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Introduction

In this talk I will use the periodic semi linear Schr̈odinger Cuachy problem

(1.1)
{

iut + ∆u = λ|u|p−1u,
u(x ,0) = u0(x), x ∈ Tn,

where u0(x) is the initial profile, p > 1, u : R× Tn → C, and Tn is a
n-dimensional torus1, to illustrate how a partial differential equation that may
have been introduced to model a certain phenomenon in physics may also
have structures that touch many different areas of mathematics like Fourier
and harmonic analysis, analytic number theory, probability, dynamical
systems and symplectic geometry.

For obvious reasons here I will only present the simple connections of
problem (1.1) with the areas of mathematics listed above and one should not
think that this is all there is. In the contrary all of these connections are very
active areas of research at the moment with many open problems.

1Later we will distinguish between a rational and an irrational torus.
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Bose Einstein Condensate

The Cauchy problem

(1.2)
{

iut + ∆u = λ|u|2u,
u(x ,0) = u0(x), x ∈ T3

is used to describe several phenomena, but in particular is the problem that
governs the Bose Einstein Condensate (BEC). The BEC is the state of matter
of a dilute gas of weakly interacting bosons confined in an external potential
and cooled to temperatures very near absolute zero. The point wise density of
this gas at time t is represented by u(x , t) in the problem above.

Physically what happens is that the bosons particles, that are in a chaotic
state when the temperature T is above absolute zero, as T → 0 they start
rearranging themselves, losing their individual identity and shaping
themselves as a wave u(x , t) that solves an equation as the one in (1.2).
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Rendering of Bose Einstein Condensate

Science (December 22, 1995 ) by Steve Keller.
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The Basic Questions

When a Cauchy problem is proposed as a model the obvious question to
study is well-posedness, that is

Existence of solutions
Uniqueness of solutions
Stability of solutions

One way to address the question of well-posedness is by rewriting the Cauchy
problem (1.1) as the integral equation given by the Duhamel principle

(1.3) u(x , t) = S(t)u0(x) + c
∫ t

0
S(t − t ′)|u|p−1u(x , t ′)) dt ′,

where S(t)u0(x) is the solution of the associated linear problem that we will
discuss in details below. The idea then is to use a fixed point theorem in a
space of functions which norm is dictated by strong estimates for S(t)u0(x).
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The linear solution S(t)u0(x) in T
We first recall that S(t)u0(x) = v(x , t), where v(x , t) solves the Cauchy
problem

(1.4)
{

ivt + ∆v = 0,
v(x ,0) = u0(x),

for simplicity we assume that x ∈ T. Using Fourier series we write the solution

v(x , t) =
∑
k∈Z

a(k , t)eikx , and a(k , t) = v̂(k , t).

If we take the Fourier transform of (1.4), for every frequency k we obtain an
ODE for a(k , t):

(1.5)
{

i d
dt a(k , t) + (−ik)2a(k , t) = 0,

a(k ,0) = û0(k),

and the solution becomes

a(k , t) = û0(k)eitk2
and v(x , t) =

∑
k∈Z

a(k , t)ei(kx+tk2).
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The linear solution S(t)u0 in Tn

Now we assume that x ∈ Tn and that ci > 0, i = 1, .....,n are the periods.
Then if we repeat the same argument we obtain that

S(t)u0(x , t) =
∑
k∈Z

a(k , t)ei(kx+tγ(k)),

where

γ(k) =
n∑

i=1

cik2
i .

It will be relevant for later to observe that in the special case when
ci = 1, i = 1, ....,n

γ(k) = R2

represents the sphere of radius R.
If ci ∈ N, i = 1, .....,n we will call the torus Tn a rational torus, otherwise we
will call it irrational.
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Strichartz Estimates

The Strichartz estimates in Tn are non trivial estimates for S(t)u0(x). They
where originally introduced by Bourgain as a conjecture that then he partially
resolved.

Conjecture
Assume that Tn is a rational torus and the support of û0,N is in the annulus
{|n| . N}. Then

‖S(t)u0,N‖Lq
t Lq

x ([0,1]×Tn) . Cq‖u0,N‖L2
x (Tn) if q <

2(n + 2)

n

‖S(t)u0,N‖Lq
t Lq

x ([0,1]×Tn) � Nε‖u0,N‖L2
x (Tn) if q =

2(n + 2)

n

‖S(t)u0,N‖Lq
t Lq

x ([0,1]×Tn) . CqN
n
2−

n+2
q ‖u0,N‖L2

x (Tn) if q <
2(n + 2)

n
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The L4 Strichartz Estimates in T2

Let’s concentrate on the L4 Strichartz estimate that Bourgain proved in the
90’s:

‖S(t)u0,N‖L4
TL4

T
≤ Nε‖u0,N‖L2

x
=⇒ ‖S(t)u0‖L4

TL4
T
≤ ‖u0‖Hε

x
.

