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Chapter 1

Introduction

The concept of collective behaviour for ensembles of physical and biolog-
ical entities is common practice in science. In hydrodynamics, it is almost
con�ned into the context of turbulent systems. This work, propose to export
it into the framework of small perturbation dynamics of stable and unstable
�ows.

With the aim to understand whether the nonlinear interaction among
di�erent scales in fully developed turbulence can a�ect the energy spectrum,
and to quantify the level of generality on the value of the energy decay ex-
ponent of the inertial range, is considered the state that precedes the onset
of instability and transition to turbulence. In this condition, the system is
constituted by multiple spatial and temporal scales, and is subject to all the
processes of the linearized perturbative Navier-Stokes equations: linearized
convective transport, linearized vortical stretching, and molecular di�usion.
With the important exception of the nonlinear interaction, these features are
the same as those characterizing the turbulent state. The linear transient dy-
namics of three-dimensional perturbations, which is governed by the initial-
value problem related to the linearized perturbative Navier-Stokes equations,
is very complicated and shows a great variety of di�erent behaviours, not a
priori predictable.

We ask whether the linearized perturbative system is able to show a
power-law scaling for the energy spectrum in an analogous way to the Kol-
mogorov argument. It is determined the decay exponent of the energy spec-
trum for arbitrary longitudinal and transversal perturbations acting on a
typical shear �ow i.e. the blu�-body wake. Then, the energy spectrum of
the linearized perturbative system is compared with the well-known −5/3
Kolmogorov power-law scaling. It is observed, for both longitudinal and
transversal perturbative waves, a decay rate of −5/3 in the intermediate
range (2 < k < 100), while the energy decays more rapidly for Iarger
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wavenumbers (k > 100). So far, it seems that the nonlinear interaction
is not the main factor responsible of the speci�c value of the −5/3 decay ex-
ponent in the energy spectrum and the spectral power-law scaling of inertial
waves is a general dynamical property of the Navier-Stokes equations, valid
also for a general small perturbation which lives in the linearized system.
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Chapter 2

Stability and turbulence

2.1 Introduction

In this chapter the concepts of stability and turbulence are introduced.
A �ow is said instable if spontaneously changes to one type of motion to
another. The central notion is that a con�guration is unstable when small
perturbations to it tend to be ampli�ed. Hydrodynamic stability concerns
the stability and instability of �uids. The concept of stability of a state of a
physical or mathematical system was understood in the eighteen century, and
Clerk Maxwell (see Betchov & Criminale, (1967)) expressed the qualitative
concept clearly in the nineteenth. Hydrodynamic stability is an importan
part of �uid mechanics, because an unstable �ow is not observable, an unsta-
ble �ow being in practice broken down rapidly by some "small variation" or
another. Also unstable �ows often evolve into an important state of motion
called turbulence.

Turbulence is a omnipresent phenomenon of Nature. In our everyday life,
we either rarely notice it when swimming, driving a car, riding a bike, skat-
ing, or suddenly pay serious attention to it, when the ride gets bumpy on
board a plane on stormy weather or when �ying over tall mountains. Actu-
ally, the diversity of situations where we discover turbulence as an important
scienti�c phenomenon is impressive: �ow around ships and aircrafts, com-
bustion in car engines and plane turbines, �ow in the ocean, atmosphere,
air �ow in lungs, �ow of blood in arteries and heart, �ow in pipelines, even
the dynamics of the �nancial markets can also be viewed as analogous to
turbulent �ows. The entire Universe appears to be in a state of turbulent
motion, and turbulence seems to be a decisive factor helping in the forma-
tion of stars and solar systems, as indicated by astronomical observations
and theoretical considerations in astrophysics. From the large variety of sit-
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uations mentioned above, many of them are cases in which turbulence is
attractive from the point of view of the engineer, since studying it leads to
technological improvement. It is more fruitful then to model regions where
the turbulent �ows interact with boundaries, and then learn how to control
and apply them. For the physicist, the interesting part is how the small-scale
structure of turbulence is organized, preferably isolated from any boundary
e�ects. This is where universal aspects can be sought, in the sense that they
should be independent of the nature of the �uid or the geometry of the prob-
lem. It is universality that makes turbulence an exciting research subject for
physicistsand mathematicians.

2.2 Stability de�nition

In examining the dynamics of any physical system the concept of stability
becomes relevant only after �rst enstablishing the possibility of equilibrium.
Once this step has been taken, the concept become ubiquitous, regardless of
he actual system being probed. As expressed by [4], stability can be de�ned
as the ability of a dynamical system to be immune to small disturbances. It
is clear that the disturbances need not necessarily be small in magnitude but
the fact that the disturbances become ampli�ed as a resuts and then is a
departure from any state of equilibrium tha system had is implicit. In this
work the attention is focused on hydrodynamical stability of incompressible
�ows. For this kind of �ows evolutive equations are

∇ · u = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ F, (2.2)

where u(x, t) is the velocity �eld, p(x, t) is the pressure �eld, F(x, t) is the ex-
ternal force �eld, ρ is the mass density and µ is kinematic viscosity. Equation
(2.1) is the continuity equation and express the incompressibility property
of the �ow, while (2.2) is the Newton law. Equation (2.2) is also known as
the Navier-Stokes equation. De�ning U and L as the characteristic velocity
and length scales of the �ow, and ν the kinematic viscosity, an adimensional-
izations of (2.2) can be made. The adimensionalized Navier-Stokes equation
depends only on one parameter, the Reynols number Re

Re =
ρU l

µ
=

U l

ν
, (2.3)
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The Reynolds number may be interpreted as the ratio of inertial to viscous
forces present in the �uid, and for an incompressible �ow, it is the only
control parameter of that system.

Hydrodynamic stability theory is concerned with the response of a lami-
nar �ow to a disturbance of small or moderate amplitude. If the �ow returns
to its original laminar state one de�nes the �ow stable, whereas if the distur-
bance grows and causes the laminar �ow to change into a di�erent state one
de�nes the �ow unstable. Instabilities often results in turbulence �uid mo-
tion, but they may also take the �ow into a di�erent laminar, usually more
complicated state. Stability theory deals with the mathematical analysis of
evolution of disturbances superposed on a laminar base �ow. In many cases
one assumes that the disturbances to be small so that further simpli�cations
can be justi�ed. In particular, a linear equation governing the evolution of
disturbances is desirable. As the disturbance velocities grow above a few
percent of the base �ow, nonlinear e�ects become important and the linear
equations no longer accurately predict the disturbance evolution. Although
the linear equations have limited region of validity they are important in
detecting physical grow mechanisms and identifying dominant disturbance
type.

2.3 Turbulence

Skipping over the dictionary de�nition, which does not su�ce to charac-
terize the modern physical sense of the word, we stop at the de�nition given
in 1937 by Taylor and Von Karman: Turbulence is an irregular motion which
in general makes its appearance in �uids, gaseous or liquid, when they �ow
past solid surfaces or even when neighboring streams of the same �uid past or
over one another. To make this more clear, we need to use the terminology
of �uid dynamics. Flows of gases and liquids can be divided into two very
di�erent types: laminar �ows, which are smooth and regular, and turbulent,
totally opposite, in which physical quantities as velocity, temperature, pres-
sure, etc. �uctuate in a sharp and irregular manner in space and time, the
latter being actually the more natural state of a �ow.

In section (2.2) it is explained that unstable �ows evolve towards turbu-
lence. Each time a �ow changes as a results of an instability, one's ability
to predict the details of the motion is reduced. When successive instabili-
ties have reduced the level of predictability so much that it is appropriate
to describe a �ow statistically, rather than in every detail, than one says
that the �ow is turbulent. This implies that random features of the �ow
are dominant. One cannot, however, say that a turbulent �ow is completly
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random, because this is like to say that turbulence does not exist. All �ows
involve in organized structures, so the point is just whether the randomness
is su�cient for statistical description to be most appropriate. There is every
reason to suppose that the loss of predictability occurs as a property of the
Navier-Stokes equation (2.2) and not because these equations are no more
able to describe the physical system.

2.4 Statistical description of turbulence

In principle, the phenomenology of turbulence is characterized by simple
statistical quantities, such as averages, probability distribution functions,
spectra, correlations, etc., which are calculated from data experimentally
measured or from direct computer simulations. In general, the term "averag-
ing" is never equivalent to a proper ensemble average (over all possible states
of the system), but ergodicity is invoked to replace it by time-averaging or
mixed time and limited spatial averaging. These tools are su�cient to reveal
some of the most important universal features of turbulence.

2.5 Turbulence hierarchy and energy cascade

Based on the technological interest raised by the remarkable momentum
transfer properties of the large scales of turbulence, experiments in the begin-
ning of the 20th century led to decisive advances in the theory of turbulence.
Representative of this time are the so-called semi-empirical approaches made
by great �uid-dynamicists, such as G. Taylor, L. Prandtl and T. Von Karman
in the 1920s and '30s, which were used to solve important practical problems.
In a remarkable paper, Lewis Fry Richardson advanced in 1922 the assump-
tion that turbulence is organized as an hierarchy of eddies of various scales,
each generation borrowing energy from its immediately larger neighbor in a
"cascade" process of eddy-breakdown [2]. Richardson's notion of turbulence
was that a turbulent �ow is composed by "eddies" of di�erent sizes. The
sizes de�ne a characteristic length scale λ for the eddies, which are also char-
acterized by velocity scales vλ and time scales tλ (turnover time) dependent
on the length scale. The large eddies are unstable and eventually break up
originating smaller eddies, and the kinetic energy of the initial large eddy is
divided into the smaller eddies that stemmed from it. These smaller eddies
undergo the same process, giving rise to even smaller eddies which inherit
the energy of their predecessor eddy, and so on. In this way, the energy is
passed down from the large scales L of the motion to smaller scales λ until
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reaching a su�ciently small length scale λ0 such that the viscosity of the �uid
can e�ectively dissipate the kinetic energy into internal energy. This picture,
though more appropriate in wavenumber space (where the wavenumber k
corresponding to length scale λ is k = 2π/λ), was poetically immortalized
in his book inspired from observation of clouds and the verses of Jonathan
Swift: Big whorls have little whorls, which feed on their velocity; and little
whorls have lesser whorls, and so on to viscosity (in the molecular sense).
This era culminated with the now fundamental ideas of Andrei Nikolaevich
Kolmogorov in the theory of locally isotropic turbulence (1941) [3].

2.6 Isotropic homogeneous turbulence

Inspired by Richardson's energy cascade description, shown in �gure (2.1),
Kolmogorov assumed that with each step in the energy transfer towards
smaller scales, the anisotropic in�uence of the large scales will gradually be
lost, such that at su�ciently small scales the �ow will be statistically ho-
mogeneous and isotropic. In his original theory of 1941, Kolmogorov postu-
lated that for very high Reynolds number, the small scale turbulent motions
are statistically isotropic (i.e. no preferential spatial direction could be dis-
cerned). In general, the large scales of a �ow are not isotropic, since they are
determined by the particular geometrical features of the boundaries. This
steady situation, characterized by a mean �ux of energy ε, was postulated
by Kolmogorov to be universal and determined by only one parameter.

Moving further down the scales (i.e. increasing wavenumber k), there
comes a length-scale λ0 where the �ow gradients are so large that viscous
e�ects can no longer be ignored. So, for very high Reynolds numbers the
statistics of small scales are universally and uniquely determined by the vis-
cosity ν and the rate of energy dissipation ε. With only these two parameters,
the unique length that can be formed by dimensional analysis is

λ0 =

(
ν3

ε

)1/4

(2.4)

Below the famous self-similarity hypotheses in their original form are intro-
duced (according to Hinze [4]):

1. At su�ciently large Reynolds numbers there is a range of high wave
numbers k (inertial-range) where the turbulence is statistically in equi-
librium and uniquely determined by the parameters ε and ν. This state
of equilibrium is universal.
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2. If the Reynolds number is in�nitely large, the energy spectrum in the
inertial range is independent of ν and solely determined by the param-
eter ε.

