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Abstract. We consider a classical problem of hydrodynamics instabil-

ity, the two-dimensional bluff-body wake, to compare the outcomes that

the contemporary Orr-Sommerfeld modal analysis and the initial value

problem analysis can offer. The steady wake is described in a non con-

ventional way by taking into account its full dynamics. In fact, these two

approaches are used by taking into account the nonlinear nonparallel

and diffusive nature of the basic flow. It is shown that the insertion of the

transversal dynamics in the perturbative equations of the modal theory

allows to get stability characteristics and critical values of the flow con-

trol parameter that closely meet the laboratory results. Furthermore, the

great variety of the early and intermediate transient behaviour of small

three-dimensional perturbations is presented. As far as the perturbation

asymptotic fate is concerned, the equivalence of two stability analyses

can be demonstrated.

Keywords: convective and absolute instability, basic sheared flow, non-

parallel, initial value problem, early transient.

Riassunto. I risultati offerti dall’odierna teoria modale di Orr-

Sommerfeld e dall’analisi secondo il problema ai valori iniziali sono

confrontati per mezzo di un classico problema di instabilità idrodinami-

ca, la scia bidimensionale generata da un corpo tozzo. La configurazione

di equilibrio stazionario è qui descritta in modo non classico, tenendo

conto cioè del modello fisico completo, tradizionalmente molto sempli-

ficato nell’ambito degli studi sull’instabilità lineare. Infatti, in questo

lavoro, la natura diffusiva e gli aspetti non lineari e di non parallelis-

mo del flusso base sono esplicitamente inseriti in entrambe le formu-

lazioni. L’introduzione della dinamica trasversale all’interno dell’anal-

isi modale permette di ottenere risultati consistenti con le premesse e

Mathematics Subject Classification 2000: 01-02, 26-03, 26D15, 26A51.
∗Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24

Torino, 10129, Italy. E-mail: daniela.tordella@polito.it, stefania.scarsoglio@polito.it
∗∗Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Milano, Via La Masa 34 Milano,

20156, Italy. E-mail: belan@aero.polimi.it

MECCANICA DEI FLUIDI



2 DANIELA TORDELLA, STEFANIA SCARSOGLIO E MARCO BELAN

finalmente inoltre un ottimo accordo con i dati sperimentali. Si presen-

ta inoltre un’ampia varietà di transitori nel breve ed intermedio termine

che la formulazione ai valori iniziali associata a perturbazioni tridimen-

sionali riesce a determinare. E’ possibile dimostrare che le due analisi

conducono asintoticamente a risultati equivalenti.

Parole chiave: instabilità convettiva e assoluta, flusso di taglio, non-

parallelismo, problema ai valori iniziali, transitorio iniziale.

1. Introduction

Hydrodynamic stability is most important in the fields of aerodynamics,

hydromechanics, combustion, oceanography, atmospheric dynamics, astro-

physics, and biology. A point of universality in these natural and technical

contexts is that the laminar flow configuration is exceptionally met. The break-

down of laminar flow has been a central issue for over a hundred years and it

is still an open problem because a commonly recognized mean of prediction

is yet to be defined. The main point at issue is that the stability or instability

mechanisms determine, to a greater extent, the performance of a system.

Early ideas and investigations about the linear hydrodynamics stability

trace back to scientist such as Leonardo da Vinci, Gotthilf Hagen, Osborne

Reynolds, Lord Rayleigh and Lord Kelvin. Exactly one hundred years ago,

in 1907, William M. F. Orr [10]-[11] published a comprehensive review (129

pages) on the subject in the Proceedings of the Royal Irish Academy, that in-

cluded for the very first time a very detailed analysis of the stability or in-

stability of the parallel motion of a viscous liquid. One year later, in 1908,

Arnold Sommerfeld [15] published in the Proceedings of the fourth Interna-

tional Conference of the Mathematicians held in Rome, a short synthetic paper

(6 pages) on the same subject. Since then, the main theoretical tool for the

analysis of small perturbations in sheared flow, the famous Orr-Sommerfeld

equation of stability theory, was set out. This is a 4th order temporal-spatial

partial differential equation that uncouples the velocity variable directed across

the sheared steady basic flow from the other velocity variables. By adopting

a modal expansion in normal modes, the Orr-Sommerfeld equation takes the

familiar form still in use today, that is that of a 4th order ordinary differential

homogeneous, but non autonomous, equation for the Fourier-Laplace trans-

form of the transversal velocity variable.

