Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

Stefania Scarsoglio
Francesca De Santi Daniela Tordella

Department of Aeronautics and Space Engineering, Politecnico di Torino, Torino, Italy

American Physical Society
64th Annual DFD Meeting
November 20-22, 2011
Baltimore, Maryland
Energy spectrum in fully developed turbulence

- Phenomenology of turbulence **Kolmogorov 1941**:
 \(-5/3\) power-law for the energy spectrum over the inertial range;
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

Introduction

Motivation and general aspects

Initial-value problem

Mathematical framework

Measure of the growth

Linear transient dynamics

Results

Perturbative system features

Spectral distributions

Conclusions

Conclusions

Energy spectrum in fully developed turbulence

- Phenomenology of turbulence **Kolmogorov 1941**: $-5/3$ power-law for the energy spectrum over the inertial range;
- Common criterium for the production of a fully developed turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions

Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
- Different typical perturbed shear systems: plane Poiseuille flow and bluff-body wake.
Energy spectrum and linear stability analysis

• We study the state that precedes the onset of instability and transition to turbulence:
 • To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 • To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
• Different typical perturbed shear systems: plane Poiseuille flow and bluff-body wake.
• The set of small 3D perturbations:
 • Constitutes a system of multiple spatial and temporal scales;
Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
- Different typical perturbed shear systems: plane Poiseuille flow and bluff-body wake.
- The set of small 3D perturbations:
 - Constitutes a system of multiple spatial and temporal scales;
 - Includes all the processes of the perturbative Navier-Stokes equations;
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
- Different typical perturbed shear systems: plane Poiseuille flow and bluff-body wake.
- The set of small 3D perturbations:
 - Constitutes a system of multiple spatial and temporal scales;
 - Includes all the processes of the perturbative Navier-Stokes equations;
 - Leaves aside the nonlinear interaction among the different scales;
Energy spectrum and linear stability analysis

- We study the state that precedes the onset of instability and transition to turbulence:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the energy decay exponent of the inertial range;
- Different typical perturbed shear systems: plane Poiseuille flow and bluff-body wake.
- The set of small 3D perturbations:
 - Constitutes a system of multiple spatial and temporal scales;
 - Includes all the processes of the perturbative Navier-Stokes equations;
 - Leaves aside the nonlinear interaction among the different scales;
- The perturbative evolution is ruled by the initial-value problem associated to the Navier-Stokes linearized formulation.
Spectral analysis through initial-value problem

- The linear transient dynamics offers a great variety of very different behaviors (*Scarsoglio et al.*, 2009, 2010, 2011):
S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions

• The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):

⇒ Understand how the energy spectrum behaves;
The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):

- Understand how the energy spectrum behaves;

- Is the linearized perturbative system able to show a power-law scaling for the energy spectrum in an analogous way to the Kolmogorov argument?
The linear transient dynamics offers a great variety of very different behaviors (Scarsoglio et al., 2009, 2010, 2011):

⇒ Understand how the energy spectrum behaves;

• Is the linearized perturbative system able to show a power-law scaling for the energy spectrum in an analogous way to the Kolmogorov argument?

• We determine the energy decay exponent of arbitrary perturbations in their asymptotic states and we compare it with the -5/3 Kolmogorov decay.
Perturbation scheme

Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions

Perturbation scheme

- Laplace-Fourier (wake) and Fourier-Fourier (channel) transform in the x and z directions.
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions

Perturbation scheme

- Laplace-Fourier (wake) and Fourier-Fourier (channel) transform in the x and z directions.
Perturbative equations

- Perturbative linearized system:

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - k^2 \hat{v} = \hat{\Gamma} \\
\frac{\partial \hat{\Gamma}}{\partial t} = i\alpha \left(\frac{d^2 U}{dy^2} \hat{v} - U \hat{\Gamma} \right) + \frac{1}{Re} \left(\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - k^2 \hat{\Gamma} \right) \\
\frac{\partial \hat{\omega}_y}{\partial t} = -i\alpha U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left(\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - k^2 \hat{\omega}_y \right)
\]

The transversal velocity and vorticity components are \(\hat{v} \) and \(\hat{\omega}_y \) respectively, \(\hat{\Gamma} \) is defined as \(\hat{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x \).
Perturbative equations

