Pre-unstable set of multiple transient three-dimensional perturbation waves and the associated turbulent state in a shear flow

Daniela Tordella ${ }^{1}$
 Stefania Scarsoglio²

${ }^{1}$ Department of Aeronautics and Space Engineering, Politecnico di Torino, Torino, Italy
${ }^{2}$ Department of Hydraulics, Politecnico di Torino, Torino, Italy
17th Australasian Fluid Mechanics Conference
5-9 December 2010, Auckland, New Zealand

Examples of temporal evolution

- Amplified wave;

Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;

Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
- Damped wave;

Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
- Damped wave;
- Random Wave Collection;

Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
- Damped wave;
- Random Wave Collection;
- Simultaneous Wave Collection;

Energy spectrum in fully developed turbulence

- Phenomenology of turbulence Kolmogorov 1941:
$-5 / 3$ power-law for the energy spectrum over the inertial range;

Energy spectrum in fully developed turbulence

- Phenomenology of turbulence Kolmogorov 1941:
$-5 / 3$ power-law for the energy spectrum over the inertial range;
- It is a common criterium for the production of a fully developed turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan \& Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

Energy spectrum in fully developed turbulence

- Phenomenology of turbulence Kolmogorov 1941:
$-5 / 3$ power-law for the energy spectrum over the inertial range;
- It is a common criterium for the production of a fully developed turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan \& Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

(left) Evangelinos \& Karniadakis, JFM 1999. (right) Champagne, JFM 1978.

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the value of the exponent of the inertial range;

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
- Constitutes a system of multiple spatial and temporal scales;

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
- Constitutes a system of multiple spatial and temporal scales;
- Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
- Constitutes a system of multiple spatial and temporal scales;
- Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);
- Leaves aside the nonlinear interaction among the different scales;

Energy spectrum and linear stability analysis

- We consider the state that precedes the onset of instabilities \Rightarrow the system is stable but subject to small 3D perturbations:
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
- Constitutes a system of multiple spatial and temporal scales;
- Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);
- Leaves aside the nonlinear interaction among the different scales;
- The perturbative evolution is ruled out by the initial-value problem associated to the Navier-Stokes linearized formulation.

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:
- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella \& Belan, Phys. Fluids, 2003; Tordella \& Scarsoglio, Phys. Lett. A, 2009 $) \Rightarrow(U(x, y ; R e), V(x, y ; R e))$;

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:
- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella \& Belan, Phys. Fluids, 2003; Tordella \& Scarsoglio, Phys. Lett. A, 2009) $\Rightarrow(U(x, y ; R e), V(x, y ; R e))$;
- Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio et al., Phys. Rev. E, 2010);

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:
- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella \& Belan, Phys. Fluids, 2003; Tordella \& Scarsoglio, Phys. Lett. A, 2009 $) \Rightarrow(U(x, y ; R e), V(x, y ; R e))$;
- Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio et al., Phys. Rev. E, 2010);
- Variety of the transient linear dynamics \Rightarrow Understand how the energy spectrum behaves and compare it with the exponent of the developed turbulent state:

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:
- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella \& Belan, Phys. Fluids, 2003; Tordella \& Scarsoglio, Phys. Lett. A, 2009 $) \Rightarrow(U(x, y ; R e), V(x, y ; R e))$;
- Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio et al., Phys. Rev. E, 2010);
- Variety of the transient linear dynamics \Rightarrow Understand how the energy spectrum behaves and compare it with the exponent of the developed turbulent state:
- The difference is large \Rightarrow quantitative measure of the nonlinear interaction in spectral terms;

Spectral analysis through initial-value problem

- We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:
- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella \& Belan, Phys. Fluids, 2003; Tordella \& Scarsoglio, Phys. Lett. A, 2009 $) \Rightarrow(U(x, y ; R e), V(x, y ; R e))$;
- Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio et al., Phys. Rev. E, 2010);
- Variety of the transient linear dynamics \Rightarrow Understand how the energy spectrum behaves and compare it with the exponent of the developed turbulent state:
- The difference is large \Rightarrow quantitative measure of the nonlinear interaction in spectral terms;
- The difference is small \Rightarrow higher degree of universality on the value of the exponent of the inertial range, not necessarily associated to the nonlinear interaction.