In the present paper, analytical Navier-Stokes expansion solutions are used

to approximate the wake profile. The base flow model is physically accurate

as it directly includes the transversal nonlinear and diffusive dynamics of the
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flow. Besides the lateral variations of the transversal velocity in the free stream,

the Navier-Stokes model allows the longitudinal and lateral variations of the

pressure field to be estimated [1]-[16]. The base flow transversal dynamics is

explicitly inserted into the perturbative equations, so that they are now written

in a non-homogeneous form. Through the multiple scales approach based on

the inverse of the Reynolds number (ε = 1/R), the dispersion relation can be

expressed in a synthetic form as it only depends on the Reynolds number R

and the longitudinal coordinate x. This is an innovative feature of the present

study and can be extended to the stability analysis of other spatially developing

flows. The disturbance can have uniform length throughout the spatial domain

or can be locally tuned to the most unstable wavenumber (according to dis-

persion relation distribution along x). Both the perturbative hypotheses lead

to an excellent agreement - in terms of perturbation angular frequency - with

experimental [20] and numerical [21]-[12] data. Moreover, as the disturbance

frequency is a local rather than a global instability characteristic, the wake re-

gion where an unstable configuration can hold is identified. For the first time,

for R = 50 and 100, absolute instability pockets are determined in the early part

of the intermediate wake, where the WKBJ method is completely consistent.

For the initial-value problem analysis, the base flow has been obtained ap-

proximating it only with the longitudinal component of the Navier-Stokes ex-

pansion solution for velocity field that considers the lateral entrainment pro-

cess. The near-parallel hypothesis for the base flow, at every longitudinal sta-

tion, is made. The longitudinal coordinate x0 plays the role, together with the

Reynolds number, of parameter of the system. The formulation is carried on in

terms of three-dimensional perturbation vorticity and the temporal behaviour,

including both the early time transient as well as the long time asymptotics, can

be observed [3], [9], [8]. A moving coordinate transformation [5] is adopted

and a two-dimensional Laplace-Fourier decomposition is then performed in

streamwise and spanwise directions for every perturbation quantity. The intro-

duction of a complex longitudinal wavenumber is an innovative feature as to

explicitly include, also in the structure of the perturbation, a degree of freedom

associated to the spatial evolution of the system. The resulting partial differ-

ential equations in y and t are then numerically solved by the method of lines.

Different physical inputs linked to the symmetry, the obliquity and the spatial

growth rate of the perturbation are considered to study the early transient. In

most of the cases, the initial temporal evolution is not a priori predictable, as

configurations with initial damping followed by a fast growth or with initial

transient growths that smoothly decrease in time are shown. It can be demon-

strated that, after the transient is extinguished, the analyses asymptote to the

same values.

ORR-SOMMERFELD AND INITIAL VALUE PROBLEM STABILITY ANALYSES 173



4 DANIELA TORDELLA, STEFANIA SCARSOGLIO E MARCO BELAN

In §2, the physical problem together with the relevant aspects of the Navier-

Stokes expansions approximating the wake profile are introduced. The Orr-

Sommerfeld analysis is presented in §3, and details on the multiple scales ap-

proach formulation are given in §3.1. The perturbation hypotheses and sub-

sequent results are described in §3.2. The initial-value problem analysis is

presented in §4. The basis of the formulation and significant results of the

perturbation temporal evolution are given in §4.1 and §4.2, respectively. Con-

cluding remarks are offered in §5.

2. Physical problem

The stability analysis of the 2D bluff body wake can be performed on a

steady base flow obtained as an analytical approximated Navier-Stokes solu-

tion valid in the intermediate and far field, which includes both the inner high

vorticity region and the outer low vorticity region. The solution model fully ac-

counts for the non linearities of the convective transport as well as for the diffu-

sive longitudinal and transversal transport. This is an important point since the

bifurcation between the steady and the unsteady flow configuration happens at

low values of the Reynolds number (e.g., Rcr = 47 in case of the flow past a

circular indefinite cylinder) [1, 16].