• Perturbative linearized system:

$$\frac{\partial^2 \hat{v}}{\partial y^2} - k^2 \hat{v} = \hat{\Gamma}$$

$$\frac{\partial \hat{\Gamma}}{\partial t} = i\alpha \left(\frac{d^2 U}{dy^2} \hat{v} - U \hat{\Gamma} \right) + \frac{1}{Re} \left(\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - k^2 \hat{\Gamma} \right)$$

$$\frac{\partial \hat{\omega}_y}{\partial t} = -i\alpha U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left(\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - k^2 \hat{\omega}_y \right)$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_y$ respectively, $\hat{\Gamma}$ is defined as $\hat{\Gamma} = \partial_x \tilde{\omega}_z - \partial_z \tilde{\omega}_x$.

• Initial conditions: symmetric and asymmetric inputs;
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions

Perturbative equations

- Perturbative linearized system:

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - k^2 \hat{v} = \hat{\Gamma} \\
\frac{\partial \hat{\Gamma}}{\partial t} = i\alpha \left(\frac{d^2 U}{dy^2} \hat{v} - U \hat{\Gamma} \right) + \frac{1}{Re} \left(\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - k^2 \hat{\Gamma} \right) \\
\frac{\partial \hat{\omega}_y}{\partial t} = -i\alpha U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left(\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - k^2 \hat{\omega}_y \right)
\]

The transversal velocity and vorticity components are \(\hat{v} \) and \(\hat{\omega}_y \) respectively, \(\hat{\Gamma} \) is defined as \(\hat{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x \).

- Initial conditions: symmetric and asymmetric inputs;
- Boundary conditions: \((\hat{u}, \hat{v}, \hat{w}) \to 0 \) as \(y \to \pm\infty \) and at walls.
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions

- **Initial conditions**: symmetric and asymmetric inputs;
- **Boundary conditions**: \((\hat{u}, \hat{v}, \hat{w}) \to 0\) as \(y \to \pm \infty\) and at walls.
Perturbation energy

- **Kinetic energy density** e:

$$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$
Perturbation energy

- Kinetic energy density e:
 $$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

- Amplification factor G:
 $$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$
Perturbation energy

- Kinetic energy density e:

 $$e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_0}^{+y_0} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

- Amplification factor G:

 $$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

- Temporal growth rate r:

 $$r(t; \alpha, \gamma) = \frac{\log[e(t; \alpha, \gamma)]}{2t}$$
Perturbation energy

- Kinetic energy density \(e \):
 \[
e(t; \alpha, \gamma) = \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy\]

- Amplification factor \(G \):
 \[
 G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}
 \]

- Temporal growth rate \(r \):
 \[
 r(t; \alpha, \gamma) = \frac{\log[e(t; \alpha, \gamma)]}{2t}
 \]

- Angular frequency (pulsation) \(\omega \):
 \[
 \omega(t; y = y_0, \alpha, \gamma) = \frac{d\varphi(t; y = y_0, \alpha, \gamma)}{dt}, \quad \varphi \text{ time phase}
 \]
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction

Motivation and general aspects

Initial-value problem

Mathematical framework

Measure of the growth

Linear transient dynamics

Results

Perturbative system features

Spectral distributions

Conclusions

Conclusions
S. Scarsoglio, F. De Santi, D. Tordella

Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

Spectral representation

- The energy spectrum is evaluated as the wavenumber distribution of the amplification factor, $G(k)$.
Spectral representation

- The energy spectrum is evaluated as the wavenumber distribution of the amplification factor, \(G(k) \);

- The spectral representation is determined by comparing the energy of the waves when they are exiting their transient state.
Spectral representation

- The energy spectrum is evaluated as the wavenumber distribution of the amplification factor, $G(k)$;
- The spectral representation is determined by comparing the energy of the waves when they are exiting their transient state;
- Every perturbation has a characteristic transient exit time, T_e;
Spectral representation

- The energy spectrum is evaluated as the wavenumber distribution of the amplification factor, $G(k)$;
- The spectral representation is determined by comparing the energy of the waves when they are exiting their transient state;
- Every perturbation has a characteristic transient exit time, T_e;
- The asymptotic condition is reached when the perturbative wave exceeds the transient exit time, T_e, that is when $r \sim \text{const}$ is satisfied for stable and unstable waves.

Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects
Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions

Energy $G(k)$ at the asymptotic state ($r \sim \text{const}$)

Present results (Re values: see panels)
- \triangle Asym ic, $\phi=\pi/2$
- \triangle Asym ic, $\phi=\pi/4$
- \triangle Asym, $\phi=0$
- \bigcirc Sym ic, $\phi=\pi/2$
- \bigcirc Sym ic, $\phi=\pi/4$
- \bigcirc Sym, $\phi=0$

- \square *(E_x, E_y, E_z)* Moser et al. (MKM), 1999, Re=12390, DNS
- \blacksquare Saddoughi & Veeravalli (SV), 1993, Re*=4994, lab data
- \star *(E_u, E_v)* Ong & Wallace (OW), 1996, Re=3900, lab data
- \blacktriangle Cerutti & Meneveau (CM), 2000, Re=572080, DNS & LES

Channel flow
Re=500

Channel flow
Re=10000
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions

Energy $G(k)$ at the asymptotic state ($r \sim \text{const}$)

Present results (Re values: see panels)
- Asym ic, $\phi=\pi/2$
- Asym ic, $\phi=\pi/4$
- Asym, $\phi=0$
- Sym ic, $\phi=\pi/2$
- Sym ic, $\phi=\pi/4$
- Sym, $\phi=0$

- (E_x, E_y, E_z) Moser et al. (MKM), 1999, Re=12390, DNS
- Saddoughi & Veeravalli (SV), 1993, $Re_*=4994$, lab data
- (E_u, E_v) Ong & Wallace (OW), 1996, Re=3900, lab data
- Cerutti & Meneveau (CM), 2000, Re=572080, DNS & LES
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions
Conclusions
Concluding remarks

• Spectrum determined by evaluating the energy of the waves when they are exiting their transient state;
Concluding remarks

• Spectrum determined by evaluating the energy of the waves when they are exiting their transient state;

• Regardless the symmetry and obliquity of perturbations, there exists an intermediate range of wavenumbers in the spectrum where the energy decays with the same exponent observed for fully developed turbulent flows ($-5/3$), where the nonlinear interaction is considered dominant;
Concluding remarks

- Spectrum determined by evaluating the energy of the waves when they are exiting their transient state;
- Regardless the symmetry and obliquity of perturbations, there exists an intermediate range of wavenumbers in the spectrum where the energy decays with the same exponent observed for fully developed turbulent flows \((-5/3)\), where the nonlinear interaction is considered dominant;
- Scale-invariance of \(G\) and \(T_e\) at different (stable and unstable) Reynolds numbers and for different shear flows;
Concluding remarks

• Spectrum determined by evaluating the energy of the waves when they are exiting their transient state;
• Regardless the symmetry and obliquity of perturbations, there exists an intermediate range of wavenumbers in the spectrum where the energy decays with the same exponent observed for fully developed turbulent flows \((-\frac{5}{3})\), where the nonlinear interaction is considered dominant;
• Scale-invariance of \(G\) and \(T_e\) at different (stable and unstable) Reynolds numbers and for different shear flows;
• The \(-\frac{5}{3}\) spectral power-law scaling of inertial waves seems to be a general and intrinsic dynamical property of the NS solutions encompassing the nonlinear interaction.
Does the Kolmogorov scaling bridge hydrodynamic linear stability and turbulence?

S. Scarsoglio, F. De Santi, D. Tordella

Introduction
Motivation and general aspects

Initial-value problem
Mathematical framework
Measure of the growth
Linear transient dynamics

Results
Perturbative system features
Spectral distributions

Conclusions

Coming next...

• Analysis of the perturbation transient dynamics in the 2D and 3D boundary layer (W. O. Criminale, University of Washington);

⇒ Study of the intermediate and long term asymptotics.

S. Scarsoglio, F. De Santi, D. Tordella
Coming next...

• **Analysis of the perturbation transient dynamics in the 2D and 3D boundary layer** (*W. O. Criminale, University of Washington)*;

• **Analytical integration of the kinetic energy equation based on the perturbed velocity and vorticity field** (*G. Staffilani, MIT*)

⇒ Study of the intermediate and long term asymptotics.