Dissipation of kinetic energy takes place at scales of the order of Kol-
mogorov length λ0, while the input of energy into the cascade comes from
the decay of the large scales, of order L. These two scales at the extremes
of the cascade can di�er by several orders of magnitude at high Reynolds
numbers. In between there is a range of scales (each one with its own char-
acteristic length λ) that has formed at the expense of the energy of the large
ones. These scales are very large compared with the Kolmogorov length, but
still very small compared with the large scale of the �ow (i.e. λ0 << λ << L).
Since eddies in this range are much larger than the dissipative eddies that
exist at Kolmogorov scales, kinetic energy is essentially not dissipated in this
range, and it is merely transferred to smaller scales until viscous e�ects be-
come important as the order of the Kolmogorov scale is approached. Within
this range inertial e�ects are still much larger than viscous e�ects, and it
is possible to assume that viscosity does not play a role in their internal
dynamics (for this reason this range is called "inertial range").

By small scales we will understand the dissipative range close to λ0 and
the inertial range postulated by the �rst Kolmogorov hypothesis (1). Phe-
nomenological studies of turbulence are mostly aimed at the study of the
small scales, since it is here that universal properties of turbulence are seen,
and their characterization is considered important for the turbulence prob-
lem. The second hypothesis of Kolmogorov (2) implies that small-scale (high
wavenumbers k) turbulence is isotropic and homogeneous at su�ciently large
Reynolds numbers, and its statistics will be determined only by the average
dissipation rate

ε =
ν

2

⟨(
∂ui

∂xj

+
∂uj

∂xi

)2
⟩
, (2.5)

where ν is the �ow viscosity.
The way in which the kinetic energy is distributed over the multiplic-

ity of scales is a fundamental characterization of a turbulent �ow. For ho-
mogeneous turbulence (i.e., statistically invariant under translations of the
reference frame) this is usually done by means of the energy spectrum func-
tion E(k), where k is the modulus of the wavevector corresponding to some
harmonics in a Fourier representation of the �ow velocity �eld u(x)

u(x) =

∫∫∫
R3

û(k)eik·xd3k, (2.6)
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Figure 2.1: Richardson energy cascade. Process of eddy-breakdown: larger
eddys (external scale L) split into smaller eddys (inertial scale λ). Energy
transfer occur from bigger to smaller eddys since the dissipation scale (scale
λ0) is reached. Scale λ0 is de�ned as the scale where inertial and dissipation
e�ects are of the same order of magnitude.

where û(k) is the Fourier transform of the velocity �eld. Thus, E(k)dk
represents the contribution to the kinetic energy from all the Fourier modes
with k < |k| < k + dk, and therefore,

Etot =

∫ ∞

0

E(k)dk. (2.7)

According with the (1) hypothesis, the spectrum function of energy E is
indipendent of the energy production process for all wavenumbers large com-
pared with those at which the production occurs. Then E depends only on
the wavenumber, the dissipation, and viscosity,

E = E(k, ε, ν). (2.8)

If the cascade is long enough, there may be an intermediate range (the inertial
range) in which the action of viscosity has not yet come in, that is

E = E(k, ε). (2.9)

Thus if the form E(k, ε) = C εαkβ is supposed, by dimension analysis

E = C ε2/3k−5/3, (2.10)
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where C would be a universal constant. This is one of the most famous
results of Kolmogorov 1941 theory (the −5/3 power-law), and considerable
experimental evidence has accumulated that supports it [15]. In �gure (2.2)
is shown the energy spectrum.

Figure 2.2: Energy spectrum.
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Chapter 3

The Normal Mode Stability

Theory

In this chapter the linear stability analysis is introduced and carried on
through the classical modal treatment. The essentials of the normal mode
theory are presented for three-dimensional viscous incompressible steady par-
allel �ows. After the perturbed system is introduced and the resulting equa-
tions are linearized, a partial di�erential equation is obtained to describe the
spatio-temporal evolution of the perturbation (see section 3.2). The normal
mode theory is presented and, subsequently, the Orr-Sommerfeld equation is
derived by introducing the stability characteristics section 3.3. The disper-
sion relation is de�ned and the concepts of convective and absolute instability
are discussed in section 3.6.

3.1 Introduction

Traditionally, investigations of disturbances in shear �ows have been char-
acterized using classical linear stability analysis. This concept is well founded
and is, in principle, correctly recognized as an initial-value problem. However,
instead of considering the complete temporal evolution of the perturbations
and analyzing the physical cause of a possible instability, the attention has
been widely focused on determining whether or not the �ow is asymptoti-
cally unstable. If only the question of stability is to be answered, the modal
analysis turns out to be a powerful and synthetic means. First contributions
have been given by [24], [25] and [30] who separately derived the now-famous
Orr-Sommerfeld equation. More recently, signi�cant results in literature for
the blu�-body wake stability have been o�ered by, among others, [23], [33],
[20], [18]. The modal theory to study the stability of the �ow is based on
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the perturbative analysis. Once the base �ow is known, small oscillations are
imposed and their asymptotic fate is considered. If they are damped the �ow
is stable, while if they are ampli�ed the �ow is unstable. In the framework of
the modal analysis, the solution of the linearized perturbative equations turns
into the resolution of an eigenvalue problem, the Orr-Sommerfeld equation.

3.2 Perturbed �ow and linearized disturbance

equations

It is now assumed the base �ow to be steady, parallel, incompressible and
viscous. It is described by the physical quantity

U⃗(t, x, y, z) =



u(t, x, y, z) = U(y),

v(t, x, y, z) = 0,

w(t, x, y, z) = 0,

p(t, x, y, z) = P (x).

The perturbed �ow can be decomposed into a steady part and a �uctuating
component that oscillates about the base �ow

u⃗(t, x, y, z) =



u(t, x, y, z) = U(y) + ũ(t, x, y, z),

v(t, x, y, z) = ṽ(t, x, y, z),

w(t, x, y, z) = w̃(t, x, y, z),

p(t, x, y, z) = P (x) + p̃(t, x, y, z).

where the widetilde superscripts indicate �uctuation components that are
small with respect to the corresponding mean system quantities

|ũ/U | << 1, |ṽ/U | << 1, |w̃/U | << 1, |p̃/P | << 1.

By writing the continuity and the Navier-Stokes equations for the per-
turbed �ow and then subtracting from these the corresponding ones for the
base �ow, one obtains the following
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∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
= 0,

∂ũ

∂t
+ U

∂ũ

∂x
+ ũ

∂ũ

∂x
+ ṽU

′
+ ũ

∂ũ

∂y
+ w̃

∂ũ

∂z
+

∂p̃

∂x
=

1

Re
∇2ũ,

∂ṽ

∂t
+ U

∂ṽ

∂x
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z
+

∂p̃

∂y
=

1

Re
∇2ṽ,

∂w̃

∂t
+ U

∂w̃

∂x
+ ũ

∂w̃

∂x
+ ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z
+

∂p̃

∂z
=

1

Re
∇2w̃.

(3.1)

The system of equations (3.1) is non-linear with respect to the disturbance
terms. The non-linear terms are products of the �uctuating velocities and
their derivatives. If the oscillation has frequency ω, these terms will have
frequency 0 o 2ω. This interaction will either modify the base �ow (mean-�ow
distortion) and feedback to the �uctuating components or introduce higher
harmonics. Such di�culties are overcame if it is assumed that the products
of the �uctuations and their derivatives have small amplitudes. The terms

ũ
∂ũ

∂x
, ṽ

∂ũ

∂y
, w̃

∂ũ

∂z
,

ũ
∂ṽ

∂x
, ṽ

∂ṽ

∂y
, w̃

∂ṽ

∂z
,

ũ
∂w̃

∂x
, ṽ

∂w̃

∂y
, w̃

∂w̃

∂z
,

are negligible in comparison with the other terms as a small disturbance
multiplied by a small disturbance results in a term of smaller order of mag-
nitude and no longer in�uences the equations to this order of approximation.
The linear system is

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
= 0,

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽU

′
+

∂p̃

∂x
=

1

Re
∇2ũ,

∂ṽ

∂t
+ U

∂ṽ

∂x
+

∂p̃

∂y
=

1

Re
∇2ṽ,

∂w̃

∂t
+ U

∂w̃

∂x
+

∂p̃

∂z
=

1

Re
∇2w̃.

(3.2)
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The perturbations applied to the system will evolve independently be-
cause the nonlinear terms, that would permit interaction, have been ne-
glected. The same fundamental property of linearity occurs in other �elds
(acoustics, electromagnetism, ...), but non-linear equations must often be
retained to capture the essential physics. Luckily, the solution of the linear
system is su�cient to describe problems where small oscillations in�uence the
base �ow. Moreover, it should be reminded that the in�nitesimal perturba-
tions cannot be removed and are always present in any physical system. Due
to the assumption of small disturbances, the solution of the original problem
can be approximated with the one of the linear system. However, as soon
as the perturbation energy grows, the non-linear equations are required to
correctly capture the perturbative evolution. For this reason, only the onset
(and not the following temporal evolution) of a possible instability is the aim
of the linear stability theory.

3.3 Normal mode hypothesis and Orr-Sommerfeld

equation

The linearity of the system is immediately exploited by seeking solutions
in terms of complex functions. In this way, a variable separation is introduced
and a reduction from a partial di�erential system (3.2) to a set of ordinary
di�erential equation is allowed. Normal mode solutions of the form

ũ(t, x, y, z) =
1

2
(û+ û∗) =

1

2

[
u(y) ei(αx+γz−ωt) + u(y)∗ei(α

∗x+γ∗z−ω∗t)
]
,

ṽ(t, x, y, z) =
1

2
(v̂ + v̂∗) =

1

2

[
v(y) ei(αx+γz−ωt) + v(y)∗ei(α

∗x+γ∗z−ω∗t)
]
,

w̃(t, x, y, z) =
1

2
(ŵ + ŵ∗) =

1

2

[
w(y) ei(αx+γz−ωt) +w(y)∗ei(α

∗x+γ∗z−ω∗t)
]
,

p̃(t, x, y, z) =
1

2
(p̂+ p̂∗) =

1

2

[
p(y) ei(αx+γz−ωt) + p(y)∗ei(α

∗x+γ∗z−ω∗t)
]
,

(3.3)
are to be found. The quantities û, v̂, ŵ, p̂ indicate the complex normal mode,
while u(y),v(y),w(y),p(y) are functions of the y only and the ∗ quantities
are the complex conjugates. Therefore, the sum of the normal mode and its
complex conjugate is the real disturbance quantity. The perturbative quan-
tities can be treated separately as the system is linear. In principle, since the
complex conjugate values can be obtained from the quantities themselves, it
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is only necessary to solve for the complex quantities û, v̂, ŵ, p̂. To be solu-
tions for the perturbations, the modal expansions (3.3) have to satisfy the
system (3.2). In this way the partial di�erential equations system (indepen-
dent variables t, x, y, z) reduces to a ordinary di�erential equations system
(independent variable y).

Moreover, the amplitude and the phase of the oscillations can be expressed
through the use of complex functions, as the eigenvectors u(y),v(y),w(y),p(y).
For any disturbance, in fact, the amplitude of the cosine and the amplitude
of the sine components are to be given. This is done through the real and the
imaginary parts of the above complex functions, respectively. With a single
complex quantity, the two values (phase and amplitude) characterizing the
oscillation can be expressed. Substitution of (3.3) into the linearized system
(3.2) results in the following set of linear equations

iαu+ v
′
+ iγw = 0,

iα(U − c)u+ iαp+ U
′
v =

1

Re

(
u

′′ − (α2 + γ2)u
)
,

iα(U − c)v+ p
′
=

1

Re

(
v

′′ − (α2 + γ2)v
)
,

iα(U − c)w+ iγp =
1

Re

(
w

′′ − (α2 + γ2)w
)
.

