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Turbulent shearless mixing

General flow configuration:
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State of the art

• Grid turbulence experiments:
I Gilbert JFM 1980
I Veeravalli-Warhaft JFM 1989,
1990, 2009

• Numerical experiments:
IBriggs et al. JFM 1996
IKnaepen et al. JFM 2004
ITordella-Iovieno JFM 2006
IIovieno-Tordella-Bailey PRE
2008
IKang-Meneveau Phys.Fluids
2008
ITordella-Iovieno Phys.Rev.Lett.
(accepted)
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Main features of mixing layers

Shearless mixing layers shows the following properties:
• no gradient of mean velocity, thus no kinetic energy

production
• the mixing is generated by the inhomogeneity in the

turbulent kinetic energy and integral scale
• the mixing layer becomes very intermittent at both large and

small scales [Tordella-Iovieno Phys.Rev.Lett. 2011]
• the presence of a gradient of energy is a sufficient condition

for the onset of intermittency [Tordella and Iovieno JFM
2006; Tordella et al. Phys. Rev. 2008]

• 2D and 3D mixings: different asymptotic layer thickness
growth exponent
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Passive scalar
Basic phenomenology

• A passive scalar is a contaminant present in so low
concentration that it has no dynamical effect on the fluid
motion.

• Turbulence transports the scalar by making particles follow
chaotic trajectories and disperses the scalar concentration if
exists scalar concentration gradient.

• Fluctuations reach the smaller scales.
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Passive scalar
Basic phenomenology

• at large scales:
• the mean concentration, variance and flux are strongly

influenced by the boundary conditions and scalar injection
• at small scales:

• scalar differences are not gaussian,
• intermittency observed at inertial range scales as well as at the

dissipation scales, with ramp/cliff structures

see, e.g.:
Warhaft Ann.Rev.Fluid Mech. 2000,
Shraiman and Siggia, Nature 2000,
Gotoh, Phys.Fluids 2006, 2007.
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Passive scalar transport

We solve the passive scalar advection-diffusion equation

∂ϑ

∂t
+ uj

∂ϑ

∂xj
=

(−1)n+1

Re Sc
∇2nϑ

for the shearless mixing configuration with E1/E2 = 6.6, `1 = `2.

DNS simulations have been performed for:
3D turbulence: 6002 × 1200 grid points, n = 1, Reλ = 150
2D turbulence: 10242 grid points, n = 2 (hyperviscosity)

Schmidt number Sc = 1
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Passive scalar concentration
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Mean Scalar Diffusion

2D Mixing 3D Mixing
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Scalar mixing layer thickness

2D Mixing 3D Mixing
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3D mixing: ∆ϑ ∼ t0.46, 2D mixing: ∆ϑ ∼ t0.68
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Scalar flux

2D Mixing 3D Mixing
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Scalar variance

2D Mixing 3D Mixing
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Scalar skewness

2D Mixing 3D Mixing

-8

-6

-4

-2

 0

 2

 4

 6

 8

-3 -2 -1  0  1  2  3

(x− xc)/∆θ

S
θ

t/τ
1
5

10
20

scalar flow

energy flow

-8

-6

-4

-2

 0

 2

 4

 6

 8

-3 -2 -1  0  1  2  3

(x− xc)/∆θ

S
θ

1
5

10
12.5

t/τ

scalar flow

energy flow

Strong non-gaussian statistic at the mixing layer border
2D: intermittency penetrates more in the direction opposite to the
energy gradient.
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Scalar kurtosis

2D Mixing 3D Mixing
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2D: higher asymmetry of the peaks.
Intermittency gradually reduces as the mixing procedes
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Small scale intermittency
Scalar derivative skewness

2D Mixing 3D Mixing
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Spectra in the mixing layer

2D Mixing 3D Mixing
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Conclusions
Passive scalar transport

• Growth rate:
2D flow : (∆ϑ ∼ ∆E ∼ t0.68), 3D flow : (∆ϑ ∼ ∆E ∼ t0.46).

• Self-similar profiles of first and second order moments.
The scalar flow is about two times larger in 2D than in 3D.
The scalar variance in the center of the mixing layer is 50%
higher in 2D case.

• Large intermittency and non-gaussian behaviour on both
sides of the mixing, even where the scalar flux is small.

• Larger asymmetry in moment distributions in 2D mixing.
• Intermittency involves also the small scales
• Inertial range spectra exponent:

scalar: 3D ∼ −5/3, 2D ∼ −1.4,
velocity: 3D ∼ −5/3, 2D ∼ −3



Dimensionality
influence on

passive scalar
transport

Introduction

Passive scalar
Mean Scalar

Scalar moments

Conclusions

Appendix

Large scale intermittency

S = u3/u2
3/2

K = u4/u2
2

u = velocity component in the mixing direction
Smax, Kmax = maximum of Skewness and Kurtosis in the mixing
layer
ηmax = normalized position of the maximum in the mixing layer

(Figures: sample data from simulations with E1/E2 = 6.7, `1 = `1,
Reλ = 45)
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Intermittency vs. Energy ratio

Skewness Penetration

We define the penetration as the position of the maximum of the
skewness normalized over the mixing layer thickness: η = xs(t)

∆(t)
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Velocity derivative
Reλ = 45 Reλ = 150
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Velocity derivative skewness
General behaviour

ξ = ∂ui/∂xi, i = x, y1 and y2
(Re = 150, t/τ = 3.5)

Increase of fluid filaments compression in the energy gradient direction,
reduction of fluid filaments compression in the other directions
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Small scale anisotropy

(1) Sreenivasan-

Antonia Ann.Rev.Fluid

Mech 1997

(2,3) Warhaft-Shen

Phys.Fluids 2000 and 2002.

Shear flows: large transiversal skewness
Shearless mixings: strong differentiation of the longitudinal skewness
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