Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Diffusion of scalars across a turbulent energy gradient

M. Iovieno, L. Ducasse, D. Tordella, F. De Santi, S. Di Savino¹ and J. Riley²

¹Politecnico di Torino, Dipartimento di Ingegneria Aeronautica e Spaziale ²Mechanical Engineering Department, University of Washington, WA

Turbulence Mixing and Beyond, Trieste, August 2011 COST Meeting, Warsaw, September 2011

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

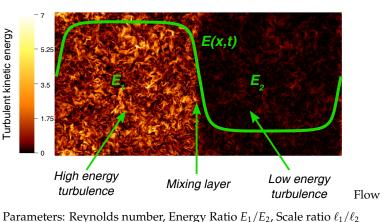
Passive scalar

Mean Scalar Scalar moments Conclusions

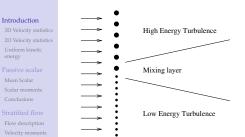
Stratified flow Flow description Velocity moments Conclusion

Turbulent shearless mixing

General flow configuration:

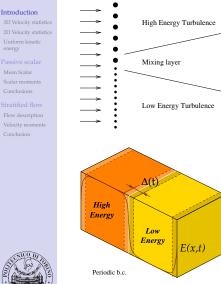


movie



State of the art

- Grid turbulence experiments:
 - Gilbert JFM 1980
 - Veeravalli-Warhaft JFM 1989



State of the art

- Grid turbulence experiments:
 - Gilbert JFM 1980
 - Veeravalli-Warhaft JFM 1989

- Numerical experiments:
 - Briggs et al. JFM 1996
 - ▶ Knaepen et al. JFM 2004
 - Tordella-Iovieno IFM 2006
 - Iovieno-Tordella-Bailey PRE 2008
 - Kang-Meneveau Phys.Fluids 2008
 - ▶ Tordella-Iovieno *Phys.Rev.Lett*. (in press)

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments Conclusion

Main features of mixing layers

Shearless mixing layers shows the following properties:

- no gradient of mean velocity, thus no kinetic energy production
- the mixing is generated by the inhomogeneity in the turbulent kinetic energy and integral scale
- the mixing layer becomes very intermittent at both large and small scales [Tordella-Iovieno *Phys.Rev.Lett.* 2011]
- the presence of a gradient of energy is a sufficient condition for the onset of intermittency [Tordella and Iovieno *JFM* 2006; Tordella et al. *Phys. Rev.* 2008]

• 2D and 3D mixings: different asymptotic layer thickness growth exponent

Introduction

3D Velocity statistics

2D Velocity statistic Uniform kinetic energy

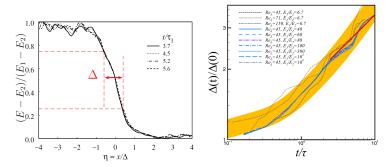
Passive scalar

Mean Scalar Scalar moment Conclusions

Stratified flow Flow description Velocity moments

3D mixing: Self-similarity

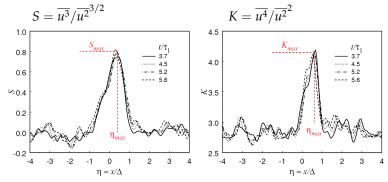
$$E_1/E_2 = 6.7, \ell_1 = \ell_2$$



 $\Delta(t)$ is the conventional mixing layer thickness, $\Delta(t) \sim t^{0.46}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Large scale intermittency



u = velocity component in the mixing direction

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer

 η_{max} = normalized position of the maximum in the mixing layer

(Figures: sample data from simulations with $E_1/E_2 = 6.7$, $\ell_1 = \ell_1$, $Re_{\lambda} = 45$)

ntroduction

3D Velocity statistics 2D Velocity statistics

Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Introduction

3D Velocity statistics

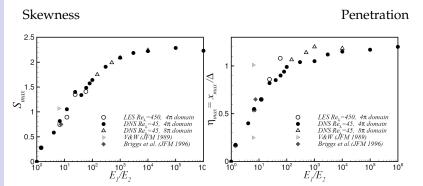
2D Velocity statisti Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments Conclusion