(3.4)

In the above relations α = αr+ iαi and γ = γr+ iγi are identi�ed as complex
wavenumbers in x and z direction, rispectively. Real part of these numbers
αr, γr are the wavelength of the perturbation in x and z direction, while the
imaginary parts αi, γi are the spatial grow rates in the x and z direction,
respectively. The complex frequency is ω = ωr + iωi, where ω identi�es the
frequency of the perturbative wave and ωi is the temporal growth rate. The
wave velocity is de�ned as c = cr + ici = ω/α.

A single equation for v can now be obtained in a straigthforward man-
ner. The u momentum equation is multiplied by iα and the w momentum
equation is multiplied by iγ. The resulting equations are summed and the
continuity equation is used to replace the expression iαu + iγw with −v′

,
resulting in the system

iα(U − c)v+ p
′
=

1

Re

(
v

′′ − (α2 + γ2)v
)
,

iα(U − c)v
′
+ (α2 + γ2)p− iαU

′
v =

1

Re

(
v

′′′ − (α2 + γ2)v
′
)
.

(3.5)
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The pressure is eliminated by di�erentiating the second equation of (3.5) by
y and then using the �rst equation (the v momentum equation), resulting in
a single equation for v, namely

(U−c)
(
v

′′ − (α2 + γ2)v
)
−U

′′
v =

1

iαRe

(
v

′′′′ − 2(α2 + γ2)v
′′
+ (α2 + γ2)2v

)
.

(3.6)
The above equation is the three-dimensional Orr-Sommerfeld equation, which
is fourth order di�erential equation. The use of normal mode relationship
(3.3) for perturbations substituted into system (3.2) transform the partial dif-
ferential equations in ordinary di�erential equations. However, this transfor-
mation does not come without complications. Equation (3.6) de�ne a eigen-
value problem, where v is the eigenfunction and α, γ and ω are the unknowns.
So the number of unknowns is increased to six, namely: αr, αi, γr, γi, ωr, ωi.
In order to overcome this problem, in the next section the Squire transfor-
mation is presented.

3.4 Squire transformation

Squire (1933) recognized that, with a simple transformation, equation
(3.6) can be reduced to a form equivalent to the two-dimensional Orr-Sommerfeld
equations. De�ne the polar wavenumber k = (α, γ) such that

∥k∥ = k =
√
α2 + γ2, (3.7)

and a reduced Reynolds number as

Re2d =
αRe√
α2 + γ2

. (3.8)

In such a way, relationship between α, γ and k are

α = k cos ϕ,
γ = k sin ϕ,
ϕ = tan−1(γ/α),

(3.9)

where ϕ is the polar angle in wave space, as shown in �gure (3.1). Substitu-
tion of (3.7) and (3.8) into (3.6) results in:

(U − c)
(
v

′′ − k2v
)
− U

′′
v =

1

ikRe2d

(
v

′′′′ − 2k2v
′′
+ k4v

)
, (3.10)

which has the exact form of two-dimesional Orr-Sommerfeld equation. If the
�uid is taken as inviscid (Re → ∞), a second order di�erential equation

(U − c)(v
′′ − α2v)− U

′′
v = 0 (3.11)
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was �rst derived by Rayleigh (1880) [26] and known as Rayleigh equation. Al-
though often referred as the "inviscid Orr-Sommerfeld" equation, the Rayleigh
equation is not a special case (Re → ∞) of the Orr-Sommerfeld equation as
it was derived more than 25 years before it.

Figure 3.1: A geometric scheme of Squire transformation.

The transformation that takes the three-dimesional problem and trans-
form it into an equivalent two-dimensional problem is called the Squire trans-
formation. For parallel �ows, should be studied only the two-dimensional
problem for determining stability. Once k and Re2d are determined from
the two-dimensional problem, the true wavenumbers α, γ and Re can be
determined by inverting the transformation (3.9) for a given polar angle ϕ.
The two-dimensional and three-dimensional problems have the same formu-
lation, except that the two-dimensional problem has a lower value of the
Reynolds number. Finally, the wave velocity c remains unscaled for the
three-dimensional and the two-dimensional problems. All these remarks are
summed up in the following theorem

Theorem 3.4.1 (Squire's Theorem (1933)). If an exact two-dimensional
parallel �ow admits an unstable three-dimensional disturbance for a certain
value of the Reynolds number, it also admits a two-dimensional disturbance
at a lower value of the Reynolds number.

In other words the theorem could also be stated as, "The minimum
Reynolds number for instability will be higher for an oblique three-dimensional
wave than for a purely two-dimensional one." Or, "To each unstable three-
dimensional perturbation there corresponds a two-dimensional one with a
lower Reynolds number (and with a higher longitudinal wavenumber).", in
fact, from (3.8)

Re2d =
α

k
Re ⇒ Re2d < Re. (3.12)
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Therefore, in the framework of the normal mode theory, only two-dimensional
perturbations will be considered. Anyhow, it should be reminded that the
Squire theorem only applies to parallel �ows. For more complicated �ows,
such as three-dimensional or curved mean �ows, three-dimensional perturba-
tions have to be considered. Moreover, theorem (3.4.1) does not exclude the
possibility that, for su�ciently high Reynolds number values, an unstable
oblique wave can occur even if the corresponding two-dimensional one (with
the same longitudinal wavenumber k) is stable.

3.5 Stability criterion in normal mode analysis

In section (2.2) a general de�nition of stability is given. The de�nition is
related to a measure of the size of the perturbation and so to its amplitude. In
the more general spatio-temporal stability analysis, α, γ and ω are complex.
By using the normal mode expansion (3.3) the amplitudes of the perturbative
functions ũ, ṽ, w̃ and p̃ are proportional to e−αix−γiz+ωit. In this way the fate
of stabilty is given by the sign of coe�cient αi, γi and ωi.

The wave velocity is de�ned as c = cr + ici = ω/α, while the phase
velocity is vp = ωr/k. For the temporal evolution, if ωi > 0 for one mode,
the corresponding perturbation exponentially grows until the non-linearities
become relevant to the system. The mode is unstable. If ωi = 0 the mode is
marginally stable, while if ωi < 0 the mode is stable. In general, as a small
perturbation can excite all the modes, it is su�cient that ωi > 0 for only one
mode to have an unstable con�guration for the �ow. On the contrary, it is
necessary that ωi < 0 for all the modes to have a stable con�guration.

Similar considerations can be made for the spatial evolution. If αi < 0
and γi < 0 for one mode the �ow is spatially unstable. On the contrary, if both
αi, γi ≥ 0 for all the modes the �ow is spatially stable. To separately consider
the temporal and the spatial stability it is su�cient to let αi = 0, γi = 0 and
ωi = 0, respectively.

Imposing Re and the perturbed base �ow, and solving eigenvalue problem
(3.10), the asymptotic fate of perturbation can be seen. Figure (3.2) shows
the stability region in plane (Re − k). Every point of this plane is charac-
terized by stability, marginal stability or instability. In particular there are
three regions and, for a �xed wavenumber k, a critical Reynolds number Rec
can be de�ned as the lowest Reynols number at which every wavenumber is
stable. From �gure (3.2) can be noticed that, for a �xed wavenumber k, a
�ow initially stable can become unstable by increasing its velocity.
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Figure 3.2: General form of stability loop for shear �ows.

3.6 Dispersion relation: convective and abso-

lute

The Orr-Sommerfeld eigenvalue problem (3.10) can be expressed as

[A(k;Re) + cB(k)]v = 0 (3.13)

where A and B are square and, in general, complex matrices. In principle, a
nontrivial solution of the homogeneous system can be obtained by imposing
that

det[A(k;Re) + cB(k)] = 0. (3.14)

However, the analytical solution of the problem is given only for very simple
base �ow pro�les (e.g. piecewise linear pro�les). Numerical means are usually
required for more complicate velocity pro�les. From the general solution of
the Orr-Sommerfeld equation at a �xed Re, the dispersion relation between
the wavenumber and the frequency can be obtained

D(k, ω;Re) = 0. (3.15)

and the explicit form holds

ω = ω(k;Re). (3.16)

The dispersion relation gives signi�cant information about the stability char-
acteristics k and ω, as a discrete set of eigenvalues ωn (with k and Re param-
eters) can be found. Imposing Re and the perturbed base �ow, and solving
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eigenvalue problem (3.14), the asymptotic fate of perturbation can be seen.
Figure (3.2) shows the stability region in plane (Re − k). Every point of
this plane is characterized by stability, marginal stability or instability. In
particular there are three regions and a critical Reynolds number Rec can
be de�ned as the lowest Reynolds number at which every wavenumber is
stable. From �gure (3.2) can be noticed that, for a �xed wavenumber k, a
�ow initially stable can become unstable by increasing its Reynolds number,
i.e. its velocity. Moreover, expression (3.16) is fundamental for a deeper
stability analysis involving the velocity group de�nition and the saddle point
perturbative hypothesis. First, the complex group velocity vg = ∂ω/∂k is
de�ned as the velocity of a wave packet evolving in time and space. Second,
a saddle point of the dispersion relation occurs when the velocity group vg
vanishes, that is

∂ω

∂k
= 0. (3.17)

In these regions of the phase space, the perturbation can grow in time as
there is a local increase of energy. In this context, the instability is de�ned
as convective if ωi < 0 for all the modes and if, for at least one mode, αi < 0
and γi < 0 with group velocity vg equal to zero. If the coordinate system
is moving with the phase velocity of the wave the perturbation is ampli�ed,
but it remains small at a �xed point as time passes. The disturbance is
convected away. The instability is absolute if, for at least one mode, ωi > 0
and the group velocity vg vanishes. The perturbation is locally growing in
time. The linear theory allows to describe the onset of instability as, when
a perturbation establishes, its �rst behaviour is exponential. However, the
subsequent temporal evolution is modi�ed by the non-linear dynamics. This
interaction makes the perturbations assume a behaviour which is no longer
exponential. Therefore, the linearized equations are useful to study the onset
and a possible development of the instability, and not to consider its following
evolution.
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Chapter 4

IVP: Temporal behaviour of small

perturbations

4.1 Introduction

The three-dimensional wake stability has been widely studied by means
of normal mode analysis (see section 3.3). However, as previously stated, in
this way only the asymptotic fate can be determined, regardless the tran-
sient behaviour and the underlying physical cause of any instability. Recent
shear �ows studies ([7], [10], Criminale et al. 1991 [11]) have been showing
the importance of the early time dynamics, which can in principle lead to
non-linear growth long before an exponential mode occurs. The recognition
of the existence of an algebraic growth, due (among other things) to the
non-orthogonality of the eigenfunctions (Sommerfeld 1949 [31]) and a pos-
sible resonance between Orr-Sommerfeld and Squire solutions [2], recently
promoted many contributions directed to study the early-period dynamics.
For fully bounded �ows works by Criminale et al. 1991 [11], Criminale et
al. 1997 [13], [17], [3], [27], [28], and for partially bounded �ows works by
Lasseigne et al. 1999 [22], [19], [14], can be cited. As for free shear �ows, the
attention was �rst aimed to obtain closed-form solutions to the initial-value
inviscid problem ([6]; Criminale et al. 1995 [12]) by considering piecewise
linear parallel basic �ow pro�les. Recently, by means of multiscale approach,
explicit solutions have been obtained for continuous parallel base �ow pro�les
([8]). The initial-value problem is here extended to include, in the stability
analysis, a more accurate description of the mean �ow. In particular, the lon-
gitudinal component of the Navier-Stokes expansion solutions is considered,
so that the problem is parameterized on x0 (the longitudinal coordinate) and
the Reynolds number Re. The formulation will be carried on similarly to
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what �rst proposed by Criminale & Drazin (1990) [10]. Early transient and
asymptotic behaviour are examined for the base �ow con�gurations corre-
sponding to Reynolds numbers (Re = 50; 100) of the order of the critical
value for the onset of the �rst instability, and for longitudinal sections x0

inside the intermediate region of the �ow where the entrainment process
is working. Di�erent physical inputs (linked to the shape, the obliquity,
the length and the symmetry of the perturbation) which most in�uence the
subsequent temporal evolution are presented. In the initial-value problem
formulation, the introduction of a complex wavenumber in the streamwise
direction is an innovative feature suggested by the combined spatio-temporal
modal stability analysis. The imaginary part of the complex longitudinal
wavenumber, which determines the longitudinal evolution of the perturbing
wave, plays an important role in the whole temporal evolution of the per-
turbation. In fact, varying the order of magnitude of this parameter leads
to actually di�erent temporal trends. A longitudinal asymptotic comparison
with modal results (carried out considering arbitrary initial conditions and
not waves related to the most unstable mode) is made. It can be demon-
strated that the agreement is good for both the frequency as well as the
temporal growth rate.