The analytical solution is a matched asymptotic expansion where lower or-

der terms account for the effects of streamwise diffusion, non linear convection

and entrainment, and higher order terms account for pressure gradients and vor-

ticity diffusion. Here the body is placed in a reference system with standard

adimensional longitudinal and normal coordinates x,y. The adimensionaliza-

tion is referred to the scale D of the body, the density ρ and the velocity U of

the free stream. The Reynolds number is defined as R = ρUD/µ.

The base flow is obtained by matching an inner NS expansion in powers of

the inverse of the longitudinal coordinate (x−n/2, n = 0,1,2...) and an outer NS

expansion in powers of the inverse of the distance r =
√

x2 + y2 from the body

(r−n/2, n = 0,1,2...). The physical quantities involved in matching criteria are

the vorticity, the longitudinal pressure gradients and the entrainment velocities.

The lateral decay results to be algebraic at high orders in the inner expansion

solution.

The inner variables x,η are defined by the quasi-similar transformation

x = x, η = x−1/2y , (1)

the relevant velocity components and pressure can be written as

ui = 1+∑
n

x−n/2φn(η) , vi = ∑
n

x−n/2χn(η) , pi = π0 +∑
n

x−n/2πn(η). (2)
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The outer variables r,s are defined by the transformation

r =
√

x2 + y2, s = y/x , (3)

the relevant velocity components and pressure can be written as

uo = 1+∑
n

r−n/2 fn(s) , vo = ∑
n

r−n/2gn(s) , po = p0 +∑
n

r−n/2 pn(s). (4)

The matching conditions are given for each x along the wake, they relate logi-

tudinal pressure gradients, vorticities and transverse velocities:

lim
y→0

∂x po = lim
y→∞

∂x pi, (5)

lim
y→0

ωo = lim
y→∞

ωi, (6)

lim
y→0

vo = lim
y→∞

vi. (7)

It can be seen that the most important properties of the flow under study are

retained in the first terms, in such a way that for the present purposes the series

can be truncated at n = 4.

3. Normal mode analysis

3.1. Multiscale formulation

The stability study follows a multiscale approach, where we introduce the

small parameter ε =
1

R
and the slow spatial and temporal variables

x1 = εx, t1 = εt. (8)

In the multiscale frame, it can be seen that the same base flow written as an

asymptotic expansion can be algebraically rearranged in the form

u = ∂yΨ = u0(x1,y)+ εu1(x1,y)+ · · · (9)

v = −∂xΨ = −ε∂x1
Ψ = εv1(x1,y)+ · · · (10)

what gives also a multiscale expression for the stream function Ψ.

Then, the steady stream function Ψ is perturbed by a small function ψ de-

pending on time, expressed as follows:

ψ = ϕ(x,y, t;ε) eiθ(x, t;ε) = [ϕ0(x1,y, t1)+ εϕ1(x1,y, t1)+ · · · ] eiθ(x, t;ε). (11)
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According to Whitham theory [19], the perturbation has complex wave number

h0 and pulsation σ0 given by the relations

∂xθ = h0 = k0 + is0 (12)

∂tθ = −σ0 = −(ω0 + ir0). (13)

The superposition Ψ̂ = Ψ + ψ must satisfy the NS equation for stream func-

tions:

∂t∇
2Ψ̂+ Ψ̂y∂x∇2Ψ̂− Ψ̂x∂y∇2Ψ̂ =

1

R
∇4Ψ̂ . (14)

In terms of x1, t1 and θ, the spatial and temporal derivatives transform as

∂x → h0∂θ + ε∂x1
, ∂t →−σ0∂θ + ε∂t1 . (15)

By applying this transformation to eq. (14) and linearizing, a hierarchy of

ordinary differential equations, truncated at the first order in ε, is obtained.

The zero order equation is an Orr-Sommerfeld equation, parametric in x1 and

R:

A ϕ0 = σ0 B ϕ0 (16)

ϕ0 → 0 as |y| → ∞ (17)

∂yϕ0 → 0 as |y| → ∞ . (18)

where A =
{
(∂2

y −h2
0)

2 − ih0R
[
u0(∂

2
y −h2

0)−u′′0
]}

, B =−iR(∂2
y −h2

0). By nu-

merically solving the zero-order equation and selecting the eigenvalue with the

largest imaginary part, a first approximation of the dispersion relation can be

obtained, σ0 = σ0(x1;h0,R).
The numerical analysis of this relation yields the loci of the branching points

where ∂σ0/∂h0 = 0, (saddle points of the dispersion relation), leading to the

determination of wave number and pulsation of the most unstable mode for

each x along the wake.