We are not going to repeat the proof, here we only say that it is based on
counting Z2 lattice points on ellipses given by

γ(k) = c1k2
1 + c2k2

2 = R2

for R � 1. It is here that the rationality of the torus comes into play. In fact if
the torus is rational, that is cj ∈ N, one can use some standard results from
analytic number theory and obtain the sharp bound

#{k ∈ Z2/γ(k) = R2} ∼ expC
log R

log log R
.

For irrational tori, that is when we simply assume cj ∈ R+, only partial results
are known so far, see Bourgain, Burq-Gerard-Tzvetkov, Hani.
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Local and global solutions

The norm L2 that appear on the right hand side of the Strichartz estimates is
not there by chance. In fact for the Schrödingier equation

iut + ∆u = λ|u|p−1u

the integral

M(u(t)) =

∫
|u(x , t)|2 dx

is in fact the Mass and it is conserved. As a consequence the most natural
space for the initial data u0 is the L2 space. Unfortunately though at this level
of regularity often little can be done to control nonlinear interactions and
obtain well-posedness.
The next most relevant space is the Sobolev H1 space. In fact the equation
above keeps also the Energy (Hamiltonian) conserved:

H(u(t)) =
1
2

∫
|∇u|2(x , t) dx − 2λ

p + 1

∫
|u(t , x)|p+1 dx
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Focusing and Defocusing

H(u(t)) =
1
2

∫
|∇u|2(x , t) dx − 2λ

p + 1

∫
|u(t , x)|p+1 dx

If λ = 1 (Focusing) the energy could be negative and blow up may occur.
If λ = −1 (Defocusing) the energy and the mass can be used to obtain a
global in time a priori bound for the the H1 norm of the solution u(x , t).
One could use this a priori bound and Strichartz estimates to get
theorems as this one:

Theorem (Bourgain)
The Cauchy problem{

iut + ∆u = −|u|2u,
u(x ,0) = u0(x), x ∈ T2 rational

is globally well-posed for data u0 in H1.

Now that we know that this equation has a global flow u0 → u(x , t) we can
start asking questions on the behavior of u(x , t) in time.
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Notion of Weak Turbulence

Definition
For this talk Weak Turbulence is the phenomenon of global-in-time solutions
shifting their support towards increasingly high frequencies.

This shift is also called forward cascade.
One way of measuring weak turbulence is to consider the function in time

‖u(t)‖2
Ḣs =

∫
|û(t , k)|2|k |2sdk

for s � 1 and prove that it grows for large times t .
Weak turbulence is incompatible with scattering or complete integrability.

There are two theorems that summarize the state of the affairs in this context.
The first gives some polynomial in time bounds for ‖u(t)‖2

Ḣs , the second2

shows some kind of growth for certain solutions to the Cuachy problem above.

2Although for a different equation, there are some recent interesting results in this
context by Pocovnicu.

Gigliola Staffilani (MIT) Dispersive equations and their role beyond PDE July 17th, 2012 13 / 29



Two theorems on weak turbulence

Theorem (Bourgain, Sohinger)
Let u be the global solution of the cubic, defocusing, NLS equation on a
rational T2:

(3.1)
{

(i∂t + ∆)u = −|u|2u
u(0, x) = u0(x), where x ∈ T2,

Then
‖u(t)‖Hs(T2) . (1 + |t |)s+‖u0‖Hs(T2).

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)
Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exist a global smooth
solution u(x , t) to the defocusing IVP (3.1) above and T > 0 such that
‖u0‖Hs ≤ σ and ‖u(T )‖2

Hs ≥ K .
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The toy model
Here we only give few ideas that are relevant for the proof of the second
theorem.
We start by making the ansatz

v(t , x) =
∑
n∈Z2

an(t)ei(〈n,x〉+|n|2t),

and by rewritint the equation as an ODE in terms of the infinite vector (an(t)).
We also consider only the resonant part of the ODE and we construct a
special finite set of frequencies Λ that is closed under resonant interactions
and has several other “good” properties. Thanks to these properties we arrive
to a finite dimension toy model

−i∂tbj (t) = −bj (t)|bj (t)|2 − 2bj−1(t)2bj (t)− 2bj+1(t)2bj (t),

for j = 0, ....,M + 1, with the boundary condition

b0(t) = bM+1(t) = 0.
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Remark
This new IVP conserves the momentum, the mass (

∑M
j=1 |bj (t)|2 = 1) and the

energy!

