EFMC-2006: The intermediate asymptotics of turbulent diffusion

M. Iovieno, D. Tordella, P. Bailey
Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

- D.Tordella, M.Iovieno "Numerical experiments on the intermediate asymptotics of shear-free turbulent diffusion", Journal of Fluid Mechanics, 549, 429-441, 2006.
- D.Tordella, M.Iovieno "The dependance on the energy ratio of the shear-free interaction between two isotropic turbulence" Direct and Large Eddy Simulation 6 - ERCOFTAC Workshop, Poitiers, Sept 12-14, 2005.
- D.Tordella, M.Iovieno "Self-similarity of the turbulence mixing with a constant in time macroscale gradient" 22nd IFIP TC 7 Conference on System Modeling and Optimization, Torino, July 18-22, 2005.
- M.Iovieno, D.Tordella 2002 "The angular momentum for a finite element of a fluid: A new representation and application to turbulent modeling", Physics of Fluids, 14(8), 2673-2682.
- M.Iovieno, C.Cavazzoni, D.Tordella 2001 "A new technique for a parallel dealiased pseudospectral Navier-Stokes code." Computer Physics Communications, 141, 365-374.
- M.Iovieno, D.Tordella 1999 "Shearless turbulence mixings by means of the angular momentum large eddy model", American Physical Society - $52^{\text {th }}$ DFD Annual Meeting.

Shearless turbulence mixing: an overview

- mixing between homogeneous turbulences: no mean shear \Rightarrow no turbulence production
- the mixing layer is generated by the turbulence inhomogeneity, i.e.:
\diamond by the gradient of turbulent energy and
\diamond by the gradient of integral scale

Properties of laboratory/numerical numerical experimen-

 ts:Gilbert, JFM 100 (1980), Veeravalli and Warhaft JFM 207 (1989) Briggs et al. JFM 310 (1996), Knaepen et al. JFM 414 (2004), Tordella and Iovieno JFM 549 (2006)

- A self-similar stage of decay is always reached
- It is characterized by a strong intermittent penetration, which depends on the two mixing parameters:
- the turbulent energy gradient
- the integral scale gradient

This behaviour must be contained in the solutions of:

- the two-point correlation equation which allows to consider both the macroscale and energy gradient parameters $\left(B_{i j}(\mathbf{x}, \mathbf{r}, t)=\overline{u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)}\right)$;
- the one-point correlation equation, the limit $\mathbf{r} \rightarrow \mathbf{0}$, which allows to obtain the third order moment (skewness) distribution from second order (energy) distribution.

Intermittency: skewness and kurtosis profiles

$S=\frac{\overline{u^{3}}}{\overline{u^{2^{2}}}} K=\frac{\overline{u^{4}}}{{\overline{u^{2}}}^{2}} \Rightarrow S \approx 0, K \approx 3$ in homogeneous isotropic turb.
$\mathcal{E}=6.6, \mathcal{L}=1.5$: gradients of energy and scale have the same direction.

Intermittent penetration $\eta_{\max }$ - maximum of skewness $\max \{S\}$

for $\mathcal{L}=1$ we have the approximate scaling law

$$
\begin{gathered}
\eta_{\max } \sim a(\mathcal{E}-1)^{b}, \quad a=0.27, \quad b=0.33 \\
\max \{S\} \sim a(\mathcal{E}-1)^{b}, \quad a=0.46, \quad b=0.31
\end{gathered}
$$

main reference: Tordella and Iovieno JFM 549 (2006)

Two-point double correlations:

$$
\begin{aligned}
B_{i j}(\mathbf{x}, \mathbf{r}, t) & =\overline{u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t)} \\
B_{p i}(\mathbf{x}, \mathbf{r}, t) & =\overline{p(\mathbf{x}, t) u_{i}(\mathbf{x}+\mathbf{r}, t)} \\
B_{i p}(\mathbf{x}, \mathbf{r}, t) & =\overline{u_{i}(\mathbf{x}, t) p(\mathbf{x}+\mathbf{r}, t)}
\end{aligned}
$$