4.2 The initial-value problem

4.2.1 Formulation

The �rst orders (n = 0; 1; 2) of the inner longitudinal component velocity
�eld are taken as a �rst approximation of the base �ow, [1]. The analytical
expression is reported below for convenience

U(y;x0, Re) = 1− aC1√
x0

e
−Re

4
y2

x0 , (4.1)

where a is related to the drag coe�cient, (a = 1/4(Re/π)1/2CD(Re)) and
C1 = 1.22 + 0.000067Re2; is a integration constant that depends on the
Reynolds number. By changing the longitudinal coordinate x0, which plays
the role of parameter together with the Reynolds number, the base �ow
pro�le (7.1) will locally approximate the behaviour of the actual wake gen-
erated by the body. The wake sections taken into account are in the interval
3 ≤ x0 ≤ 50. Base �ow con�gurations corresponding to a Re of 50; 100 are
considered. In �gure (4.1) a representation of the wake pro�le at di�ering
longitudinal stations is shown. The continuity and Navier-Stokes equations
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(describing the system perturbed with small disturbances) are linearized and
expressed as 

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂z
= 0,

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽU

′
+

∂p̃

∂x
=

1

Re
∇2ũ,

∂ṽ

∂t
+ U

∂ṽ

∂x
+

∂p̃

∂y
=

1

Re
∇2ṽ,

∂w̃

∂t
+ U

∂w̃

∂x
+

∂p̃

∂z
=

1

Re
∇2w̃.

(4.2)

where ũ(t, x, y, z), ṽ(t, x, y, z), w̃(t, x, y, z) and p̃(t, x, y, z) are the pertur-
bation velocity and pressure respectively. The independent spatial variables
z and y are de�ned from −∞ to +∞, x from 0 to +∞. All physical quanti-
ties are normalized with respect to the free stream velocity, the spatial scale
of the �ow D and the density. By combining motion equations of (4.2) to
eliminate the pressure terms, the curl operator is applyed

∂ω̃x

∂t
+ U

∂ω̃x

∂x
− 1

Re
∇2ω̃x = −U

′ ∂w̃

∂x
,

∂ω̃y

∂t
+ U

∂ω̃y

∂x
− 1

Re
∇2ω̃y = −U

′ ∂ṽ

∂z
,

∂ω̃z

∂t
+ U

∂ω̃z

∂x
− 1

Re
∇2ω̃z = −U

′ ∂w̃

∂z
+ U

′′
ṽ.

(4.3)

From kinematics is known the relation

Γ̃ = ∇2ṽ =
∂ω̃z

∂x
− ∂ω̃x

∂z
. (4.4)

Combining in this way the �rst and the third equation of (4.3)

∇2ṽ = Γ̃,

∂ω̃y

∂t
+ U

∂ω̃y

∂x
− 1

Re
∇2ω̃y = −U

′ ∂ṽ

∂z
,

∂Γ̃

∂t
+ U

∂Γ̃

∂x
− 1

Re
∇2Γ̃ = U

′′ ∂ṽ

∂x
.

(4.5)
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In so doing, the three coupled equations (4.5) describe the perturbed sys-
tem. The second and the �rst equation are the Squire and Orr-Sommerfeld
equations respectively, known from the classical linear stability analysis for
three-dimensional disturbances and written in partial di�erential equation
form. From kinematics, the relation (4.4) physically links together the per-
turbation vorticity in the x and z directions (ω̃x and ω̃z, respectively) and
the perturbation velocity �eld.

The three equations of (4.5) fully describes the perturbed system in terms
of vorticity. This formulation is not that common in linear stability analysis,
although the dynamics description is physically more appropriate in terms of
vorticity than velocity. For continuous pro�les, the governing perturbative
equations cannot be analytically solved in general, but they assume a reduced
form in the free stream (Blossey et al. 2007 [8]). Equations of (4.5) show that
the only cause of any perturbation vorticity production is the interaction be-
tween the mean vorticity in z-direction (Ωz = −dU/dy) and the perturbation
strain rates in x and z directions (∂ṽ/∂x and ∂ṽ/∂z, respectively).

4.2.2 Laplace-Fourier transforms

The perturbations are Laplace and Fourier decomposed in the x and z di-
rections, respectively. A complex wavenumber α = αr+ iαi along the x coor-
dinate, as well as, a real wavenumber γ along the z coordinate are introduced.
In order to have a �nite perturbation kinetic energy, the imaginary part αi of
the complex longitudinal wavenumber can only assume non-negative values.
In so doing, perturbative waves can spatially decay (αi > 0) or remain con-
stant in amplitude (αi = 0). The perturbation quantities (ṽ, Γ̃, ω̃y) involved

in the system dynamics are now indicated as (v̂, Γ̂, ω̂y), where

f̂(y, t;α, γ) =

∫ +∞

−∞

∫ +∞

0

f̃(x, y, z, t) e−i(αx+γz) dx dz (4.6)

indicates the Laplace-Fourier transform of a general dependent variable in
the α − γ phase space and in the remaining independent variables y and t.
The transformed governing partial di�erential equations are
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∂2v̂

∂y2
−
(
k2 − α2

i + 2ik cosϕαi

)
v̂ = Γ̂,

∂ω̂y

∂t
= − (ik cosϕ− αi)Uω̂y − ik sinϕ

dU

dy
v̂+

+
1

Re

[
∂2ω̂y

∂y2
−
(
k2 − α2

i + 2ik cosϕαi

)
ω̂y

]
,

∂Γ̂

∂t
= (ik cosϕ− αi)

(
d2U

dy2
v̂ − U Γ̂

)
+

+
1

Re

[
∂2Γ̂

∂y2
−
(
k2 − α2

i + 2ik cosϕαi

)
Γ̂

]
.

(4.7)

where ϕ = tan−1(γ/αr) is the perturbation angle of obliquity with respect
to the x − y physical plane, k =

√
γ2 + α2

r is the polar wavenumber and
αr = k cosϕ, γ = k sinϕ are the wavenumbers in x and z directions respec-
tively. The imaginary part αi of the complex longitudinal wavenumber is
a spatial damping rate in streamwise direction. In �gure (4.1) the three-
dimensional perturbative geometry scheme is shown. In particular the e�ect
of obliquity angle on perturbation is shown in �gures (4.2), (4.3) and (4.4).
From equations (4.7), it can be noted that there can't be either advection
or production of vorticity in the free stream. Vorticity can only be di�used
as just the di�usive terms remain when y → ∞. Perturbation vorticity van-
ishes in the free stream, regardless if it is initially inserted there (if inserted,
vorticity is �nally dissipated in time when y → ∞). This means that the
velocity �eld is harmonic if y → ∞.

The introduction, through the Laplace decomposition in x-direction, of a
complex wavenumber α is an innovative feature, as it permits to carry out
a combined spatiotemporal linear stability analysis that is a quite standard
procedure for normal mode theory, but is not that common for initial-value
problems. Both transient behaviour and asymptotic fate of the disturbances
will be discussed in the following considering the resulting in�uence of this
new characteristic. Combining Fourier transformed continuity equation

−dv̂

dy
= iαû+ iγŵ,

with Fourier transformed de�nition of vorticity along y

ω̂y = iγû− iαŵ,
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Figure 4.1: Perturbation scheme. Red and blue waves represents pertur-
bations with obliquity angle ϕ = 0, and π/2 respectively. Gray surfaces
represents the base �ow pro�le U(y;x0, Re) at distances x0 = 5D, 10D, 15D
from the cylinder where D is the cylinder diameter

gives

û =
i

k2

(
−γ ω̂y + α

dv̂

dy

)
,

ŵ = − i

k2

(
α ω̂y + γ

dv̂

dy

)
.

(4.8)

Once system (4.7) is solved and v̂, ω̂y are known, one can use the above
relations (4.8) to �nd û and ŵ.

4.2.3 Initial and boundary conditions

Governing equations (4.7) need proper initial and boundary conditions
to be solved. Among all solutions, those whose perturbation velocity �eld is
zero in the free stream are sought. Periodic initial conditions for
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∂2v̂

∂y2
−
(
k2 − α2

i + 2ik cosϕαi

)
v̂ = Γ̂, (4.9)

can be shaped in terms of set of functions in the L2 Hilbert space, as

v̂(0, y) = e−(y−y0)2 cos (n0(y − y0)) , v̂(0, y) = e−(y−y0)2 sin (n0(y − y0)) ,

for the symmetric and the asymmetric perturbations, respectively. Param-
eter n0 is an oscillatory parameter for the shape function, while y0 is a
parameter which controls the distribution of the perturbation along y (by
moving away or bringing nearer the perturbation maxima from the axis of
the wake). The transversal vorticity ω̂y(0, y) is chosen initially equal to zero
throughout the y domain, to directly observe which is the net contribution of
three-dimensionality on the transversal vorticity temporal evolution. Results
will later show how the initial introduction of normal vorticity can in�uence
the evolution of disturbances. The trigonometrical system is a Schauder
basis in each space Lp[0; 1], for 1 < p < 1. More speci�cally, the system
(1, sin(n0, y), cos(n0, y), . . . ), where n0 = 1, 2, . . . , is a Schauder basis for the
space of square-integrable periodic functions with period 2π. This means
that any element of the space L2, where the dependent variables are de�ned,
can be written as an in�nite linear combination of the elements of the basis.
Once initial and boundary conditions are properly set, the partial di�erential
equations (4.7) are numerically solved by method of lines on a spatial �nite
domain [−yf ,+yf ]. The value yf is chosen so that the numerical solutions
are insensitive to further extensions of the computational domain size. Here,
yf is of the order of magnitude 101, i.e. yf ≈ 3λ where λ is the perturbation's
wavelength (λ = 2π/k). The spatial derivatives are centre di�erenced and
the resulting system is then integrated in time by an adaptative multi-step
method (variable order Runge-Kutta (2,3) pair of Bogacki & Shampine ODE
solver).

4.3 Measure of the growth

One of the salient aspects of the IVP is the early transient evolution of
various initial conditions. To this end, a measure of the perturbation growth
can be de�ned through the disturbance kinetic energy density in the plane
(α, γ)

e(t, α, γ, Re) =
1

2

1

2yd

∫ yd

−yd

(
|û|2 + |v̂|2 + |ŵ|2

)
dy, (4.10)
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that could be also expressed as

e(t, α, γ, Re) =
1

2

1

2yd

1

|α2 + γ2|

∫ yd

−yd

(∣∣∣∣∂v̂∂y
∣∣∣∣2 + ∣∣α2 + γ2

∣∣ |ω̂y|2 + |ŵ|2
)
dy,

where 2yd is the extension of the spatial numerical domain. The value yd is
de�ned so that the numerical solutions are intensitive to further extensions
of the computational domain size. The length yd is taken in function of the
wavenumber k, in particular

yd = 40, k ∈ [ 0.45 , 0.7 ],

yd = 30, k ∈ [ 0.75 , 1 ],

yd = 20, k ∈ [ 1.2 , 500 ].