Global well-posedness for this system is not an issue. Then we define

Σ = {x ∈ CM / |x |2 = 1} and W̃ (t) : Σ→ Σ,

where W̃ (t)b(0) = b(t) for any solution b(t) of our system. It is easy to see
that if we define the torus

Tj = {(b1, ....,bM) ∈ Σ / |bj | = 1, bk = 0, k 6= j}

then
W̃ (t)Tj = Tj for all j = 1, ....,M

(Tj is invariant).
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At this point the problem has been set up in such a way that if we could show
that once we start “near” one of the first tori (low frequencies) we end up at a
certain time T near one of the last tori (high frequencies) then we are done. In
fact we have the following result:

Theorem (Sliding theorem)
Let M ≥ 6. Given ε > 0 there exist x3 within ε of T3 and xM−2 within ε of TM−2
and a time T such that

W (T )x3 = xM−2.

What the theorem says is that W (t)x3 is a solution of total mass 1 arbitrarily
concentrated near mode j = 3 at some time 0 that gets moved so that it is
concentrated near mode j = N − 2 at later time T .
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The complete proof is lengthy. Here we only give a motivation for it that should
clarify the dynamics involved.
Let us first observe that when M = 2 we can easily demonstrate that there is
an orbit connecting T1 to T2. Indeed in this case we have the explicit “slider”
solution

b1(t) :=
e−itω√

1 + e2
√

3t
; b2(t) :=

e−itω2√
1 + e−2

√
3t

where ω := e2πi/3 is a cube root of unity.
This solution approaches T1 exponentially fast as t → −∞, and approaches
T2 exponentially fast as t → +∞.

One can translate this solution in the j parameter, and obtain solutions that
“slide” from Tj to Tj+1. Intuitively, the proof of the Sliding Theorem for higher
M should then proceed by concatenating these slider solutions....This though
cannot work directly because each solution requires an infinite amount of time
to connect one hoop to the next. It turned out though that a suitably perturbed
or “fuzzy” version of these slider solutions can in fact be glued together.
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Finite Dimension Hamiltonian Systems

Hamilton’s equations of motion have the antisymmetric form

q̇i =
∂H(p,q)

∂pi
, ṗi = −∂H(p,q)

∂qi

the Hamiltonian H(p,q) being a first integral:

dH
dt

:=
∑

i

∂H
∂qi

q̇i +
∂H
∂pi

ṗi =
∑

i

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0.

By defining y := (q1, . . . ,qk ,p1, . . . ,pk )T ∈ R2k (2k = d) we can rewrite the
system in the compact form

dy
dt

= J∇H(y), J =

[
0 I
−I 0

]
.
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We have

Theorem (Liouville’s Theorem)
Let a vector field f : Rd → Rd be divergence free. If the flow map Φt satisfies

d
dt

Φt (y) = f (Φt (y)),

then Φt is a volume preserving map for all t .

In particular if f is associated to a Hamiltonian system then automatically
div f = 0. As a consequence the Lebesgue measure ν on R2k is invariant
under the Hamiltonian flow:

ν(Φt (A)) = ν(A)

for all measurable sets A.
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Finite Dimension Gibbs Measure

A more interesting measure is the Gibbs measure. We have in fact:

Theorem (Invariance of Gibbs measures)
Assume that Φt is the flow generated by the Hamiltonian system above. Then
the Gibbs measures defined as

dµ := e−βH(p,q)
d∏

i=1

dpi dqi

with β > 0, are invariant under the flow Φt .

The proof is trivial since from conservation of the Hamiltonian H the functions
e−βH(p,q) remain constant, while, thanks to Liouville’s Theorem the volume∏d

i=1 dpi dqi remains invariant as well.
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Infinite Dimension Hamiltonian systems
Consider the Cauchy problem{

(i∂t + ∆)u = −|u|4u
u(0, x) = u0(x), where x ∈ T.

with Hamiltonian

H(u(t)) =
1
2

∫
|∇u|2(x , t) dx +

1
3

∫
|u(t , x)|6 dx .

One can rewrite the Cauchy problem as

u̇ = i
∂H(u, ū)

∂ū
and if we think of u as the infinite dimension vector given by its Fourier
coefficients (û(k))k∈Zn = (ak ,bk )k∈Zn , then this becomes an infinite dimension
Hamiltonian system.
Lebowitz, Rose and Speer considered the Gibbs measure formally given by

“dµ = exp (−βH(u))
∏
x∈T

du(x)”

for β > 0 and showed that µ is a well-defined probability measure on Hs(T)
for any s < 1

2 .
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The Guassian Measure
How do we make sense of the Gibbs measure introduced above? We need to
go through the Gaussian measure. Note that the quantity

H(u) +
1
2

∫
|u|2(x) dx

is conserved. Then the best way to make sense of the Gibbs measure µ is by
writing it as

dµ = exp
(

1
6

∫
|u|6 dx

)
exp

(
−1

2

∫
(|ux |2 + |u|2) dx

)∏
x∈T

du(x).