Two-point triple correlations:

$$
\begin{aligned}
B_{i j \mid k}(\mathbf{x}, \mathbf{r}, t) & =\overline{u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}, t) u_{k}(\mathbf{x}+\mathbf{r}, t)} \\
B_{i \mid j k}(\mathbf{x}, \mathbf{r}, t) & =\overline{u_{i}(\mathbf{x}, t) u_{j}(\mathbf{x}+\mathbf{r}, t) u_{k}(\mathbf{x}+\mathbf{r}, t)}
\end{aligned}
$$

Momentum equations:

$$
\begin{array}{r}
\frac{\partial}{\partial t} B_{i j}(\mathbf{x}, \mathbf{r}, t)+\frac{\partial}{\partial x_{k}} B_{i k \mid j}(\mathbf{x}, \mathbf{r}, t)+\frac{\partial}{\partial r_{k}}\left(B_{i \mid k j}(\mathbf{x}, \mathbf{r}, t)-B_{i k \mid j}(\mathbf{x}, \mathbf{r}, t)\right)= \\
=\frac{1}{\rho}\left\{-\frac{\partial}{\partial x_{i}} B_{p j}(\mathbf{x}, \mathbf{r}, t)+\frac{\partial}{\partial r_{i}} B_{p j}(\mathbf{x}, \mathbf{r}, t)-\frac{\partial}{\partial r_{j}} B_{i p}(\mathbf{x}, \mathbf{r}, t)\right\}+ \\
+\nu\left[\frac{\partial^{2}}{\partial x_{k} \partial x_{k}} \frac{\partial}{\partial t} B_{i j}(\mathbf{x}, \mathbf{r}, t)+2 \frac{\partial^{2}}{\partial r_{k} \partial r_{k}} \frac{\partial}{\partial t} B_{i j}(\mathbf{x}, \mathbf{r}, t)-2 \frac{\partial^{2}}{\partial x_{k} \partial r_{k}} \frac{\partial}{\partial t} B_{i j}(\mathbf{x}, \mathbf{r}, t)\right]
\end{array}
$$

Simmetries:

- there is only one non homogeneous and non isotropic direction, denoted by x
- correlations are invariant under all translations perpendicular to x and to all rotations around x
\Rightarrow with cylindrical coordinates all variables are functions of (x, r_{0}, r_{x}, t) only
- $B_{\partial_{x} u_{x} \partial_{x} u_{x}}\left(x, r_{0}, 0, t\right)=\lambda^{-2}\left(x, r_{0}, t\right) B_{x x}\left(x, r_{0}, 0, t\right)$

Two-point lateral correlation $B_{x x}$ equation for $r_{x} \rightarrow 0$ reduces to

$$
\begin{gathered}
\frac{\partial}{\partial t} B_{x x}+\frac{\partial}{\partial x} B_{x x \mid x}-2\left(\frac{\partial B_{r x \mid x}}{\partial r_{0}}+\frac{B_{r x \mid x}}{r_{0}}\right)= \\
=-\frac{1}{\rho} \frac{\partial}{\partial x} B_{p x}+\nu\left\{\left[\frac{\partial^{2}}{\partial x^{2}}+2\left(\frac{\partial^{2}}{\partial r_{0}^{2}}+\frac{1}{r_{0}} \frac{\partial}{\partial r_{0}}\right)\right] B_{x x}-\frac{B_{x x}}{\lambda^{2}\left(x, r_{0}, t\right)}\right\}
\end{gathered}
$$

Hypothesis and semplifications

- The two homogenous turbulences decay in the same way, thus

$$
E_{1}(t)=A_{1}\left(t+t_{0}\right)^{-n_{1}}, \quad E_{2}(t)=A_{2}\left(t+t_{0}\right)^{-n_{2}}
$$

the exponents n_{1}, n_{2} are close each other (numerical experiments, Tordella \& Iovieno, JFM 2006). Here, we suppose $n_{1}=n_{2}=n=1$, a value which corresponds to $R_{\lambda} \gg 1$ (Batchelor \& Townsend, 1948).
\Rightarrow this implies $\mathcal{E}=E_{1}(t) / E_{2}(t)=$ const, $\quad \mathcal{L}=\ell_{1}(t) / \ell_{2}(t)=$ const

