta = 60^{\circ}$, $\phi = 90^{\circ}$

Conclusions

1. PARAMETRIC ANALYSIS

• Correlation between G(t) and $\widetilde{p}(t)$

- Combination of destabilizing parameters
 - 2. DIMENSIONAL ANALYSIS
- Strong temporal pressure growth
- Elevated spatial (x,z) and temporal oscillations

3. FURTHER DEVELOPMENT

- Increased computational domains (x,y,z,t)
- Different fly conditions included

PRESSURE TEMPORAL GROWTH prevision $\theta = 30^{\circ}, \phi = 0^{\circ}$ $\theta = 60^{\circ}, \phi = 90^{\circ}$

results for AEROELASTIC and STRUCTURAL

 $\beta = -0, 1988 ({}^{\Delta p}/_{\Lambda x} > 0)$

analysis

EVENTUAL GENERATED PHENOMENA

- flattering
- vibrations

 $rac{\Delta p}{\Delta x} < 0$, seconds , altitude

Grazie per la cortese attenzione