Intermittency vs. Energy ratio



We define the penetration as the position of the maximum of the skewness normalized over the mixing layer thickness: $\eta = \frac{x_s(t)}{\Delta(t)}$

3D Velocity statistics

Velocity derivative

$Re_{\lambda} = 150$ $Re_{\lambda} = 45$ (a) (b)-0.2 HIT $S_{\partial v/\partial y}$ -0 $S_{\partial u/\partial x}$, 80 $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} t/\tau$ $\partial v / \partial y$ $\frac{\partial u}{\partial x} t/\tau$ 3.5 -1 5.5 5.6 7.5 7.2 -1.2 ---- 8.5 8.8 -14 $\frac{\partial v}{\partial y} \frac{\partial u}{\partial x} t/\tau$ 7.5 (c) 1.3 (d) t/τ $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial z}$ $K_{\partial u/\partial x}, K_{\partial v/\partial y}$ 6.5 5.5 7 5 5.5 4.5 HIT 3.5 $\eta = x/\Delta(t)$ $\eta = x/\Delta(t)$

Phys.Rev.Lett., 2011 (in press)

Introduction

3D Velocity statistics

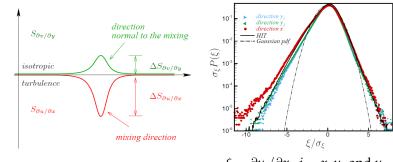
2D Velocity statisti Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

General behaviour



 $\xi = \frac{\partial u_i}{\partial x_i}, i = x, y_1 \text{ and } y_2$ (*Re* = 150, *t*/ τ = 3.5)

イロト 不得 トイヨト イヨト 三日

Increase of fluid filaments compression in the energy gradient direction, reduction of fluid filaments compression in the other directions

Introduction

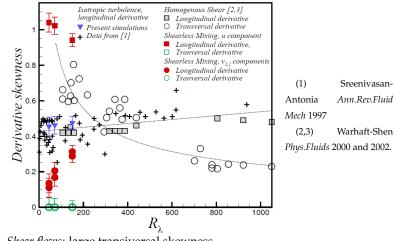
3D Velocity statistics

2D Velocity statisti Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moment



Shear flows: large transiversal skewness *Shearless mixings:* strong differentiation of the longitudinal skewness

Small scale anisotropy

Introduction

3D Velocity statistics

2D Velocity statistics

Uniform kinetic energy

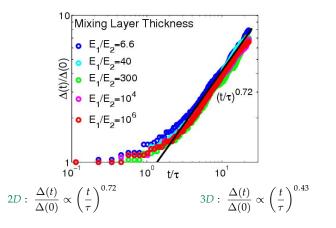
Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description Velocity moments Conclusion

2D - 3D Comparison



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Introduction

3D Velocity statistics

2D Velocity statistics

Uniform kinetic energy

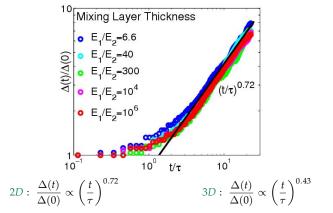
Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description Velocity moments Conclusion

2D - 3D Comparison



2D turbulent diffusion is infinitely grater than 3D diffusion: by defining a diffusion velocity as $v_D = dx_s/dt = \eta d\Delta/dt$ we have $v_D = \propto t^{-0.28}$ $v_D = \propto t^{-0.57}$

movie

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction

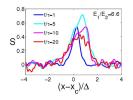
3D Velocity statistics

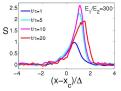
2D Velocity statistics Uniform kinetic energy