- Pressure-velocity correlation has been shown to be approximately proportional to the convective fluctuation transport (Yoshizawa, 1982, 2002) for $\mathbf{r} \rightarrow 0$, so that

$$
-\overline{p u_{i}}=a \rho \frac{\overline{u_{i} u_{i} u_{j}}}{2}, \quad a \approx 0.10
$$

so that

$$
-B_{p x}(x, 0,0, t)=0.25 \rho B_{x x \mid x}(x, 0,0, t)
$$

Similarity hypothesis

The two-point lateral correlations are determined by

- the coordinates x, r_{0}, t
- the energies $E_{1}(t), E_{2}(t) \Rightarrow$ gradient ∇E or their ratio $\mathcal{E}=E_{1} / E_{2}$
- the integral scales $\ell_{1}(t), \ell_{2}(t) \Rightarrow$ gradient $\nabla \ell$ or their ratio $\mathcal{L}=\ell_{1} / \ell_{2}$
- the mixing layer thickness $\Delta(t)$

The turbulent kinetic energy and the integral scale of the high energy region $\left(E_{1}, \ell_{1}\right)$, that is

$$
B_{x x}(-\infty, 0,0, t)=\frac{2}{3} E_{1}(t), \quad \ell_{1}(t)
$$

are chosen as velocity and length scales.

Consequently all correlations can be expressed in terms of

$$
\eta=\frac{x}{\Delta(t)}, \quad \xi=\frac{r_{0}}{\ell(x, t)},
$$

and this is the structure of the equations for the similarity analysis:

$$
\begin{aligned}
B_{x x}\left(x, r_{0}, 0, t\right) & =B_{x x}(-\infty, 0,0, t) \varphi_{x x}(\eta, \xi) \\
B_{x x \mid x}\left(x, r_{0}, 0, t\right) & =B_{x x}^{\frac{3}{2}}(-\infty, 0,0, t) \varphi_{x x \mid x}(\eta, \xi) \\
B_{r x \mid x}\left(x, r_{0}, 0, t\right) & =B_{x x}^{\frac{3}{2}}(-\infty, 0,0, t) \varphi_{r x \mid x}(\eta, \xi) \\
B_{p x}\left(x, r_{0}, 0, t\right) & =\rho B_{x x}^{\frac{3}{2}}(-\infty, 0,0, t) \varphi_{p x}(\eta, \xi) \\
\lambda\left(x, r_{0}, t\right) & =\ell_{1}(t) \tilde{\lambda}(\eta, \xi) \\
\ell(x, t) & =\ell_{1}(t) \tilde{\ell}(\eta)
\end{aligned}
$$

\Rightarrow similarity conditions:

By introducing the similarity relations in the equation for $B_{x x}$ and by imposing that all the coefficients must be independent from $\left(x, r_{0}, t\right)$, the following condition is obtained

$$
\Delta(t) \propto \ell_{1}(t)=\mathcal{L} \ell_{2}(t)
$$

Equation (1) reduces to

$$
\begin{array}{r}
-\varphi_{x x}+\frac{1}{2}\left[\eta \frac{\partial \varphi_{x x}}{\partial \eta}-\xi \eta \tilde{\ell}^{\prime} \frac{\partial \varphi_{x x}}{\partial \xi}\right]+\frac{3}{4 f\left(R_{\ell_{1}}\right)}\left[\frac{\partial \varphi_{x x \mid x}}{\partial \eta}-\xi \tilde{\ell}^{\prime} \frac{\partial \varphi_{x x \mid x}}{\partial \xi}-2 \frac{1}{\tilde{\ell} \xi} \frac{\partial}{\partial \xi}\left(\xi \varphi_{r x \mid x}\right)\right]= \\
=-\frac{3}{f\left(R_{\ell_{1}}\right)}\left[\frac{\partial \varphi_{p x}}{\partial \eta}-\xi \tilde{\ell}^{\prime} \frac{\partial \varphi_{p x}}{\partial \xi}\right]+\frac{3}{2 f\left(R_{\ell_{1}}\right)} \frac{1}{R_{\ell_{1}}}\left\{\left[\frac{\partial^{2} \varphi_{x x}}{\partial \eta^{2}}-\xi \tilde{\ell}^{\prime}\left(\frac{\partial^{2} \varphi_{x x}}{\partial \eta \partial \xi}-\tilde{\ell}^{\prime} \frac{\partial \varphi_{x x}}{\partial \xi}-\xi \tilde{\ell}^{\prime} \frac{\partial^{2} \varphi_{x x}}{\partial \xi^{2}}\right)-\xi \tilde{\ell}^{\prime \prime} \frac{\partial \varphi_{x x}}{\partial \xi}\right]\right. \\
\left.+\left[\frac{2}{\tilde{\ell}^{2} \xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \varphi_{x x}}{\partial \xi}\right)-\frac{\varphi_{x x}}{\tilde{\lambda}^{2}}\right]\right\}
\end{array}
$$