The first-order theory gives the non-homogeneous Orr-Sommerfeld equa-

tion, parametric in x1 and R:

A ϕ1 = σ0 B ϕ1 +M ϕ0 (19)

ϕ1 → 0 as |y| → ∞ (20)

∂yϕ1 → 0 as |y| → ∞ . (21)
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The operator

M =
{[

R(2h0σ0 −3h2
0u0 −u′′0)+4ih3

0

]
∂x1

+(Ru0 −4ih0)∂
3
x1yy −Rv1(∂

3
y −h2

0∂y)+Rv′′1∂y

+ih0R
[
u1(∂

2
y −h2

0)−u′′1
]
+R(∂2

y −h2
0)∂t1

}
(22)

is a function of the zero-order dispersion relation and eigenfunction as well

as of the base flow; it accounts explicitly for the non parallelism of the wake

through the presence of transverse velocity v1.

To avoid secular terms in the solution of (19-21), the non-homogeneous term in

equation (19) must be orthogonal to each solution of the adjoint homogenous

problem. By rewriting the zero-order eigenfunction in the form ϕ0(x1, t1,y) =
A(x1, t1)ζ0(x1,y), we introduce a spatio-temporal modulation factor A, and ap-

plying the orthogonality condition it is possible to obtain an evolution equation

for this function:

(∂x1
A)

∫ ∞

−∞
ζ+

0

[
M1 +M2∂2

y

]
ζ0 dy+(∂t1A)

∫ ∞

−∞
ζ+

0

[
M7 +M8∂2

y

]
ζ0 dy

+A

∫ ∞

−∞
ζ+

0

[
M1∂x1

+M2∂3
x1yy +M3 +M4∂y +M5∂2

y +M6∂3
y

]
ζ0 dy = 0, (23)

where the coefficients M j are given in table 1 and ζ+
0 is the perturbation stream

M1 = R(2h0σ0 −3h2
0u0 −u′′0)+4ih3

0 M2 = Ru0 −4ih0

M3 = −ih0R(∂2
y +h2

0)u1 M4 = −R(∂2
y +h2

0)v1

M5 = ih0Ru1 M6 = Rv1

M7 = −Rh2
0 M8 = R

Table 1.1: Coefficients M j

function of the homogeneous adjoint problem. If the multiscale analysis is only

based on the slow spatial evolution of the system, eq. (23) looses the tempo-

ral derivative and the modulation equation is simply dx1
A(x1) = ih1(x1)A(x1),

where h1 is a function of Mi, i = 1, ...6 [17]. By substituting A(x1, t1) with

ea(x1,t1), following Bouthier [4] and going back to the original coordinates x

and t, equation (23) can be easily put in the form

∂ta+ p(x)∂xa+ εq(x) = 0 (24)

where coefficients p(x) and q(x) are not singular.
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The modulation equation can be solved numerically by specifying the initial

and boundary conditions. The considered spatial domain extends from a few

body-scales D downstream from the body to the far field. Since only one

boundary condition has to be imposed, modulation is required to satisfy the

asymptotic uniformity in the far field x = x f , that is, the Neumann condition

(∂xa)x=x f
= 0, ∀ t, (25)

while a natural choice for the initial condition is

ax,t=0 = (const)(1+ i). (26)

Finally, by writing also the first order function in the form ϕ1(x1,y, t1) =
A(x1, t1)ζ1(x1,y) , the complete solution (order 0 + order 1) becomes

ψ = (ϕ0 + εϕ1)e
iθ = A(ζ0 + εζ1)e

iθ = (ζ0 + εζ1)e
iθ+a = (ζ0 + εζ1)e

iθ+iθ1 , (27)

and the complete phase becomes Θ = θ + θ1, where a = iθ1. Due to the

multiscaling, the wave number is finally h = ∂Θ/∂x = h0∂Θ/∂θ + ε∂Θ/∂x1 =
h0 + ε∂θ1/∂x1 and the pulsation is σ = −∂Θ/∂t = −σ0∂Θ/∂θ + ε∂θ1/∂t1 =
−σ0 +ε∂θ1/∂t1. The first order corrections of the instability characteristics are

thus obtained as

h1 = ∂θ1/∂x1 = k1 + is1 , σ1 = −∂θ1/∂t1 = ω1 + ir1 . (28)