The total kinetic energy can be obtained by integrating the energy density
over all αr and γ. The ampli�cation factor G(t) can be introduced in terms
of the normalized energy density

G(t, α, γ) =
e(t;α, γ)

e(t = 0;α, γ)
. (4.11)

This quantity can e�ectively measure the growth of a disturbance of wavenum-
bers (α, γ) at the time t, for a given initial condition at t = 0 (Criminale et
al. 1997 [13]; Lasseigne et al. 1999 [22]). Computations to evaluate the
long-time asymptotics are made integrating the equations forward in time
beyond the transient, until become true the condition |dG/dt| < 10−4 for
stable wavenumbers, and |dG/dt| > 104, for unstable wavenumbers.

The angular frequency (pulsation) ω of the perurbation can be introduced
by de�ning a local, in space and time, time phase φ of the complex wave at
a �xed transversal station (for example y = 1) as

v̂(y, t;α, γ,Re) = At(y;α, γ,Re) e iφ(t), (4.12)

and then computing the time derivative of the phase perturbation φ

ω(t) =
dφ(t)

dt
. (4.13)

Because φ is de�ned as the phase variation in time of the perturbative wave,
it is reasonable to expect constant values of frequency, once the asymptotic
state is reached.
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Figure 4.2: Perturbation wave with obliquity angle ϕ = 0

Figure 4.3: Perturbation wave with obliquity angle ϕ = π/4
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Figure 4.4: Perturbation wave with obliquity angle ϕ = π/2
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Chapter 5

Exploratory analysis of the

transient dynamics

The linear stability of the two-dimensional wake is studied as a three-
dimensional initial-value problem through the formulation presented in the
previous chapter. Two main innovative features are introduced here. First,
the mean �ow (which is parameterized with respect to the Reynolds number
and the longitudinal coordinate) is approximated through the longitudinal
component of the inner Navier-Stokes expansion 4.1 (see [1]) to include the
slow spatial evolution of the system in the stability analysis. Then, a complex
wavenumber in streamwise direction is considered when the transformation
to the phase space is performed. The leading equations are no more explic-
itly solvable, but numerical means are required. In synthesis, Laplace and
Fourier decompositions are performed in streamwise and spanwise directions,
respectively. The perturbation is characterized by real streamwise and span-
wise wavenumbers, and a uniform or damped spatial distribution along the
longitudinal direction. Ampli�ed streamwise distributions are not considered
since the perturbation kinetic energy is required to be �nite. The resulting
equations in the phase space are numerically solved after appropriate initial
and boundary conditions are imposed. In 5.1, an exploration of di�erent
transient con�gurations will be shown with particular attention to those pa-
rameters (such as the angle of obliquity, the length and the symmetry of
the initial condition) which most a�ect the early growth and the asymptotic
fate. In section 5.2 the perturbation asymptotic states are reproduced and,
in the longitudinal case, it can be demonstrated that the agreement with
modal analysis turns out to be good for both symmetric and asymmetric
initial conditions. Concluding remarks are discussed in 5.4.
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5.1 Transient evolution: parameter sensitivity

analysis

There are �ve parameters which play an important role in this perturba-
tive system evolution, these are the Reynolds number (Re), the wake con�g-
uration (x0), the symmetric/asymmetric initial condition properties and the
obliquity angles (ϕ), and the wavenumbers k. Since the problem has a lot of
parameters, the analysis below is made changing one or two of them at the
same time.
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Figure 5.1: The growth factor G, obtained at high Reynolds number (Re =
100), intermediate �eld con�guration (x0 = 10), with all possible combina-
tions among asymmetric or symmetric initial condition and obliquity angle
(ϕ = 0, π/4, π/2). On the left is shown a case of small wavenumber (k = 1)
and on the right a case of large wavenumber (k = 10).

It is evident that long waves (i.e. waves with a small wavenumber) can
become unstable with determinated values of obliquity angles. From the left
picture of �gure (5.1) can be deduced that exist a value of obliquity angle
between π/4 and π/2 that distinguishes the two kind of beaviour (stable
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or unstable). Moreover the unstable perturbation with asymmetric initial
condition have a much longer transient (like 100 times bigger).

The �gure on the right shows a beaviour that is more universal, i.e. the
e�ect of the initial condition is realatively small. It can be only observed that
all the perturbations are stable. Both graphics show that the longitudinal
perturbations (ϕ = 0) have the fastest evolution, while the pure transversal
ones (ϕ = π/2) have the slowest transient.

This particular case shows a behaviour that is generally observed in this
analisys, that is, asymmetric conditions lead to transient evolutions that is
last longer than the corrisponding symmetric ones, and demonstrates that
the transient growth for a longitudinal wave is faster than transversal ones.

Another feature could be noticed whatching the �rst part of the transient.
As shown in �gure (5.1) and (5.1) the transient shows a modulation. The
modulation corresponds to a modulation in amplitude of the pulsation of the
instability wave (see [10]). The quantity

∣∣G− Ḡ
∣∣, (where Ḡ is the line that

have the best �t with G in the mean square root error sense) measure the
obscillation of G between Ḡ. Should be noted that this modulation occurs
in every solution, but in some is more evident.

The appearence of di�erent scales associated to the di�erent perturbation
wavelengths suggests that a self-similarity approach should be adopted to
describe the temporal evolution. A continuous instantaneous normalization
can be used by de�ning

t∗ = t/τ,

with

τ =
G(t)∣∣dG
dt

∣∣ .
It should be noted that a subset of intermediate-short range waves showing
self-similarity features can be observed. It should be noted that a sub set of
intermediate-short waves (k ∈ [6, 100]) showing self-similarity features can be
observed. Assuming that for this range the ampli�cation factor distribution
is scale invariant, then

G(λt) = λhG(t),

with unique h. It can be observed, that

G(t∗) = G

(
t

G(t)/
∣∣dG
dt

∣∣
)

≈ G(t)

τ
=

∣∣∣∣dGdt
∣∣∣∣ ,

so that λ = 1/τ and h = 1. In �gure (5.2) the growth factor G is reported as
a function of t∗. It should be noted that a subset of long-intermediate waves
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showing self-similarity, i.e. for every wavenumber in this subset the energy
pro�les collapse in only one.
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Figure 5.2: Self-similarity.

It is interesting to analyze the combined e�ect of Reynolds number and
wake con�guration. In �gure (5.3) is showed a comparision between ampli�-
cation growth factors G(t) of perturbations with a small and large wavenum-
ber.

It shows the G evolution in the system that evolve at di�erent Reynolds
number and both the wake con�gurations. It is evident that

• the far wake con�guration have a slower transient with each Reynolds
numbers than the intermediate one,

• �xed x0 the transient evolution goes faster as the Reynolds number
increase,

• as the Reynolds number increase the unstable range become bigger too.

This sensitivity analysis can be concluded observing that �xed Reynolds
numbers, wake con�guration, and obliquity angle the slowest ampli�cation
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Figure 5.3: The growth factor G, obtained by all possible combination among
high Reynolds number (Re = 100, 50, 30) and itermediate �eld wake con�g-
uration x0 = 10, 50, for longitudinal waves (ϕ = 0) and symmetric initial
condition. In the left picture is shown an example of small wavenumber
(k = 1) while in the right a case of large wavenumber (k = 10).

factor G evolutions are always related to the link stable and unstable be-
haviours.
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Figure 5.4: Energy transient.
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Figure 5.5: Energy transient.
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5.2 Perturbation energy spectra

The aim of the thesis is to investigate and quantify the role of nonlin-
ear interaction between di�erent modes of turbulent �ow. The focus will be
put on the very di�erent scenarios that may occur in the transient for ar-
bitrary small three-dimensional perturbations imposed on a free shear �ow.
In particular one wants to understand what extent spectral representation
highlights the non linear interaction among di�erent scale in comparision to
the perturbative state.

It is known that instability �ows often evolve into an important state
of motion called turbulence, with a chaotic three-dimensional vorticity �eld
with a broad spectrum of small temporal and spatial scales. One of the most
important results on turbulent �eld is given by Kolmogorov. Among all his
results, the most useful in this study is the −5/3 power-law of the energy
spectrum over the inertial range in a fully developed turbulence (see section
(2.3)).

Since turbulence occurs in asymptotic state one have to de�ne the end of
the transient, i.e. the asymptotic state. Now, it is possible to compute even
the exponent of the energy spectrum of the inertial range in the perturbative
state and compare it with the exponent corrisponding developed turbulent
state.

In the case of small perturbation, the nonlinear term is negligible com-
pared to the other terms in the Navier-Stokes. Therefore a linear equation of
motion can be used (linear theory of hydrodynamic stability). This equation
should be subject to linearized convective transport, molecular di�usion and
linearized vortical stretching. Leaving aside nonlinear interaction among the
di�erent scales, these features are tantamount to the features of the turbulent
state.

Building a temporal observation window for the transient evolution of
a large number (≈ 103) of arbitrary small three-dimensional perturbation
acting on a typical shear �ow, the resultant �ows are subject to all the
processes included in the perturbative Navier-Stokes equations.

Two possible situations can appear

• the exponent di�erence is large and is a quantitative measure of the
non linear interaction in spectral terms,

• the exponent di�erence is small. This would be even more interesting,
because it would indicate a much higher level of the universality of
the inertial range, which is not necessary, associated to the non linear
interaction.
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In this section the exponent of the energy spectrum of arbitrary longitudi-
nal and transversal perturbation acting on the blu�-body wake is determined.
In order to do this, is important to �nd the time of ending transient Te, i.e.
the time that perturbation take to get in their asymptotic conditions. The
criteria used to determine asymptotic state is

1. |dG/dt| < ϵst = 10−4, for stable wavenumbers,

2. |dG/dt| > ϵun = 104, for unstable wavenumbers.

For stable perturbations, since G(t) is decaying to zero, the time Te is de�ned
as the �rst time such that condition 1 is satis�ed. Also, since the waves are
all in a state of self-similarity, for unstable wavenumbers condition 2 has been
introduced. However this criterion is not su�cient, it can be applied only if
is known a priori the behaviour of the perturbation.

The energy spectrum is then evaluated when the temporal variation of
G(t) of each wave is crossing a threshold. By recalling that G(t∗) ≈ |dG/dt|
in the intermediate range, the perturbation system can be considered in its
asymptotic state. Every wavelength shows a characteristic temporal scale,
τϵ(k), for which |dG/dt| satis�es condition 1 or 2. This allows to determine a
value of G(t) and the corrisponding distribution over the wavenumber range.
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Figure 5.6: Energy spectrum.
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Figure 5.8: Time spectrum.
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5.3 Collective behaviour of perturbations

The aim of the thesis is to see how much are important the non-linear
terms in turbulence. The idea is to construct a turbulent �ow by superposi-
tion of single waves with di�erent wavenumber (the solutions of (4.7)), and
then to study the �ow so obtained with turbulence methods. Since equa-
tions (4.7) are linear, the superpositions principle holds. In other words,
the sum of solutions is a solution. The principal feature of turbulence is
randomness, so for this reason the superposition should be governed by a
random law. This is done combining solutions using the MATLAB script
Collective_random_energy_behaviour (that is explicitly written in Ap-
pendix A). The sum of perturbations is possible thanks to the script
Interpolated_velocity that, �xed a value y0 of y (in this case y0 = 0),
interpolate the velocity components on the same time instants.