boundary conditions: matching with the two homogeneous turbulences external to the mixing:

- for $\eta \rightarrow-\infty$ to homogeneous turbulence with energy E_{1} and scale ℓ_{1}
- for $\eta \rightarrow+\infty$ to homogeneous turbulence with energy E_{2} and scale ℓ_{2}

One-point limit

For $\xi \rightarrow 0$, this equation and its boundary conditions become

$$
\begin{aligned}
\frac{\partial \varphi_{x x \mid x}}{\partial \eta} & =\frac{4 f\left(R_{\ell_{1}}\right)}{3}\left\{\frac{1}{2} \eta \frac{\partial \varphi_{x x}}{\partial \eta}+\frac{3}{2 f\left(R_{\ell_{1}}\right)} \frac{1}{R_{\ell_{1}}} \frac{\partial^{2} \varphi_{x x}}{\partial \eta^{2}}\right. \\
& \left.+\varphi_{x x}\left[1-\frac{3}{f\left(R_{\ell}(\eta)\right)} \frac{1}{R_{\ell}(\eta)} \frac{\tilde{\ell}^{2}(\eta)}{\tilde{\lambda}^{2}(\eta, 0)}\right]\right\}
\end{aligned}
$$

where $R_{\ell}(\eta)$ is the local Reynolds number, i.e. based on local energy and scale
second order correlation b.c.:

$$
\lim _{\eta \rightarrow-\infty} \varphi_{x x}(\eta, 0)=\frac{2}{3}, \quad \lim _{\eta \rightarrow+\infty} \varphi_{x x}(\eta, 0)=\frac{2}{3} \mathcal{E}^{-1}
$$

third order correlation b.c.:

$$
\lim _{\eta \rightarrow \pm \infty} \varphi_{x x \mid x}(\eta, 0)=0
$$

This equation relates the distributions of second and third order moments in the mixing layer.

The flow outside the mixing $(|\eta| \gg 1)$ is homogeneous, thus

$$
\begin{equation*}
\frac{\partial}{\partial \eta}=0 \Rightarrow\left[1-\frac{3}{f\left(R_{\ell}(\eta)\right)} \frac{1}{R_{\ell}(\eta)} \frac{\tilde{\ell}^{2}(\eta)}{\tilde{\lambda}^{2}(\eta, 0)}\right]=0 \quad \text { for } \quad \eta \rightarrow \pm \infty \tag{N}
\end{equation*}
$$

this is consistent with homogeneous turbulence, where it is known that

$$
\left(\frac{\ell}{\lambda}\right)^{2} \propto R_{\ell}
$$

However, this is not necessarily true through the mixing layer:

- when $\mathcal{L}=1$ there is still equilibrium as regards the integral scale, so we assume that this relation still holds
- when $\mathcal{L} \neq 1$ we suppose that function ($\boldsymbol{\propto}$) is a function of the scale gradients, so that we could write

$$
\tilde{\lambda}(\eta, 0)=\left(\frac{3}{f\left(R_{\ell}(\eta)\right) R_{\ell}(\eta)}\right)^{\frac{1}{2}} \tilde{\ell}(\eta)\left(1-\frac{b}{\varphi_{x x}} \frac{\mathrm{~d}^{2} \ell}{\mathrm{~d} \eta^{2}}(\eta)\right)^{-\frac{1}{2}}
$$