3.2. Perturbation hypotheses

Coefficients p(x) and q(x) of the modulation equation (24) are functions of

the 0-order perturbation and of the base flow. The base flow is only present in

p through the zero-order longitudinal velocity u0, while the first order longitu-

dinal and transversal velocities u1 and v1 are instead present in q. The distribu-

tions of the real and imaginary parts of coefficients p and q can be computed by

inserting in h0 and σ0 the desired values for the 0-order perturbation. Finally,

the instability characteristics of the wake including the first order corrections

can be computed by numerically solving the modulation equation (24) and us-

ing relations (28), and this can be done in different ways, depending on the

perturbation hypothesis.

A first physically meaningful choice is to set h0 and σ0 as the wave number

and pulsation of the most unstable perturbation at a given position x in the wake

[18]. An example of the corresponding results for h0 and σ0 values relevant to

a x position close to the near wake is shown in Fig.1, including comparisons
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Figure 1: Order 0 (—-, solid symbols) and order 0 + 1 (– –, empty symbols) pulsation and temporal am-
plification factor x distributions for R = 35,50,100. Disturbances with complex wave number equal to that
of the dominant saddle of the local dispersion relation at x=5.5, that is for R = 35, h0 = 0.318− 1.433 i,
for R = 50, h0 = 0.451− 1.913 i, for R = 100, h0 = 1.030− 2.578 i. Comparison with experimental and
numerical simulations results [21, 12, 20].
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R = 50 :  nu m .  g l ob a l  m o d e  ( Z e b i b  1 987 )

R = 50 :  e xp . ( W i l li a m s on  1988 ) , D N S  ( P i e r  2002 ) 

R = 35 :  nu m .  g l ob a l  m o d e    ( Z e b i b  1987 ) 
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with literature data. Here a large difference between the complete (order 0 +

order 1) problem and the order 0 problem is shown more by the pulsation ω and

the temporal growth factor r, than by the wave number k and the spatial growth

factor s. Typically, the correction increases the values of k and s, thus it reduces

the module of the spatial amplification, as also the simpler spatial multiscale

analysis shows [17]. The correction for k is higher as it approaches the body

and R is increased. The correction for s is negligible throughout, regardless of

R, except for R = 50 and 100 at the beginning of the domain here considered.

Figure 2: Comparison between the instability characteristics with the ‘saddle points sequence”’ perturbation
hypothesis (dashed lines) and the perturbation with h0(x = 4.10)=const. at R=50 (solid lines): (a) wave
number, (b) spatial growth rate, (c) pulsation, (d) temporal growth rate.

Another natural choice is to set h0 and σ0 as the local wave number and pul-

sation of the most unstable perturbation for each x in the wake [2] (saddle point

sequence). So doing, the disturbance is locally tuned, through the modulation

function, to the property of the instability as can be seen from the zero-order

ω

ω ω
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Figure 3: Comparison between the pulsation (in terms of Strouhal number) data according to Pier (2002),
Zebib (1987), Williamson (1988) and present solution (accuracy ∆ = 0.05).

theory (near-parallel parametric Orr-Sommerfeld treatment). This leads to a

synthetic analysis of the nonparallel correction on the instability characteris-

tics. In such a way, the evolution of the zero order dispersion relation is directly

inserted into the variable coefficients of the modulation equation. The stream-

wise variation of the instability characteristics is deduced from the spatial and

temporal derivatives of the modulation function. With this new approach, the

system is considered as locally perturbed by waves with a wave number that

varies along the wake and which is equal to the wave number of the dominant

saddle point of the zero order dispersion relation, taken at different Reynolds

numbers. Since the perturbation is no more parameterized with respect to a

given wave number, the Reynolds number remains the only parameter of the

present stability analysis. An example of the corresponding results, compared
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with the ones parameterized by the most unstable mode of a position in the

near wake, is shown in Fig. 2. One can see that the two perturbation hypoth-

esis yield the same results close to x = 4.10, but differ downstream, where, in

this case, the perturbation turns out finally in a greater response from the flow.

