	Basic Module	Module responsible
Unit A1	Analysis of current use of subsurface utilisation	DIGET, Torino
Unit A2	Different uses of underground spaces in cities	HUT, Helsinki
Unit A3	Benefits and drawbacks of underground facilities	TUE, Eindhoven
Unit A4	The underground city	IFU, Paris
Unit A5	People in underground	DENER, Torino
Unit B1.1	General concepts linked with static underground design criteria	DIGET, Torino
Unit B1.2	General geometric settings and construction for urban and no urban sites	DIGET, Torino
Unit B1.3	Tunnel adits architectural and design aspects	DIGET, Torino
Unit B1.4	Detailed analysis of significant examples to construction and design aspects	DIGET, Torino
Unit B2.1	Reuse of underground mines and underground waste disposal	DIGET, Torino
Unit B2.2	Design of an underground room pillar mine for civil purpose	DIGET, Torino
Unit B2.3	Methods for excavation	DIGET, Torino
Unit B2.4	Support techniques	DIGET, Torino
Unit B2.5	Risk analysis for an underground construction	DIGET, Torino
Unit B2.6	Numerical design method	DIGET, Torino
	Geological and structural features of underground excavations	
Unit B3.1	Detailed analysis of significant examples with special reference to construction and design criteria	KTH, Stockholm
Unit B3.2	Geoinvestigations	KTH, Stockholm
Unit B3.3	Rock and soil classifications	KTH, Stockholm
Unit B3.4	Main geotechnical aspects influencing underground woks	KTH, Stockholm
Unit B3.5	Hydrological aspects	KTH, Stockholm
Unit B3.6	Chemical aspects	KTH, Stockholm
Unit B3.7	Monitoring systems and underground constructions	KTH, Stockholm
Unit B3.8	Design of underground nuclear waste repositories: analyses of key points	KTH, Stockholm
Unit B3.9	Environmental Impact Assessment	KTH, Stockholm

Specialisation Module	
Risk analysis and safety in the operation of underground space	HUT, Helsinki
Planning of underground transport systems	IFU, Paris
Energy utility networks in urban underground	DENER, Torino
Mechanized tunnelling	DIGET, Torino
Organisation and management of a rock engineering project	HUT, Helsinki
Geographical Information System (GIS)	TUE, Eindhoven
Application of design system for underground development	HUT, Helsinki
Underground constructions in fractured rocks	KTH, Stockholm