In this expression

dρ = exp
(
−1

2

∫
(|ux |2 + |u|2) dx

)∏
x∈T

du(x)

is the Gaussian measure and
dµ
dρ

= exp
(

1
6

∫
|u|6 dx

)
,

corresponding to the nonlinear term of the Hamiltonian, is understood as the
Radon-Nikodym derivative of µ with respect to ρ.
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Invariance of the Gibbs Measure and Almost Surely
Global Well-posedness

Theorem

Consider the Cauchy problem

(5.1)
{

(i∂t + ∆)u = −|u|4u
u(0, x) = u0(x), where x ∈ T.

The Gibbs measure µ is well defined in Hs, 0 < s < 1/2 and there exists
Ω ⊂ Hs such that µ(Ω) = 1 and (5.1) is globally well-posed in Ω. Moreover µ
is invariant.

Remark
If one considers (5.1) in the focusing case, then the theorem above holds if
one imposes the restriction that the mass is small.

For almost surely global well-posedness results see Burq-Tzevtkov, Oh,
Oh-Nahmod-Rey-Bellet-S and Thomann-Tzevtkov.
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The Non-Squeezing Theorem

We start again with a finite dimension Hamiltonian system. We recall a
version of Gromov’s famous theorem:

Theorem (Finite Dimension Non-squeezing)
Assume that Φt is the flow generated by a finite dimension Hamiltonian
system as recalled above. Fix y0 ∈ R2k and let Br (y0) be the ball in R2k

centered at y0 and radius r . If

CR(z0) := {y = (q1, . . . ,qk ,p1, . . . ,pk ) ∈ R2k/|qi − z0| ≤ R},

is a cylinder of radius R, and

Φt (Br (y0)) ⊂ CR(z0),

it must be that r ≤ R.

Can one generalize this theorem to the infinite dimensional setting given
by a periodic dispersive equation?
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The infinite dimension Non-squeezing Theorem
Above we recalled how a finite dimensional Hamiltonian flow Φt cannot
squeeze a ball into a cylinder with a smaller radius. Generalizing this kind of
result in infinite dimensions has been a long time project of Kuksin who
proved, roughly speaking, that compact perturbations of certain linear
dispersive equations do indeed satisfy the non-squeezing theorem.
We consider the Cauchy problem{

(i∂t + ∆)u = −|u|2u
u(0, x) = u0(x), where x ∈ T.

Also in this case, using Strichartz estimates and the conservation of mass ne
can prove global well-posedness for data in L2, see Bourgain. Hence we can
define a global flow map

Φ(t)u0 := u(x , t).

It is easy to show that the L2 space equipped with the form

ω(f ,g) = 〈if ,g〉L2

is a symplectic space for the cubic, defocusing NLS equation on T and its
global flow Φ(t) is a symplectomorphism.
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The cubic, periodic, defocusing nonlinear Schrödingier Cauchy problem
introduced above is not a compact linear perturbation, hence it is not covered
by Kuksin’s work. Nevertheless Bourgain proved the following theorem:

Theorem (Infinite Dimension Non-squeezing)
Assume that Φt is the flow generated by the cubic, periodic, defocusing NLS
equation in L2. If we identify L2 with l2 via Fourier transform, we let Br (y0) be
the ball in l2 centered at y0 ∈ l2 and radius r ,

CR(z0) := {(an) ∈ l2/|ai − z0| ≤ R}

a cylinder of radius R and

Φt (Br (y0)) ⊂ CR(z0),

at some time t, then it must be that r ≤ R.
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Idea of the Proof
The proof of this theorem is based on the following steps

Use the projection operator PN to project the Cauchy problem onto a
finite dimension Hamiltonian system.
Use Gromov’s Theorem.
Show that the flow ΦN(t) of the projected problem approximates well the
flow Φ(t) of the original problem.

The third item is the most difficult to prove. The tools used are strong
multilinear estimates based on the Strichartz estimates.

Remark
Unfortunately Bourgain’s argument may not work for other kinds of dispersive
equations. For example for the KdV problem, the lemma in Bourgain’s work
that gives the good approximation of the flow Φ(t) by ΦN(t) does not hold.
This has to do with the number of interacting waves in the nonlinearity. For the
KdV problem one can still prove the non-squeezing theorem holds, but the
proof was indirect and it had to go through the Miura transformation, see
Colliander-Keel-S-Takaoka- Tao.
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Some Open Problems

Understand Strichartz estimates for irrational tori.
Improve theorems on weak turbulence.
Understand better ergodic structures associated to infinite dimensions
Hamiltonian flows.
Prove well-posedness results using a more probabilistic approach, i.e. by
taking appropriate randomized initial data.
Find more robust arguments to understand the symplectic structures
associated to certain dispersive flows.
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