Within the saddle point perturbative hypothesis, results concerning the

Strouhal number are compared, in Fig. 3, with data from the global results

obtained by Pier [12] (DNS simulations), Williamson [20] (laboratory obser-

vations) and Zebib [21] (numerical experiments). In this figure, the x positions

pointed out represent the wake section where the longitudinal distribution of

pulsation, obtained with the present method, match the global pulsation ob-

tained in these numerical and laboratory experiments. A linear interpolation

on the points we have determined shows that the experimental data fall within

an accuracy of ±5% around a pulsation curve that grows with the Reynolds

number.

4. Initial-value problem

A general three-dimensional initial-value perturbation problem is here pre-

sented to study the linear stability of a two-dimensional growing wake. The

base flow has been obtained by approximating it with the expansion solution

for the longitudinal velocity component that considers the lateral entrainment

process (see §2 and [16] for details). By imposing arbitrary three-dimensional

perturbations in terms of the vorticity, the temporal behaviour, including both

the early time transient as well as the long time asymptotics, is considered [3],

[9], [8]. The approach has been to first perform a Laplace-Fourier transform

of the governing viscous disturbance equations and then resolve them numer-

ically by the method of lines. The base model is combined with a change of

coordinate [5], [6]. Base flow configurations corresponding to a R of 50, 100

and various physical inputs are examined.

4.1. Formulation

The base flow is viscous and incompressible. To define it, the longitudi-

nal component of the Navier-Stokes expansion for the two-dimensional steady

bluff body wake presented in §2 (see [16], [1]) has been used. The x coordinate

is parallel to the free stream velocity, the y coordinate is normal. The coordi-

nate x0 plays the role of parameter of the system together with the Reynolds

number. By changing x0, the base flow profile locally approximates the be-

haviour of the actual wake generated by the body. The equations are
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∇2ṽ = Γ̃ (29)

∂Γ̃

∂t
+ U

∂Γ̃

∂x
−

∂ṽ

∂x

d2U

dy2
=

1

R
∇2Γ̃ (30)

∂ω̃y

∂t
+ U

∂ω̃y

∂x
+

∂ṽ

∂z

dU

dy
=

1

R
∇2ω̃y (31)

where ω̃y is the transversal component of the perturbation vorticity, while Γ̃

is defined as Γ̃ =
∂ω̃z

∂x
−

∂ω̃x

∂z
. All physical quantities are normalized with re-

spect to the free stream velocity, the spatial scale of the flow D and the den-

sity. Equation (29) is a kinematic identity. Equations (30) and (31) are the

Orr-Sommerfeld and Squire equations respectively, known from the classical

linear stability analysis for three-dimensional disturbances. By performing a

combined Laplace-Fourier decomposition of the dependent variables in terms

of x and z, the governing equations become

∂2v̂

∂y2
− (k2 −α2

i +2iαrαi)v̂ = Γ̂ (32)

∂Γ̂

∂t
= −(ikcos(φ)−αi)U Γ̂+(ikcos(φ)−αi)

d2U

dy2
v̂

+
1

R
[
∂2Γ̂

∂y2
− (k2 −α2

i +2iαrαi)Γ̂] (33)

∂ω̂y

∂t
= −(ikcos(φ)−αi)Uω̂y − iksin(φ)

dU

dy
v̂

+
1

R
[
∂2ω̂y

∂y2
− (k2 −α2

i +2iαrαi)ω̂y] (34)

where ĝ(y, t;α,γ) =
∫ +∞

−∞

∫ +∞

0
g̃(x,y,z, t)e−iαx−iγzdxdz is the combined Laplace-

Fourier transform of a general dependent variable, φ = tan−1(γ/αr) is the an-

gle of obliquity, k =
√

α2
r + γ2 is the polar wavenumber and αr = kcos(φ),

γ = ksin(φ) are the wavenumbers in x and z directions respectively. In order to

have a finite perturbation kinetic energy, the imaginary part αi of the complex

longitudinal wavenumber can only assume non-negative values.
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Perturbative equations (29), (30) and (31) are to be solved subject to ap-

propriate initial and boundary conditions. As the governing equations are ex-

pressed in term of vorticity, arbitrary initial conditions are given for Γ̃ and ω̃y

in the physical coordinates x, y, z. Among all solutions, we seek those whose

velocity field is zero in the free stream.