Now, the distribution of skewness can be obtained from the one-point correlation equation when a typical expression for the second order moment distribution is introduced as in Veeravalli \& Warhaft JFM 1989:

$$
\begin{aligned}
\varphi_{x x}(\eta) & =\frac{1+\mathcal{E}^{-1}}{2}-\frac{1-\mathcal{E}^{-1}}{2} \operatorname{erf}(\eta) \\
\tilde{\ell}(\eta) & =\frac{1+\mathcal{L}^{-1}}{2}-\frac{1-\mathcal{L}^{-1}}{2} \operatorname{erf}(a \eta)
\end{aligned}
$$

The third order moment is then

$$
\varphi_{x x x}=\frac{f}{6} \frac{1-\mathcal{E}^{-1}}{\sqrt{\pi}}\left[\left(1-\frac{6}{f\left(R_{\ell_{1}}\right)}\right) \mathrm{e}^{-\eta^{2}}+b a\left(1-\mathcal{L}^{-1}\right) \mathrm{e}^{-(a \eta)^{2}}\right]
$$

Parameters $a>0$ and $b>0$ are chosen to fit the experimental behaviour

Normalized energy and skewness distributions: $\mathcal{E}=6.7$ and $\mathcal{L}=1$.

Position of the skewness maximum

Conclusions

The intermediate asymptotics of the turbulence diffusion in the absence of production of turbulent kinetic energy is considered.

- An intermediate similarity stage of decay always exists.
- When the energy ratio \mathcal{E} is far from unity, the mixing is very intermittent.
- when $\mathcal{L}=1$, the intermittency increases with the energy ratio \mathcal{E} with a scaling exponent that is almost equal to 0.3 .
- intermittency smoothly varies when passing through $\mathcal{L}=1$:
it increases when $\mathcal{L}>1$ (concordant gradient of energy and scale),
it reduces when $\mathcal{L}<1$ (opposite gradient of energy and scale)
- the similarity solution contains all the salient points showed by the experiments.

Similarity equation

$$
\begin{aligned}
& -\varphi_{x x}+\frac{1}{2}\left[\eta \frac{\partial \varphi_{x x}}{\partial \eta}-\xi \eta \tilde{\ell}^{\prime} \frac{\partial \varphi_{x x}}{\partial \xi}\right]+ \\
+ & \frac{3}{4 f\left(R_{\ell_{1}}\right)}\left[\frac{\partial \varphi_{x x \mid x}}{\partial \eta}-\xi \tilde{\ell} \frac{\partial \varphi_{x x \mid x}}{\partial \xi}-2 \frac{1}{\tilde{\ell} \xi} \frac{\partial}{\partial \xi}\left(\xi \varphi_{r x \mid x}\right)\right]= \\
= & -\frac{3}{f\left(R_{\left.\ell_{1}\right)}\right.}\left[\frac{\partial \varphi_{p x}}{\partial \eta}-\xi \tilde{\ell} \frac{\partial \varphi_{p x}}{\partial \xi}\right]+ \\
+ & \frac{3}{2 f\left(R_{\left.\ell_{1}\right)}\right)} \frac{1}{R_{\ell_{1}}}\left\{\left[\frac{\partial^{2} \varphi_{x x}}{\partial \eta^{2}}-\xi \tilde{\ell}^{\prime}\left(\frac{\partial^{2} \varphi_{x x}}{\partial \eta \partial \xi}-\tilde{\ell^{\prime}} \frac{\partial \varphi_{x x}}{\partial \xi}-\xi \tilde{\ell}^{\prime} \frac{\partial^{2} \varphi_{x x}}{\partial \xi^{2}}\right)-\xi \tilde{\ell}^{\prime \prime} \frac{\partial \varphi_{x x}}{\partial \xi}\right]\right. \\
+ & {\left.\left[\frac{2}{\tilde{\ell}^{2} \xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \varphi_{x x}}{\partial \xi}\right)-\frac{\varphi_{x x}}{\tilde{\lambda}^{2}}\right]\right\} }
\end{aligned}
$$