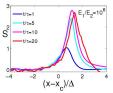
Passive scalar

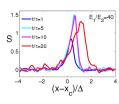
Mean Scalar Scalar moments Conclusions

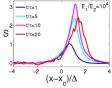
Stratified flow Flow description Velocity moments

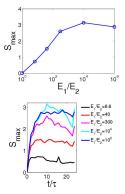












Skewness of the velocity component in the inhomogeneous direction for each energy ratio.

 x_c = mixing layer centre

Maximum of the Skewness as a function of the energy ratio and of the time

Skewness

2D mixing

Introduction

3D Velocity statistics

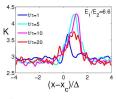
2D Velocity statistics

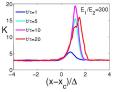
Uniform kinetic energy

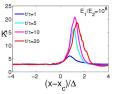
Passive scalar

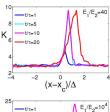
Mean Scalar Scalar moments Conclusions

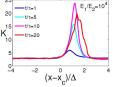
Stratified flow Flow description Velocity moments

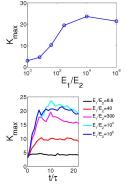












Kurtosis of the velocity component in the inhomogeneous direction for each energy ratio. $x_c = mixing$ layer centre

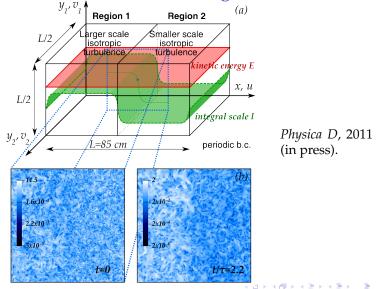
Maximum of the kurtosis as a function of the energy ratio and of the time

Kurtosis

2D mixing

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Uniform kinetic energy, inhomogeneous scale



2D Velocity stati Uniform kinetic energy Passive scalar Mean Scalar

Scalar moment Conclusions

Stratified flow Flow description Velocity moments

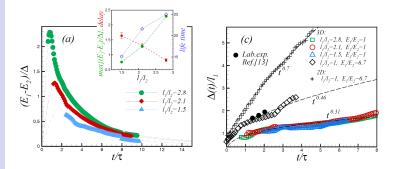
Introduction 3D Velocity statistic 2D Velocity statistic Uniform kinetic

energy

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments

Energy gradient generation

(日)



Different decay exponents of the homogenous regions \Rightarrow generation of an *energy gradient*

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

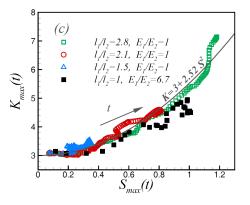
Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Velocity moments

Skewness vs. Kurtosis during the decay



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

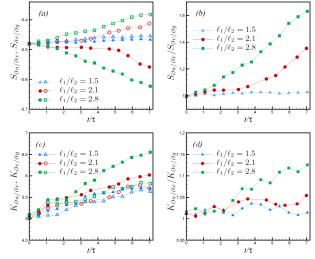
Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Velocity derivative

Longitudinal derivative Skewness and Kurtosis



Left (a-c): Filled symbols $\partial u / \partial x$, empty symbols $\partial v / \partial y$

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

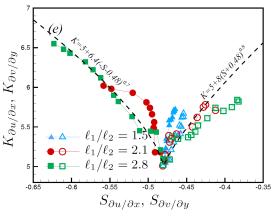
Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Velocity derivative

Longitudinal skewness vs. longitudinal kurtosis



Filled symbols $\partial u/\partial x$, empty symbols $\partial v/\partial y$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ(?)

