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We present recent findings concerning angular frequency discontinuities in the
transient evolution of three-dimensional perturbations in two sheared flows, the plane
channel and the wake flows. By carrying out a large number of initial-value prob-
lem simulations1,2 we observe a discontinuity which appears toward the end of the
perturbation transient life. Both the frequency, ω, and the phase speed, C, decrease
to zero when ϕ, the angle of obliquity between the perturbation and the base flow,
approaches π/2.

A few examples of transient of the frequency are reported in Fig. 1(a-b) for the
channel and wake flows, respectively. When the transient is close to the end, the
angular frequency suddenly jumps to the asymptotic value, which is in general higher
than the transient one. The relative variation between the transient and asymptotic
values can change from a few percentages to values up to 30−40%. Whenever it occurs,
the emergence of a frequency discontinuity can be considered as a particular range
of the temporal evolution which separates the transient (algebraic) dynamics from
the asymptotic (exponential) regime. Within this temporal range, the perturbation
suddenly changes its behavior by increasing its phase velocity. Independently to
what observed for the amplification factor, one can assume that beyond this temporal
instant the asymptotic state sets in.

The investigation of the dispersion relation, C(k) (see an example in Fig. 1c for the
channel flow case), reveals that longitudinal short waves are non-dispersive (C ∼ const
as k is large enough), while longitudinal long waves and all the perturbations not
aligned with the base flow present a dispersive behavior (C varies either with the
angle of obliquity, ϕ, or the polar wavenumber, k). Moreover, orthogonal waves
(ϕ = π/2), which can experience a quick initial growth of energy, are standing waves
(C = 0). This result can be explained in terms of the system symmetry. A possible
interpretation for the morphology of turbulent spots3,4 can be drawn in the case of
wall flows.
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Figure 1: (a)-(b) Temporal evolution of the angular frequency, ω: (a) channel flow, (b) wake
flow. (c) Asymptotic spectral distribution of the phase velocity amplitude, |C|, channel flow.