In this work as been considered the case Re = 30, x0 = 50 because
for this set of parameters, all the wavenumbers presents a stable character.
Considering a set of 34 wavenumbers (from k = 3 to k = 100), the two
possible initial condition (symmetric/asymmetric) and �ve obliquity angles
(ϕ = 0, π/4, π/2, −π/4, −π/2), there are 340 waves that can be summed.
Long waves (k ∈ [3, 10]) have a transient time that reach 50 time scale, while
short waves (k ∈ [15, 100]) ends after 10 time scale. This means that short
waves are faster than long waves. Furthermore short waves decades very
quickly, so is di�cult to notice their presence. In order to allow to see short
waves a normalization of velocity components u, v w has been made. The
turbulent randomness has been simulated introducing two random parame-
ters R, IT respectively

1. the time to enter into the collective system,

2. the time on the transient of the single wave that is taken as its starting
point.

In such a way waves enters randomly in time and space (in the sense that
can enter out of phase). When a wave �nish its own transitory, can randomly
enter again in the system because it takes two new random parameters R and
IT. This method allow to sum waves on very long times, and not only on the
longer transitory of the system (50 times scale).

In �gure (5.9) the temporal evolution of the collective perturbative �ow
is shown. The other way to study the collective behaviour is visulizing the
perturbative velocity component u, v, w and energy e as functions of spatial
coordinates x and z, as shown in �gure (a), (b) of (5.10). It is evident from
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the two pictures of (5.10) the presence of long waves (k small) and short
waves (k large).
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Figure 5.9: Collective perturbative energy evolution. The evolution time
varies from t = 0 to t = 10000 time scales. The �nal time is taken large
(t = 10000) in order to allow long waves to enter again in the system while
their transient is �nished (long waves last through 50 time scales). In �gure
(a) is presented the complete evolution. Figure (b), (c), (d) are enlargements
of (a), respectively on 1000, 100, 10 time scales.
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Figure 5.10: Collective behaviour. In �gure (a) the collective u(x, z) distri-
bution is shown. In this picture are evident long (smooth waves) and short
waves (peaked waves). In �gure (b) the collective energy ditribution e(x, z)
is presented.
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5.4 Conclusions

The experimental approach (based on the numerical determination of a
large number of perturbations) here proposed to approximate the general
solution of a Navier-Stokes �eld leads us to observe that, whether the waves
are aligned with the same exponent −5/3 that is observed in the spectrum
of the velocity �uctuation of fully developed turbulent �ows, where the non
linear interaction is considered dominant. At the moment, one can conclude
that the spectral power-law scaling of intermediate/inertial waves (with an
exponent close to −5/3) is a general dynamical property of the Navier-Stokes
solutions which encompass the nonlinear interaction. A good ageement with
experimental data.
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Chapter 6

Code implementation and

optimization

In this chapter numerical code features are presented. In order to solve
problem (4.7), numerical codes has been developed using the softwareMatlab.
A previous version of the routine has been optimized to obtain more e�ciency
in terms of computational velocity and memory exploit. Implemented codes
are shown in Appendix A.

In section (6.1) numerical solutor for problem (4.7) is presented. The
numerical scheme is reported and the reasons why this is the best method
for this problem are explained.

In section (6.3) the optimization task is exposed. Code optimization
involves the application of rules and algorithms to program code with the
goal of making it faster, smaller, more e�cient, and so on. Two classical
tecniques has been used: vectorization and array preallocation. MATLAB is
a high-level language and interactive environment that enables to perform
computationally intensive tasks. It is a program that was originally designed
to simplify the implementation of numerical linear algebra routines, so its
easy to enter matrices and vectors, and manipulate them.

In section (6.4) code automation features are presented.

6.1 Ode solver

Solution of (4.7) has been found using the ODE solver ode23, that solve
the equation

My
′
= H(x,y),

using the Bogacki-Shampine method. Since in this case matrixM is constant
(in particular M = I) and problem (4.7) is moderately sti�, the best solver
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is ode23.
A comparision between other methods has been done. In �gure (6.1) is

shown the energy grow factor G(t) transitory obtained with di�erent solvers.
From this picture can be seen that ode23 don't gives numerical oscillations
that other solvers develop.

As said before, in Matlab solver ode23, the Bogacki-Shampine (Shampine
& Reichelt 1997 [29]) method is implemented. The Bogacki-Shampine method,
proposed by Przemyslaw Bogacki and Lawrence F. Shampine in 1989 (Bo-
gacki& Shampine 1989 [5]), is a Runge-Kutta method of order three with four
stages with the First Same As Last (FSAL) property, so that it uses approxi-
mately three function evaluations per step. It has an embedded second-order
method which can be used to implement adaptive step size. Low-order meth-
ods are more suitable than higher-order methods like the Dormand-Prince
method (implemented in solver ode45) of order �ve, if only a crude approx-
imation to the solution is required. Bogacki and Shampine argue that their
method outperforms other third-order methods with an embedded method
of order two. Following the standard notation, the di�erential equation to
be solved is y

′
= f(t, y). Furthermore, yn denotes the numerical solution at

time tn and hn is the step size, de�ned by hn = tn+1 − tn. Then, one step of
the Bogacki-Shampine method is given by:

k1 = f(tn, yn)

k2 = f
(
tn +

1
2
hn, yn +

1
2
hk1
)

k3 = f
(
tn +

3
4
hn, yn +

3
4
hk2
)

yn+1 = yn +
2
9
hk1 +

1
3
hk2 +

4
9
hk3

k4 = f (tn + hn, yn+1)

zn+1 = yn +
7
24
hk1 +

1
4
hk2 +

1
3
hk3 +

1
8
hk4.

Here, yn+1 is a third-order approximation to the exact solution. The method
for calculating yn+1 is due to Ralston (1965). On the other hand, zn+1 is a
second-order approximation, so the di�erence between yn+1 and zn+1 can be
used to adapt the step size. The FSAL property is that the stage value k4
in one step equals k1 in the next step; thus, only three function evaluations
are needed per step.
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Figure 6.1: Comparision between Matlab solvers. In this picture the growth
factor G(t) of Re = 100, x = 50, asym, ϕ = π/4, k = 10 has been calcu-
lated using di�erent ode solvers. ode45 and ode113 presents a considerable
numerical obscillation while ode23t gives numerical jumps.

6.2 Accuracy order of numerical derivatives

We also investigated how the choice of numerical method which approxi-
mates the derivative of the ampli�cation factor a�ects the value of this slope.
In Figure6.2 is shown dG/dt computed by �nite di�erence of di�erent order:

• 2nd order accuracy,

dgi =
gi+1 − gi−1

ti+1 − ti−1

• 4th order accuracy

dgi =
gi−2 − 9gi−1 + 9gi+1 − gi+2

ti+6 − ti−6

• 6th order accuracy

dgi =
−gi−3 + 9gi−2 − 45gi−1 + 45gi+1 − 9gi+2 + gi+3

ti+30 − ti−30
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The comparison among the methods is made for a large (k = 1) and an
inertial (k = 10) wave, at high Reynolds number (Re = 100), intermediate
�eld wake con�guration (x0 = 10) and symmetric input. The three �nite dif-
ferences seems completely equivalent, thus for simplicity we will use always
the second order one. The last question is about the ranges classi�cation.
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symm i.c., φ=0

 

 

 order 2
 order 4
 order 6k=10

k=1

Figure 6.2: Comparison between derivative of ampli�cation factor obtained
by �nite di�erence with di�erent accurancy.

We want investigate how our classi�cation criterion of long-inertial and dis-
sipative range a�ects the the slopes computation. It is thus considered the
two very di�erent con�gurations (represented in �gure (6.3)) and computed
the slopes of the spectrum in the three ranges, varying slightly the extremes
that de�ne them.

Long Range ϕ = 0 ϕ = 0
0.45 ≤ k ≤ 1 -0.8828 -1.9549
0.5 ≤ k ≤ 0.95 -0.8623 -1.9555
0.55 ≤ k ≤ 0.9 -0.8592 -1.9592
0.45 ≤ k ≤ 1.2 -0.8177 -1.9476

std 0.0273 0.0182

Inertial Range ϕ = 0 ϕ = 90
3.5 ≤ k ≤ 50 -1.8144 -2.0133
3 ≤ k ≤ 55 -1.8538 -2.0685
4 ≤ k ≤ 45 -1.8025 -1.9990
4.5 ≤ k ≤ 40 -1.7841 -2.0107

std 0.0295 0.0310

Table 6.1: Energy spectrum slope. Long and inertial range
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Dissipative Range ϕ = 0 ϕ = 90
50 ≤ k ≤ 500 -2.0890 -2.0493
55 ≤ k ≤ 450 -2.0471 -2.0659
60 ≤ k ≤ 350 -2.0381 -2.0281
65 ≤ k ≤ 300 -1.9978 -2.0685

std 0.0244 0.00186

Table 6.2: Energy spectrum slope

Varying slightly the de�nition of the three ranges one obtain the slopes
summarized in tables 6.2 and 6.2, where std is the standard deviation. Can
be observed that the percentage error is between 1.82% and 3.1% that is an
acceptable error bar.
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Figure 6.3: Energy spectrum obtained at high Reynolds number (Re = 100),
intermediate �eld wake (x= = 10), symmetric initial condition longitudinal
(on the left) and transversal (on the right) waves. Green, magenta and cyan
line indicate long, inertial and dissipative ranges de�ned as in the �rst lines
of tables 6.2 and 6.2.
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6.3 Optimization

Optimization is the process of transforming a piece of code to make more
e�cient (either in terms of time or space) without changing its output or side-
e�ects. The only di�erence visible to the code's user should be that it runs
faster and/or consumes less memory. Since Matlab 5.0, a tool called pro�ler
helps determine where the bottlenecks are in a program. Using the pro�ler
one can identify which functions in the code consume the most time, and
so where the optimizing techniques can be applied. The techniques used,
vectorization and array preallocation, are presented in section (6.3.1) and
(6.3.2) respectively. To show optimizaton improvement, a speed-up analysis
on numerical code for problem (4.7) has been done. In �gure (6.4) the mean
ratio of the computing times Tno and To (respectively non-optimized and
optimized time), for di�erent wavenumbers k is shown. From �gure (6.4)
can be observed that optimized code produce outputs at least 11 times faster
than non-optimized code. In conclusion, whenever the speed of MATLAB
code is important, optimization is fundamental.

6.3.1 Array preallocation

Though MATLAB will automatically adjust the size of a matrix (or vec-
tor) it is usually a good idea to preallocate the matrix. Preallocation incurs
the cost of memory allocation just once, and it guarantees that matrix el-
ements will be stored in contiguous locations in RAM (by columns). The
for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely a�ect performance and
memory use. For example consider the following code that creates a scalar
variable x, and then gradually increases the size of x in a for loop instead of
preallocating the required amount of memory at the start

x = 0;

for k = 2:1000

x(k) = x(k-1) + 5;

end

Changing the �rst line to preallocate a 1-by-1000 block of memory for x
initialized to zero there is no need to repeatedly reallocate memory and move
data as more values are assigned to x in the loop

x = zeros(1, 1000);

for k = 2:1000

x(k) = x(k-1) + 5;

end
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Repeatedly resizing arrays often requires that MATLAB spend extra time
looking for larger contiguous blocks of memory and then moving the array
into those blocks. Code execution can be improved on time by preallocating
the maximum amount of space that would be required for the array ahead
of time. Perhaps a more important bene�t is avoiding fragmentation. If the
entire data object is allocated together rather than in small pieces, freeing
it will de�nitely return usable contiguous space of the entire size to the free
memory pool to be used by later allocations. On the other hand, if you
allocate each small piece separately, there's a good possibility that they won't
be contiguous.