Perturbation scheme

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale \& Drazin, Stud. Appl. Math., 1990);

Perturbation scheme

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale \& Drazin, Stud. Appl. Math., 1990);
- Base flow parametric in x and $R e \Rightarrow U\left(y ; x_{0}, R e\right)$;

Perturbation scheme

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale \& Drazin, Stud. Appl. Math., 1990);
- Base flow parametric in x and $R e \Rightarrow U\left(y ; x_{0}, R e\right)$;
- Laplace-Fourier transform in x and z directions, α complex, γ real.

Perturbation scheme

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale \& Drazin, Stud. Appl. Math., 1990);
- Base flow parametric in x and $R e \Rightarrow U\left(y ; x_{0}, R e\right)$;
- Laplace-Fourier transform in x and z directions, α complex, γ real.

Perturbative equations

- Perturbative linearized system:

$$
\begin{aligned}
\frac{\partial^{2} \hat{v}}{\partial y^{2}} & -\left(k^{2}-\alpha_{i}^{2}+2 i \alpha_{r} \alpha_{i}\right) \hat{v}=\hat{\Gamma} \\
\frac{\partial \hat{\Gamma}}{\partial t} & =\left(i \alpha_{r}-\alpha_{i}\right)\left(\frac{d^{2} U}{d y^{2}} \hat{v}-U \hat{\Gamma}\right)+\frac{1}{R e}\left[\frac{\partial^{2} \hat{\Gamma}}{\partial y^{2}}-\left(k^{2}-\alpha_{i}^{2}+2 i \alpha_{r} \alpha_{i}\right) \hat{\Gamma}\right] \\
\frac{\partial \hat{\omega}_{y}}{\partial t} & =-\left(i \alpha_{r}-\alpha_{i}\right) U \hat{\omega}_{y}-i \gamma \frac{d U}{d y} \hat{v}+\frac{1}{R e}\left[\frac{\partial^{2} \hat{\omega}_{y}}{\partial y^{2}}-\left(k^{2}-\alpha_{i}^{2}+2 i \alpha_{r} \alpha_{i}\right) \hat{\omega}_{y}\right]
\end{aligned}
$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_{y}$ respectively, $\hat{\Gamma}$ is defined as $\widetilde{\Gamma}=\partial_{x} \widetilde{\omega}_{z}-\partial_{z} \widetilde{\omega}_{x}$.

- Initial conditions:
- $\hat{\omega}_{y}(0, y)=0$;
- $\hat{v}(0, y)=e^{-y^{2}} \sin (y)$ or $\hat{v}(0, y)=e^{-y^{2}} \cos (y)$;
- Boundary conditions: $(\hat{u}, \hat{v}, \hat{w}) \rightarrow 0$ as $y \rightarrow \infty$.

Perturbation energy

- Kinetic energy density e :

$$
\begin{aligned}
e(t ; \alpha, \gamma) & =\int_{-y_{d}}^{+y_{d}}\left(|\hat{u}|^{2}+|\hat{v}|^{2}+|\hat{w}|^{2}\right) d y \\
& =\frac{1}{\left|\alpha^{2}+\gamma^{2}\right|} \int_{-y_{d}}^{+y_{d}}\left(\left|\frac{\partial \hat{v}}{\partial y}\right|^{2}+\left|\alpha^{2}+\gamma^{2}\right||\hat{v}|^{2}+\left|\hat{\omega}_{y}\right|^{2}\right) d y
\end{aligned}
$$

Perturbation energy

- Kinetic energy density e :

$$
\begin{aligned}
e(t ; \alpha, \gamma) & =\int_{-y_{d}}^{+y_{d}}\left(|\hat{u}|^{2}+|\hat{v}|^{2}+|\hat{w}|^{2}\right) d y \\
& =\frac{1}{\left|\alpha^{2}+\gamma^{2}\right|} \int_{-y_{d}}^{+y_{d}}\left(\left|\frac{\partial \hat{v}}{\partial y}\right|^{2}+\left|\alpha^{2}+\gamma^{2}\right||\hat{v}|^{2}+\left|\hat{\omega}_{y}\right|^{2}\right) d y
\end{aligned}
$$