The partial differential equations (32)-(34) are numerically solved by method

of lines. The spatial derivatives are centre differenced and the resulting system

is then integrated in time by an adaptative multi-step method (variable order

Adams-Bashforth-Moulton PECE solver).

The initial conditions can be shaped in terms of set of functions in the L2

Hilbert space. We choose

v̂(0,y) = e−(y−y0)
2

cos(n0(y− y0)) and v̂(0,y) = e−(y−y0)
2

sin(n0(y− y0)),

for the symmetric and the asymmetric perturbations, respectively. We recall

that the trigonometrical system is a Schauder basis in each space Lp[0,1], for

1 < p < ∞. More specifically, the system (1,sin(n0x),cos(n0y), . . .), where

n0 = 1,2, . . . , is a Schauder basis for the space of square-integrable periodic

functions with period 2π. This means that any element of the space L2, where

the dependent variables are defined, can be written as an infinite linear combi-

nation of the elements of the basis.

Parameter n0 is the oscillatory parameter for the shape function, while y0 is

a parameter which controls the distribution of the perturbation along y (by

moving away or bringing nearer the perturbation maxima from the axis of the

wake). It should be noticed, that by (32), the initial Γ̂ is not zero at finite y.

The vorticity field is immediately generated from the interaction of the ini-

tial three-dimensional perturbation field and the mean vorticity of the base flow.

It can be verified that the eventual introduction of an initial transversal vortic-

ity perturbation ω̂y(0,y) �= 0 does not substantially modify the results in the

transient and long terms, thus we put ω̂y(0,y) = 0.

4.2. Early transient and asymptotic behaviour of perturbations

The effects of various initial conditions and subsequent transient behaviour

is one of the main aspects of the present study. The evolution of disturbances

is characterized by the kinetic energy density

e(t;α,γ) =
1

2

1

2yd

∫ +yd

−yd

(|û|2 + |v̂|2 + |ŵ|2)dy

=
1

2

1

2yd

1

|α2 + γ2|

∫ +yd

−yd

(|
∂v̂

∂y
|2 + |α2 + γ2||v̂|2 + |ω̂y|

2)dy, (35)
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Figure 4: The amplification factor G as function of time. (a) R = 100, k = 1.5, αi = 0.01, n0 = 1, y0 = 0,
x0 = 14.00, symmetric initial condition, φ = 0,π/8,π/4,(3/8)π,π/2. (b) R = 100, k = 1.5, αi = 0.015,
φ = π/2, y0 = 0, x0 = 8.00, asymmetric initial condition, n0 = 1,3,5,7. (c) R = 100, αi = 0.01, n0 = 1,
φ = (3/8)π, y0 = 0, x0 = 6.50, asymmetric initial condition, k = 0.5,1,1.5,2,2.5. (d) R = 50, k = 1.2,
n0 = 1, φ = π/4, y0 = 0, x0 = 9.50, symmetric initial condition, αi = 0,0.01,0.1.

where 2yd is the extension of the spatial numerical domain. The value yd is

defined so that the numerical solutions are insensitive to further extensions of

the computational domain size. Here, we take yd = 15. The total kinetic energy

can be obtained integrating the energy density over all α and γ. We introduce

the normalized amplification factor G(t)

G(t;α,γ) =
e(t;α,γ)

e(t = 0;α,γ)
, (36)

that can effectively measure the growth of a disturbance of wavenumbers (α,γ)
at the time t, for a given initial condition at t = 0 (see [8], [9]).

The temporal growth rate r is defined as

r(t;α,γ) =
log|e(t;α,γ)|

2t
, (37)
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and is introduced to evaluate both the early transient as well as the asymptotic

behaviour of the perturbation. It is noticed that, by definition, r is singular

for t = 0. Quantity r has in fact a precise physical meaning as an asymptotic

property of the perturbation. The angular frequency (pulsation) f of the per-

turbation is defined by considering the phase ϕ of the complex wave at a fixed

transversal station (for example y = 1) and then computing its temporal deriva-

tive

f (t;α,γ) =
dϕ(t;α,γ)

dt
. (38)

In the following, we present a summary of the significant behaviour shown

during the transient by the three-dimensional perturbations (Fig. 4). Case (a)

shows that a growing wave becomes damped, increasing the obliquity angle

beyond 3/8π. Case (b) shows that the damping is more rapid for higher values

of n0, that is when the perturbation oscillates many times across the basic flow.