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments Conclusion

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Uniform energy - inhomogeneous scale

- different scales generate different decays and then an energy gradient concurrent to the scale gradient
- the transient lifetime of the kinetic energy gradient is almost proportional to the initial scale ratio
- intemittency in the interaction layer grows as the flow decays
- anisotropy and intermittency are, with a certain lag, spread also to small scales
- small scale anisotropy: strong differentiation of the longitudinal skewness but no transversal skewness

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments

Passive scalar

Basic phenomenology

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- A passive scalar is a contaminant present in so low concentration that it has no dynamical effect on the fluid motion.
- Turbulence transports the scalar by making particles follow chaotic trajectories and disperses the scalar concentration if exists scalar concentration gradient.
- Fluctuations reach the smaller scales.

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments Conclusion

Passive scalar

Basic phenomenology

▲□▶▲□▶▲□▶▲□▶ □ のQで

- at large scales:
 - the mean concentration, variance and flux are strongly influenced by the boundary conditions and scalar injection
- at small scales:
 - scalar differences are not gaussian,
 - intermittency observed at inertial range scales as well as at the dissipation scales, with ramp/cliff structures

see, e.g.: Warhaft *Ann.Rev.F.M.* 2000, Shraiman and Siggia, *Nature* 2000, Gotoh, *Phys.Fl.* 2006, 2007.

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

Passive scalar transport

イロト 不得 トイヨト イヨト ニヨー

We solve the passive scalar advection-diffusion equation

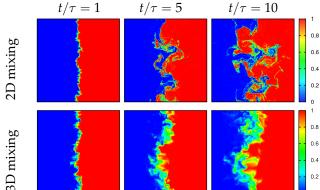
$$\frac{\partial \vartheta}{\partial t} + u_j \frac{\partial \vartheta}{\partial x_j} = \frac{(-1)^{n+1}}{Re\,Sc} \nabla^{2n} \vartheta$$

for the shearless mixing configuration with $E_1/E_2 = 6.6$, $\ell_1 = \ell_2$.

DNS simulations have been performed at $Re_{\lambda} = 150$ in 3D turbulence ($600^2 \times 1200$ grid points, n = 1) and $Re_{\lambda} = 60$ in 2D turbulence (1024^2 grid points, n = 2). Schmidt number Sc = 1

Passive scalar

3D mixing



2D movie

3D movie

θ

θ

Passive scalar concentration

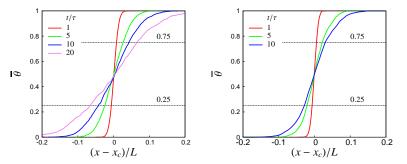
Mean Scalar

Mean Scalar Diffusion

2D Mixing

3D Mixing

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()



Energy ratio $E_1/E_2 = 6.6$

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

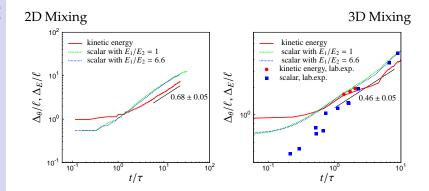
Mean Scalar

Scalar moment Conclusions

Stratified flow Flow description

Velocity moment Conclusion

Scalar mixing layer thickness



イロト 不得 とくほ とくほとう

Scalar layer thickness: $\Delta_{\vartheta} = x_{(\vartheta=0.75)} - x_{(\vartheta=0.25)}$ 3D mixing: $\Delta_{\vartheta} \sim t^{0.46}$, 2D mixing: $\Delta_{\vartheta} \sim t^{0.68}$

Scalar moments

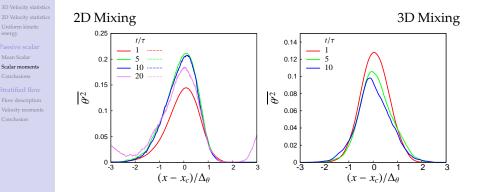
2D Mixing



Scalar flux

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

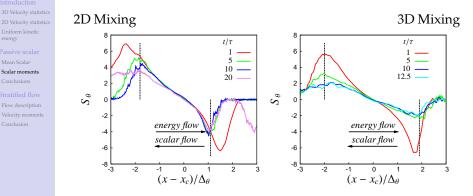
Scalar variance



Self-similar distribution, peak shifted toward the high kinetic energy region

ふしん ミ イモトイミト (雪) イロト

Scalar skewness



Strong non-gaussian statistic at the mixing layer border 2D: intermittency penetrates more in the direction opposite to the energy gradient.