- Amplification factor G :

$$
G(t ; \alpha, \gamma)=\frac{e(t ; \alpha, \gamma)}{e(t=0 ; \alpha, \gamma)}
$$

Perturbation energy

- Kinetic energy density e :

$$
\begin{aligned}
e(t ; \alpha, \gamma) & =\int_{-y_{d}}^{+y_{d}}\left(|\hat{u}|^{2}+|\hat{v}|^{2}+|\hat{w}|^{2}\right) d y \\
& =\frac{1}{\left|\alpha^{2}+\gamma^{2}\right|} \int_{-y_{d}}^{+y_{d}}\left(\left|\frac{\partial \hat{v}}{\partial y}\right|^{2}+\left|\alpha^{2}+\gamma^{2}\right||\hat{v}|^{2}+\left|\hat{\omega}_{y}\right|^{2}\right) d y
\end{aligned}
$$

- Amplification factor G :

$$
G(t ; \alpha, \gamma)=\frac{e(t ; \alpha, \gamma)}{e(t=0 ; \alpha, \gamma)}
$$

- Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

$$
r(t ; \alpha, \gamma)=\frac{\log |e(t ; \alpha, \gamma)|}{2 t}, \quad t>0
$$

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const), since it can widely vary during the transient;

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const), since it can widely vary during the transient;
- Perturbation energy normalized over the value at $t=0 \Rightarrow G(k)$;

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const), since it can widely vary during the transient;
- Perturbation energy normalized over the value at $t=0 \Rightarrow G(k)$;
- Stable configurations $(R e=40) \Rightarrow$ Far from the turbulent state;

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const), since it can widely vary during the transient;
- Perturbation energy normalized over the value at $t=0 \Rightarrow \mathrm{G}(k)$;
- Stable configurations $(R e=40) \Rightarrow$ Far from the turbulent state;
- $k \in[0.05,100], \alpha_{i}=0, x_{0}=10$, and $\phi=0, \pi / 4, \pi / 2$;

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const $)$, since it can widely vary during the transient;
- Perturbation energy normalized over the value at $t=0 \Rightarrow \mathrm{G}(\mathrm{k})$;
- Stable configurations $(R e=40) \Rightarrow$ Far from the turbulent state;
- $k \in[0.05,100], \alpha_{i}=0, x_{0}=10$, and $\phi=0, \pi / 4, \pi / 2$;
- Symmetric and asymmetric initial conditions.

Results

- The energy spectrum is computed at the asymptotic state ($r=$ const $)$, since it can widely vary during the transient;
- Perturbation energy normalized over the value at $t=0 \Rightarrow G(k)$;
- Stable configurations $(R e=40) \Rightarrow$ Far from the turbulent state;
- $k \in[0.05,100], \alpha_{i}=0, x_{0}=10$, and $\phi=0, \pi / 4, \pi / 2$;
- Symmetric and asymmetric initial conditions.

Energy spectrum for longitudinal waves

Energy spectrum for transversal waves

Energy spectrum of a 2D-3D combined perturbation

Transient evolution of multiple three-dimensional waves.

Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;

Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5 / 3$ for 3D, -3 for 2D), where the nonlinear interaction is considered dominant;

Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5 / 3$ for 3D, -3 for 2D), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;

Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5 / 3$ for 3D, -3 for 2D), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;
- The $-5 / 3$ and -3 power-law scaling in the intermediate range seems to be an intrinsic property of the Navier-Stokes solutions in $3 D$ and $2 D$, respectively.

Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5 / 3$ for 3D, -3 for 2D), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;
- The $-5 / 3$ and -3 power-law scaling in the intermediate range seems to be an intrinsic property of the Navier-Stokes solutions in $3 D$ and $2 D$, respectively.
Coming next \Rightarrow Temporal observation window of a large number of small 3D perturbations injected in a statistical way into the system.