Case (c) demonstrates that perturbations almost normal to the base flow (φ =
(3/8)π) are all asymptotically stable when changing their polar wavenumber. It

can be observed that increasing k (k →∞) the growth rate of the transient seems

to tend to a limiting value (see the red line in the figure). The maximum growth

is reached for k ∼ 1. In the end, in case (d) an interesting phenomenon can also

be observed. The perturbation parameters in this case corresponds to values far

from the saddle point of the Orr-Sommerfeld dispersion relation at the section

considered. It can be seen that, by increasing the order of magnitude of αi,

perturbations that are more rapidly damped in space lead to a faster growth in

time.
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Figure 5: The amplification factor G as function of time. Effect of the symmetry of the disturbance. R = 100,
k = 0.6, αi = 0.02, n0 = 1, y0 = 0, x0 = 11, φ = π/4. (a) symmetric initial condition, (b) asymmetric initial
condition.

In Fig. 5 the influence of the perturbation symmetry on the early time be-

see the grey line in the fi gure 4
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haviour is shown. Both the configurations are amplified asymptotically (sym-

metric case (a): r = 0.0614, asymmetric case (b): r = 0.0038), but transients are

very different. In the symmetric case (a) the growth is immediate and mono-

tone and the perturbation quickly reaches the asymptotic state (note that in part

(a) of this figure a logarithmic scale is used on the ordinate). The asymmetric

case (b) instead presents a particular temporal evolution. After a maximum and

a minimum of energy are reached, the perturbation is slowly amplifying and

the transient can be considered extinguished only after hundreds time scales.

This particular configuration shows a behaviour that is generally observed in

this analysis, that is, asymmetric conditions lead to transient evolutions that

last longer than the corresponding symmetric ones.

5. Final Comments

A first conclusion we can draw from this linear stability study is a tribute

to the scientific quality of the Orr-Sommerfeld modal analysis that is very syn-

thetic and prove to be a powerful mean to obtain the asymptotic stability state

of a flow system. The relevant perturbative equations contains in their coeffi-

cients the description of the steady configuration whose stability is considered.

Under the condition that this motion is physically described in a rigorous way,

which necessarily should include all the phenomena that produce its spatial

evolution, the Orr-Sommerfeld theory yields results in agreement with experi-

mental findings. Recently this was done in two steps: - first, by looking for a

fully nonlinear Navier-Stokes asymptotic expansion solution of the basic flow,

- second, by introducing a spatio-temporal multiscaling. The multi-scaling

produces in the perturbative equation a term which represents explicitly the

transversal dynamics responsible for the entrainment and the spatial growth of

the system. A second recent improvement in the theory is due to the fact that

to first order in the multi-scaling and moving downstream towards the far field,

it is possible to deduce the sequence of the most unstable or less stable points

in the dispersion relationship. This is paramount to obtain a local dispersion

relationship depending solely on the Reynolds number and the longitudinal

position in the flow. The initial value analysis considers three-dimensional in-

stability waves and determines their temporal and transversal linear evolution.

It can be found that if the longitudinal wave is represented by a wave that spa-

tially decays (αi > 0) or remains constant (αi = 0), the asymptotic fate of the

perturbation is the same deduced by means of the modal theory. An important

point highlighted by the initial value problem is that the early and intermediate

transients can be of a great variety, not a priori intuitable. Waves may con-

tinuously grow or decay or may initially grow and subsequently decay, which
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may lead to a form of transition called bypass transition. Not only, waves may

transit across various phases, an initial growth, followed by a slow decay and

then by a second growth. The time scales of these transients may last hundred

basic flow time scales. This knowledge is important because it opens a ques-

tion on the interpretation of the flow properties obtained from numerical flow

simulations. At the state of the art, the numerical simulations typically produce

temporal evolutions lasting a few basic time scales only, which could not be a

sufficient observation window to study the transient behaviour.
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