6.3.2 Vectorization

The power of Matlab is that can manipulate matrices as a whole, so to
improve code speed is necessary to eliminate loops where there are element-
by-element operations. This technique, known as vectorization, allow to ex-
ploit Matlab skills at best. The MATLAB software uses a matrix language,
which means it is designed for vector and matrix operations. Vectorization
means converting for and while loops to equivalent vector or matrix oper-
ations. A simple example of vectorization can be made by considering the
non-vectorized code

i = 0;

for t = 0:.01:10

i = i + 1;

y(i) = sin(t);

end

and the vectorized version of the same code

t = 0:.01:10

y = sin(t);

The second script executes much faster than the �rst and is the way
MATLAB is meant to be used. Vectorization is often a smooth process;
however, in many speci�c cases, it can be di�cult to construct a vectorized
routine. The speed of a numerical algorithm in MATLAB is very sensitive
to whether or not vectorized operations are used.

6.4 Code automation

Another code improvement has been done implementing an automatic
change of simulation's parameters, and a dynamic generation of folders and
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Figure 6.4: Algorithm speed-up. Times Tno , To are respectively the compu-
tational times of non-optimized and optimized code, k is the wavenumber.
From this �gure is clear that in mean optimized code runs 10 times faster
than non-optimized one.

�les names. The idea is to change parameters with loop cycles. At every loop
the code take new parameters from arrays (where parameters are stored).
When a simulation is �nished the code continue with the next, until all the
parameters are used. This strategy allow to avoid to waste time with a
manual parameter change, and more important, the code can indipendently
run for all the parameters without help. In other words one don't have to
continuously follow the code waiting to launch the next simulation.

When the code is running, folders and �les are created and organized into
a hierarchy tree structure, following the level order

Re → x → sym/asym → ϕ → k.

Text �les containing the solution are stored into "leaf" folders at level k. An
example of �lenames are reported below

Re_100_x_50_asym_phi_45_k_8.5_u_1.txt

Re_100_x_50_asym_phi_45_k_8.5_v_1.txt

Re_100_x_50_asym_phi_45_k_8.5_w_1.txt

Re_100_x_50_asym_phi_45_k_8.5_t_1.txt

Re_100_x_50_asym_phi_45_k_8.5_omega_y_1.txt

Re_100_x_50_asym_phi_45_k_8.5_energy_1.txt
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At every loop, �le and folder names are made by converting in string
format and concatenating the new parameters. Code automation really can
make a di�erence especially when it comes to reducing human errors and
improving work speed. To see explicitly how this is done see Appendix A.

6.5 Perturbative solution data-base

All the simulation's output �les are stored into a on-line disk, that can be
found at IP address 130.192.25.166. The data-base's organization is analo-
gous to the hierarchy tree structure described in section (6.4). Furthermore,
using an FTP client is easy to download �les from the disk.
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Appendix A

Matlab code

In order to solve problem (4.7), numerical codes has been developed. The
code has been implemented using the software Matlab. A previous version of
the routine has been optimized to obtain more e�ciency in terms of compu-
tational velocy and memory exploit.

A.1 Launch in sequence

De�ned the parameters, the routine Launch_in_sequence allow to launch
simulations. Every simulation ends when the asymptotic conditions is sat-
is�ed, and when this condition is reached the program make an automatic
parameters change in order to continue with the next simulation.

% Launch_in_sequence

close all

clear all

global x R phi alpha xx rr ss gg dd alpha_i alpha_r ALPHA gamma beta0 eps T0

global h h2 y0 y N v0 omega0 U dU_dy d2U_dy2 A

global CondIniz CR OR CurrentRun out simulationfolder tend tlim m

disp('-----------------------------------------------')

disp('Launch in sequence')

% Phisical parameters of simulation

R = 30; % 30 50 100

x = 10; % 10 50

phi = pi/4; % 0 pi/4 pi/2

grad = 45; % 0 45 90

ss = 'asym'; % sym o asym

% Variable for directory and files name

rr = num2str(R);

xx = num2str(x);

gg = num2str(grad);

% Define the name of simulation's directory

simulationfolder = ['D:\simulazioni\Transient_simulation

\Re_' rr '_x_' xx '\Re_' rr '_x_' xx '_' ss '\Re_' rr '_x_' xx '_' ss '_phi_' gg];

% Polar wavenumbers
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kappa = [0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.2 1.5 2,2.5 3...

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 12 15 20 25 30 35 40 45 ...

50 55 60 65 70 75 80 85 90 95 100 125 150 200 250 300 350 450 500];

C_1 = 1.22 + 0.000067*(R^2);

eps = 1/R;

h = 0.05;

h2 = h^2;

y0 = 0;

beta0 = 1;

for i=1:6

IND = [1 6]*(i==1)+[7 12]*(i==2)+[13 16]*(i==3)+[17 31]*(i==4)+[32 49]*(i==5)+[50 58]*(i==6);

T0 = 200*(i==1)+200*(i==2)+100*(i==3)+50*(i==4)+10*(i==5)+2*(i==6);

Y = [-40 40]*(i==1)+[-30 30]*(i==2)+[-20 20]*(i>=3);

y = Y(1):h:Y(2);

for m=IND(1):IND(2)

alpha = kappa(m);

dd = num2str(alpha);

alpha_r = alpha*cos(phi);

alpha_i = 0.0;

gamma = alpha*sin(phi);

ALPHA = alpha^2 - alpha_i^2 + 2*1i*alpha_r*alpha_i;

N = length(y);

% Base flow

U = 1 - 1/sqrt(x)*C_1*exp(-0.25*R*y.^2/(x));

dU_dy = 0.5/sqrt(x)*C_1*R/x*y.*exp(-0.25*R*y.^2/(x));

d2U_dy2 = 0.5/sqrt(x)*C_1*R/x*exp(-0.25*R*y.^2/(x))-...

0.25/sqrt(x)*C_1*(R*y/x).^2.*exp(-0.25*R*y.^2/(x));

% Construction of the Laplacian Matrix A and call ode113 to solve evolutive

% equations for Gamma and omega_y. Solution vector is u_sol=[Gamma omega_y]

d2 = 1/h2*ones(N,1)*[1 -2 1];

d2(1,2) = 0; d2(2,3) = 0; d2(end-1,1) = 0; d2(end,2) = 0;

% matrix for computing laplacian (with Robin boundary conditions).

d2 = d2+-ALPHA*ones(N,1)*[0 1 0];

d2(1,2) = -sqrt(ALPHA)+-1/h;

d2(2,3) = 1/h; d2(end-1,1) = -1/h; d2(end,2) = sqrt(ALPHA)+1/h;

A = spdiags(d2, -1:1, N, N);

jjj = 1; %<------------------------ n Current Run

out = 0;

tend = 0;

tlim = 1600;

v0 = [];

omega0 = [];

while (out==0 && tend<=tlim )

CondIniz = 1;

if jjj==1

CondIniz = 0;

end

tend = T0*jjj;

disp('-----------------------------------------------')

InformazionRun = ['Run n ' num2str(jjj) ' Re= ' rr ' x= ' xx

' ' ss ' phi= ' gg ' k= ' num2str(alpha)];

disp(InformazionRun)

disp(['tend= ' tend])

CurrentRun = jjj;

OldRun = CurrentRun-1;

CR = num2str(CurrentRun);

OR = num2str(OldRun);

IVP_completo

jjj = jjj+1;

end

end

end
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A.2 IVP completo

In the routine IVP_completo the equations system (4.7) is solved. This
program uses the subrutines dhdt_vettorizzato, solve_for_v_complete
and, to check if the asymptotic condition, the routine Check_asymptotic_condition.
The outputs are the fourier-transformed velocity �eld components û, v̂, ŵ, the
fourier-transformed vorticity ω̂y, the time and energy evolution. All the out-
puts are saved into .txt �les.

% IVP_completo

% solve_complete + velocity_field

% Complete initial-value problem (Scarsoglio, Tordella & Criminale, Stud.

% Applied Math. 2009) Energy spectrum Longitudinal Base Flow U=U(y;x0,R)

% Calls dhdt and solve_for_v_complete

global out

disp('IVP_completo')

tic

format long

foldername = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd];

% Initial conditions

disp('Inizialization...')

tic

if(CondIniz==0)

disp('.....from function...')

tinit = 0;

if(strcmp(ss, 'sym'))

% even disturbance-sym

Gamma0 = (exp(-(y-y0).^2).* (4*beta0*(y-y0).*sin(beta0*(y-y0))+cos(beta0*(y-y0)).*...

(-beta0^2-2+4*(y-y0).^2))-ALPHA*exp(-(y-y0).^2).*cos(beta0*(y-y0)));

else

% odd disturbance-asym

Gamma0 = (exp(-(y-y0).^2).*(-4*beta0*(y-y0).*cos(beta0*(y-y0))+sin(beta0*(y-y0)).*...

(-beta0^2 -2 +4*(y-y0).^2))-ALPHA*exp(-(y-y0).^2).*sin(beta0*(y-y0)));

end

omega0 = zeros(1,N);

init = [Gamma0,omega0];

else

filename_t = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_t_' OR '.txt'];

fid = fopen(filename_t, 'r');

T1 = fscanf(fid,'%f', [1 inf]);

fclose(fid);

tinit = T1(length(T1));

if (isempty(v0)==1)

disp('.........from file...')

Gamma0 = zeros(1,N);

foldername = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd];

filename2 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_v_' OR '.txt'];

filename4 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_omega_y_' OR '.txt'];

fid2 = fopen(filename2, 'r');

V1 = fscanf(fid2,'%f', [2 length(T1)*N]);

fclose(fid2);
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fid4 = fopen(filename4, 'r');

OMEGA1 = fscanf(fid4,'%f', [2 length(T1)*N]);

fclose(fid4);

j = (length(T1)-1)*N+1:(length(T1)-1)*N+N;

v0 = V1(1,j)+1i*V1(2,j);

omega0 = OMEGA1(1,j)+1i*OMEGA1(2,j);

clear T1 V1 OMEGA1

else

disp('v0, omega0 taken from previous Run')

end

Gamma0 = ([v0(1),v0(1:N-2),v0(N-2)]-2*[v0(2),v0(2:N-1),v0(N-1)]+[v0(3),v0(3:N),v0(N)])/h2-ALPHA*v0;

init = [Gamma0,omega0];

end

filename1 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_u_' CR '.txt'];

filename2 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_v_' CR '.txt'];

filename3 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_w_' CR '.txt'];

filename4 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_omega_y_' CR '.txt'];

filename5 = [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_energy_' CR '.txt'];

filename_t= [simulationfolder foldername

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_t_' CR '.txt'];

% make simulation storage directory

[~,~,~] = mkdir(simulationfolder,foldername);

toc

disp('Inizialized!')

disp('Solve equation for omega_y e Gamma...')