Scalar moments

Scalar kurtosis

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

2D Mixing 3D Mixing 90 80 t/τ t/τ 80 70 70 60 10 _____ 10 12.5 20 60 50 50 \mathcal{K}_{θ} \mathcal{K}_{θ} 40 40 30 30 energy flow energy flow 20 20 scalar flow scalar flow 10 10 0 -3 -3 -1 0 2 0 2 $(x - x_c)/\Delta_{\theta}$ $(x - x_c)/\Delta_{\theta}$

2D: higher asymmetry of the peaks.

Intermittency gradually reduces as the mixing procedes

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar

Scalar moments

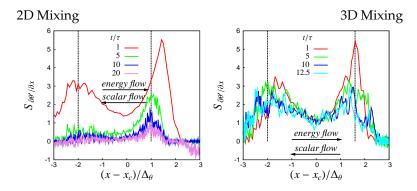
Stratified flow Flow description Velocity moments

Small scale intermittency

Scalar derivative skewness

ヘロト 人間 とく ヨン くヨン

ъ



2D: higher asymmetry of the peaks. Intermittency decay faster in 2D

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

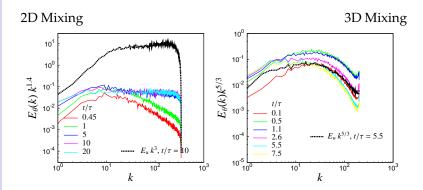
Passive scalar

Mean Scalar

Scalar moments

Stratified flow Flow description Velocity moments

Spectra in the mixing layer



Compensated scalar and velocity one-dimensional spectra in the same position

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar

- Scalar moments
- Conclusions

Stratified flow Flow description Velocity moments

Passive scalar - Main remarks

- Growth rate: 2D flow : $(\Delta_{\vartheta} \sim \Delta_E \sim t^{0.68})$, 3D flow : $(\Delta_{\vartheta} \sim \Delta_E \sim t^{0.46})$.
- Self-similar profiles of first and second order moments. The scalar flow is about two times larger in 2D than in 3D. The scalar variance in the center of the mixing layer is 50% higher in 2D case.
- Large intermittency and non-gaussian behaviour on both sides of the mixing, even where the scalar flux is small.
- Larger asymmetry in moment distributions in 2D mixing.

- Intermittency involves also the small scales
- Inertial range spectra exponent: scalar: 3D ~ −5/3, 2D ~ −1.4, velocity: 3D ~ −5/3, 2D ~ −3

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description Velocity moments

Conclusion

Stratified flow

- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

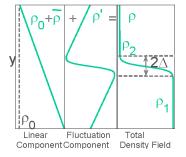
Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description Velocity moments Conclusion

- Stratified flow
- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─



Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description Velocity moments Conclusion

Stratified flow

- We modify the experiment by adding the effect of a stable stratification
- We create an initial density field by combining two constant density fields

 $\begin{array}{c}
\rho_{0} + \overline{\rho} + \rho' = \rho \\
\rho_{2} \\
\rho_{0} \\
\text{Linear Fluctuation} \\
\text{Component Component Density Field}
\end{array}$

 The fluctuation component has periodic boundary condition
 ⇒ The stability of the stratification is guaranteed

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description

Velocity moments Conclusion

 $\nabla \cdot \mathbf{u} = \mathbf{0}$ $\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho_0}\nabla \mathbf{p} - \frac{\rho'}{\rho_0}\mathbf{g} + \nu\nabla^2\mathbf{u}$ $\frac{\partial \rho'}{\partial t} + (\mathbf{u} \cdot \nabla)\rho' + \mathbf{v}\frac{\mathbf{d}\rho_m}{\mathbf{d}\mathbf{y}} = \mathbf{k}\nabla^2\mathbf{u}$