[t,u_sol] = ode23('dhdt_vettorizzato',[tinit tend],init);

toc

disp('Solve for u v w e...')

tic

fid1 = fopen(filename1,'w');

fid2 = fopen(filename2,'w');

fid3 = fopen(filename3,'w');

fid4 = fopen(filename4,'w');

fide = fopen(filename5,'w');

fid_t= fopen(filename_t,'w');

e = zeros(1,1);

s = N+1:2*N;

for j=1:length(t)

% Solution of the Laplacian (call solve_for_v_complete) and output omega_y v

v = solve_for_v_complete(u_sol(j,:).');

v = v.';

omega_y = u_sol(j,s);

u = (-(alpha_r+1i*alpha_i)*([v(2:N),v(N)]-[v(1:N-1),v(N-1)])/h+gamma*omega_y)/(1i*ALPHA);

w = (-gamma*([v(2:N),v(N)]-[v(1:N-1),v(N-1)])/h-(alpha_r+1i*alpha_i)*omega_y)/(1i*ALPHA);

ke = abs(u).^2+abs(v).^2+abs(w).^2;

e(j) = trapz(y,ke);

outputu = [real(u); imag(u)];

fprintf(fid1,'%d %d\n',outputu);

outputv = [real(v); imag(v)];

fprintf(fid2,'%d %d\n',outputv);

outputw = [real(w); imag(w)];

fprintf(fid3,'%d %d\n',outputw);

outputomega = [real(omega_y); imag(omega_y)];

59



fprintf(fid4,'%d %d\n',outputomega);

outpute = [t(j); e(j)];

fprintf(fide,'%d %d\n',outpute);

fprintf(fid_t,'%d\n', t(j));

end

fclose(fid1);

fclose(fid2);

fclose(fid3);

fclose(fid4);

fclose(fide);

fclose(fid_t);

toc

out = 0;

out = verifica_condizione(m,e,t,rr,xx,ss,gg,dd,foldername,simulationfolder,CurrentRun,out);

v0 = v;

omega0 = omega_y;

clear u_sol t e v omega_y

A.3 dhdt vettorizzato
% dh_dt_vettorizzato

% Right-hand-side of evolutive equations for Gamma (H) and omega (H1)

function H = dhdt_vettorizzato(~,u_sol)

global N alpha alpha_i h2 U dU_dy d2U_dy2 phi eps ALPHA

u_sol(1) = 0;

u_sol(N) = 0;

v = solve_for_v_complete(u_sol);

v = v.';

H(1) = 0;

H(N) = 0;

H1(1) = 0;

H1(N) = 0;

u_sol = u_sol.';

s = N+1:2*N;

H(2:N-1) = -1i*alpha*U(2:N-1).*u_sol(2:N-1)*cos(phi)+1i*alpha*d2U_dy2(2:N-1).*v(2:N-1)*cos(phi)+...

alpha_i*U(2:N-1).*u_sol(2:N-1)-alpha_i*d2U_dy2(2:N-1).*v(2:N-1)+...

eps*((u_sol(1:N-2)-2*u_sol(2:N-1)+u_sol(3:N))/h2-ALPHA*u_sol(2:N-1));

H1(2:N-1) = -1i*alpha*sin(phi)*dU_dy(2:N-1).*v(2:N-1)-1i*alpha*cos(phi)*U(2:N-1).*u_sol(s(2):s(end)-1)+...

alpha_i*U(2:N-1).*u_sol(s(2):s(end)-1)+ eps*((u_sol(s(1):s(end)-2)-2*u_sol(s(2):s(end)-1)+...

u_sol(s(3):s(end)))/h2-ALPHA*u_sol(s(2):s(end)-1));

H = [H H1];

H = H.';

return
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A.4 Solve for v complete
% solve_for_v_complete

% Solve Laplacian(v)=Gamma

function v = solve_for_v_complete(u_sol)

global N A

u_sol([1 N]) = 0;

u_aux = u_sol(1:N);

v = A\u_aux;

return

A.5 Check asymptotic condition
% Check_asymptotic_condition

function out = verifica_condizione(m,e,t,rr,xx,ss,gg,dd,foldername,simulationfolder,CurrentRun,out)

tr = 0;

if CurrentRun==1

e0 = e(1);

else

file_e0 = [simulationfolder foldername '\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_energy_1.txt'];

fid1 = fopen(file_e0,'r');

res_ene = fscanf(fid1,'%f', [2 1]);

fclose(fid1);

e0 = res_ene(2);

end

g = e/e0;

dg = [g(3:end)-g(1:end-2)]./[t(3:end)-t(1:end-2)];

tau_g = g./dg;

t_norm = t./tau_g;

CS = find((m>=tr).*(t_norm>=3).*((dg<1e-4)+(dg>1e+4))~=0);

CI = find((m<tr).*(dg<1e+4)~=0);

if isempty(CS)

if isempty(CI)

disp(['k= ' dd ' condition not satisfied']);

else

k = CI(1);

T = t(k);

E = e(k);

out = 1;

disp(['k= ' dd ' condition ok: E=' num2str(E) ' T=' num2str(T)]);

disp('-----------------------------------------------')

end

else

k = CS(1);

T = t(k);

E = e(k);

out = 1;

disp(['k= ' dd ' condition ok: E=' num2str(E) ' T=' num2str(T)]);

disp('-----------------------------------------------')

end

return
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A.6 Interpolated velocity

The routine Interpolated_velocity is a postprocessing routine. To
study the collective behaviour the perturbations should be summed. Since
the ode solver uses a variable time step, to sum perturbation velocity �elds
is necessary to interpolate the solutions over common time instants. Fixed
a value y0 on the y axis, the script Interpolated_velocity interpolate the
velocity �eld components u(t, x, y0, z), v(t, x, y0, z), w(t, x, y0, z) on time.

% Interpolated_velocity

close all

clear all

rr = '30';

xx = '50';

S = {'sym' 'asym'};

A = {'0' '45' '90'};

phi = [0 pi/4 pi/2];

h = 0.05;

y = -20:h:20;

N = length(y);

y0 = 0;

I = find(y==y0);

kappa = [0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.2 1.5 2,2.5 3...

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 12 15 20 25 30 35 40 45 ...

50 55 60 65 70 75 80 85 90 95 100 125 150 200 250 300 350 450 500];

for i=1:2

ss = S{i};

for a=1:3

gg = A{a};

simulationfolder = ['D:\simulazioni\Transient_simulation\Re_' rr '_x_' xx

'\Re_' rr '_x_' xx '_' ss '\Re_' rr '_x_' xx '_' ss '_phi_' gg];

main_folder = 'D:\simulazioni\Interpolated_velocity_y0_linear';

for k=17:50

tic

alpha = kappa(k);

dd = num2str(alpha);

foldername = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd];

flag = 0;

z = 1;

zz = num2str(z);

folder_vel = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd];

[~,mess,messid] = mkdir(main_folder,folder_vel);

fileT = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_t_' zz '.txt'];

fileU = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_u_' zz '.txt'];

fileV = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_v_' zz '.txt'];

fileW = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_w_' zz '.txt'];

filename6 = [simulationfolder foldername fileT];

filename7 = [simulationfolder foldername fileU];

filename8 = [simulationfolder foldername fileV];

filename9 = [simulationfolder foldername fileW];

file_u = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_u_int.txt'];

file_v = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_v_int.txt'];

file_w = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_w_int.txt'];

filename1 = [main_folder folder_vel file_u];

filename2 = [main_folder folder_vel file_v];
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filename3 = [main_folder folder_vel file_w];

fid = fopen(filename6,'r');

t1 = fscanf(fid,'%f', [1 10000]);

fclose(fid);

nt = length(t1);

nvel = nt*N;

fid = fopen(filename7,'r');

U = fscanf(fid,'%f',[2 nvel]);

fclose(fid);

fid = fopen(filename8,'r');

V = fscanf(fid,'%f',[2 nvel]);

fclose(fid);

fid = fopen(filename9,'r');

W = fscanf(fid,'%f', [2 nvel]);

fclose(fid);

t = t1(1):0.0065:t1(length(t1));

s = (0:length(t1)-1)*N+I;

v1 = V(1,s)+1i*V(2,s);

u1 = U(1,s)+1i*U(2,s);

w1 = W(1,s)+1i*W(2,s);

u = interp1(t1,u1,t,'linear');

v = interp1(t1,v1,t,'linear');

w = interp1(t1,w1,t,'linear');

fid1 = fopen(filename1,'wt');

fid2 = fopen(filename2,'wt');

fid3 = fopen(filename3,'wt');

outputu = [real(u); imag(u)];

fprintf(fid1,'%d %d\n',outputu);

outputv = [real(v); imag(v)];

fprintf(fid2,'%d %d\n',outputv);

outputw = [real(w); imag(w)];

fprintf(fid3,'%d %d\n',outputw);

fclose(fid3);

fclose(fid2);

fclose(fid1);

scrivi = ['k=' dd ' fatto!'];

disp(scrivi)

clear u v w t U V W u1 v1 w1 t1

toc

end

end

end
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A.7 Collective random energy behaviour

The program Collective_random_energy_behaviour allow to sum ran-
domly the perturbations. At each wave are associated two random numbers,
the time to enter in the domain and the point of its life is entering. In this
procedure the Fourier-transformed components û, v̂, ŵ are used to calculate
the collective energy distribution over the (x− z) domain. Furthermore the
collective energy in time is found.

% Collective_random_energy_behaviour

close all

clear all

format long

rr = '30';

xx = '50';

S ={'sym' 'asym'};

A = {'0' '45' '90' '45' '90' '0'};

kappa = [0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.2 1.5 2,2.5 3...

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 12 15 20 25 30 35 40 45 ...

50 55 60 65 70 75 80 85 90 95 100 125 150 200 250 300 350 450 500];

Nonde = 408;

tend = 50;

dt = 0.0065;

t = 0.00:dt:tend;

tt = zeros(Nonde,1);

u = zeros(Nonde,length(t));

v = zeros(Nonde,length(t));

w = zeros(Nonde,length(t));

ene = zeros(1,length(t));

main_folder = 'D:\simulazioni\Interpolated_velocity_y0_linear';

% Load velocity files

n=1;

for i=1:2

ss = S{i};

for a=1:6

gg = A{a};

for m=17:50

dd = num2str(kappa(m));

file_u = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_u_int.txt'];

file_v = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_v_int.txt'];

file_w = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd '_w_int.txt'];

folder_vel = ['\Re_' rr '_x_' xx '_' ss '_phi_' gg

'\Re_' rr '_x_' xx '_' ss '_phi_' gg '_k_' dd];

filename1 = [main_folder folder_vel file_u];

filename2 = [main_folder folder_vel file_v];

filename3 = [main_folder folder_vel file_w];

fid=fopen(filename1,'r');

U=fscanf(fid,'%f',[2 length(t)]);

fclose(fid);

u(n,:)=U(1)+1i*U(2);

fid=fopen(filename2,'r');

V=fscanf(fid,'%f',[2 length(t)]);

fclose(fid);

v(n,:)=V(1)+1i*V(2);
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fid=fopen(filename3,'r');

W=fscanf(fid,'%f',[2 length(t)]);

fclose(fid);

w(n,:)=(W(1)+1i*W(2))*((a<4)-(a>=4));

tt(n)=length(U);

n = n+1;

end

end

end

% Random vector

R = ceil(rand(Nonde,1).*tt/1.5)+1;

R(1:50:Nonde) = 0;

c = 1;

% Collective wave energy

for ab=1:c:length(t);

eneU = 0;

eneV = 0;

eneW = 0;

tic

for n=1:Nonde

if(R(n)<ab)

IT = 1 + mod(ab+tt(n)-R(n),tt(n));

if (IT==1 && ab~=1)

R(n)=ab+ceil(rand(1,1)*tt(n)/3);

else

eneU = eneU + u(n,IT);

eneV = eneV + v(n,IT);

eneW = eneW + w(n,IT);

end

end

ene(ab) = sqrt(abs(eneU)^2 + abs(eneV)^2 + abs(eneW)^2);

end

figura = plot(t(1:c:ab),ene(1:c:ab)/ene(1));

nomefiguraM = ['Re_' rr '_x_' xx '_energia.m'];

nomefiguraEPS = ['Re_' rr '_x_' xx '_energia.eps'];

saveas(figura,nomefiguraM)

saveas(figura,nomefiguraEPS)

nomeEnergy = ['Re_' rr '_x_' xx '_random_energy.txt'];

fid = fopen(nomeEnergy,'w');

outpute = [t(1:c:ab); ene(1:c:ab)];

fprintf(fid,'%d %d\n',outpute);

fclose(fid);
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