Formulation

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\nu = 2.4 \ 10^{-10} m^4 / s, \ k = 0.3 \ 10^{-2}, \ Sc* = (\nu / (k*l^2)) = 1.32 \ 10^{-4}$

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow

Flow description

Velocity moment Conclusion

Using the Boussinesq approximation the equations that describe the problem are: ∇

Formulation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho_0} \nabla \mathbf{p} - \frac{\rho'}{\rho_0} \mathbf{g} + \nu \nabla^2 \mathbf{u}$$
$$\frac{\partial \rho'}{\partial t} + (\mathbf{u} \cdot \nabla)\rho' + \mathbf{v} \frac{d\rho_m}{dy} = \mathbf{k} \nabla^2 \mathbf{u}$$

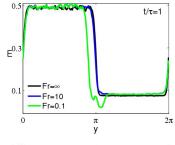
 $\nu = 2.4 \ 10^{-10} m^4 / s, \ k = 0.3 \ 10^{-2}, \ Sc* = (\nu / (k*l^2)) = 1.32 \ 10^{-4}$

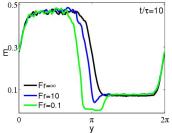
- The energy ratio is constant, $E_1/E_2 = 6.6$
- The parameter of the experiment is the Froude number

$$Fr = \frac{U}{\sqrt{-\frac{g}{\rho_0}\frac{\partial\rho_m}{\partial y}L}}$$

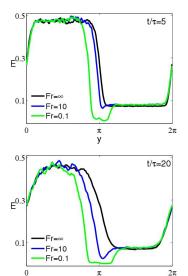
we considered: $Fr = \infty$ (no stratification), Fr = 10 (mild stratification), Fr = 0.1 (strong stratification) *movie*

Velocity moments





Kinetic Energy



π

y

0

◆□▶ ◆圖▶ ◆注▶ ◆注▶

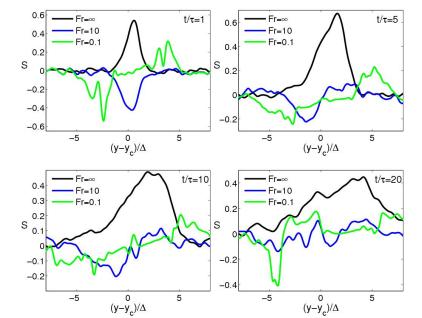
Introduction

3D Velocity statistic 2D Velocity statistic Uniform kinetic energy

Passive scalar

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments
- Conclusion

Skewness



Introduction

3D Velocity statistic 2D Velocity statistic Uniform kinetic energy

Passive scalar

Mean Scalar Scalar moments Conclusions

Stratified flow Flow description Velocity moments

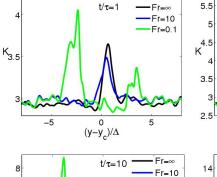
7

K6

5

4

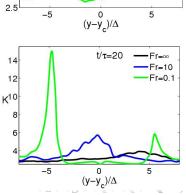
-5



 $(y-y_c)/\Delta$

Fr=0.1

5



Kurtosis

t/τ=5

−Fr=∞

-Fr=10

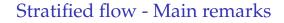
Fr=0.1

Introduction

3D Velocity statistics 2D Velocity statistics Uniform kinetic energy

Passive scalar

- Mean Scalar Scalar moments Conclusions
- Stratified flow Flow description Velocity moments Conclusion



- For small Froude numbers it is formed a separation layer of zero vorticity
- The energy profile in the mixing region is lower than the minimum value imposed by the initial condition, which shows the effect of the buoyancy force work ⇒ Energy hole
- The velocity skewness enlightens the generation of an inverse energy flow and intermittent penetration from the low to the high energy field even in the case of mild stratification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

