Statistics of the interaction of two isotropic turbulent fields

7th European Fluid Mechanics Conference Manchester, 14-18 September 2008

Daniela Tordella, Michele Iovieno

Dipartimento di Ingegneria Aeronautica e Spaziale Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Turbulent shearless mixing Ref: *J. Fluid Mech.* **549**, 441-451, (2006).

1-High energy turbulence 2-Low energy turbulence Mixing layer

State of the art

 Grid turbulence experiments:
Gilbert *JFM* 1980
Veeravalli-Warhaft *JFM* 1989

State of the art

Grid turbulence experiments: ▶ Gilbert JFM 1980 Veeravalli-Warhaft JFM 1989 Numerical experiments: ▶ Briggs et al. JFM 1996 ▶ Knaepen *et al. JFM* 2004 ► Tordella-Iovieno JFM 2006 Iovieno-Tordella-Bailey PRE 2008)

7th European Fluid Mechanics Conference, September 2008 – p. 3/16

Main features

- High intermittency, function of:
 - gradient of turbulent kinetic energy
 - gradient of integral scale
- A gradient of kinetic energy is a sufficient condition for the onset of intermittency (*PRE* 2008)
- Intermittency is (*JFM* 2006)
 - ENHANCED if the energy gradient is concurrent with the integral scale gradient
 - *REDUCED* if the energy gradient is opposite to the integral scale gradient

Aim and Method

- Aim: to study the intermittency features of the large as well of the small scales
- Three different Reynolds numbers: $Re_{\lambda} = 45,71$ and 150.
- Energy ratio $\mathcal{E} = E_1/E_2$ from 6 to 10^4 with uniform integral scale.
- Velocity and velocity derivative statistics
- Method: DNS
 - ▶ parallelepiped domain, $2\pi \times 2\pi \times 4\pi$
 - Fourier-Galerkin pseudospectral space discretization
 - RK-4 time integration

Anisotropy of velocity statistics

 $Re_{\lambda} = 45$

Left: second order moment anisotropy

Anisotropy of velocity statistics

 $Re_{\lambda} = 45$

Left: second order moment anisotropy Right: triple moment anisotropy

0.0

-0.2

-4

-3

-2

 $\eta = x/\Delta$

Large scale intermittency $Re_{\lambda} = 45, \mathcal{E} = 6.7$ $S = \overline{u^3} / \overline{u^2}^{3/2}$ $K = \overline{u^4} / \overline{u^2}^2$ 1.0 4.5 K_{max} S_{max} 0.8 4.0 45 0.6 5.2 --- 5.6 ∽0.4 ≥3.5 0.2

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer η_{max} = position of the maximum in the mixing layer

3.0

2.5

-3

-2

 $\eta = x/\Delta$

*t/*τ₁

5.2

- 5.6

..... 45

 S_{max} , K_{max} = maximum of Skewness and Kurtosis in the mixing layer η_{max} = position of the maximum in the mixing layer

Velocity component in the mixing direction, longitudinal moments: $E_1/E_2 = 6.7$, $\ell_1/\ell_2 = 1$ $Re_{\lambda} = 45$

Velocity component in the mixing direction, longitudinal moments: $E_1/E_2 = 6.7$, $\ell_1/\ell_2 = 1$ $Re_{\lambda} = 150$

Velocity component normal to the mixing direction, longitudinal moments: $E_1/E_2 = 6.7$, $\ell_1/\ell_2 = 1$ $Re_{\lambda} = 45$

Velocity component normal to the mixing direction, longitudinal moments: $E_1/E_2 = 6.7$, $\ell_1/\ell_2 = 1$ $Re_{\lambda} = 150$

Asymptote for $E_1/E_2 \rightarrow +\infty$

Skewness:

u, x in the mixing direction

Asymptote for $E_1/E_2 \to +\infty$

Kurtosis:

u, x in the mixing direction

Longitudinal skewness

Scheme of the general behaviour

 $S_{\partial v/\partial y}$ velocity component normal to the mixing homogeneous turbulence $S_{\partial u/\partial x}$ component in the

Longitudinal skewness

Comparison between the variation of the longitudinal derivative skewness of the component along the mixing and normal to the mixing

 $\Delta S = \mid S_{mixing} - S_{HIT} \mid$

Comparison with homogeneous turbulence

Comparison of longitudinal moments inside the mixing with longitudinal moments in homogeneous and isotropic turbulence

• HIT, present simulations

• Shearless mixings, present simulations

O HIT, data from Sreenivasan and Antonia, Ann.Rev.Fluid Mech 1997

Comparison with homogeneous turbulence (II)

Comparison with the upper bound

$$-S_{\partial u/\partial x} \le 2\left(\frac{K_{\partial u/\partial x}}{21}\right)^{\frac{1}{2}}$$

of the longitudinal skewness in homogeneous turbulence

7th European Fluid Mechanics Conference, September 2008 – p. 14/16

Conclusions

Over a range of energy ratios, for Re=45, $7 \le \mathcal{E} \le 10^4$, and for Re_{λ} 71 and 150, $\mathcal{E} = 7$, we observed:

- an intermittency increase with the energy ratio:
 - velocity Skewness and Kurtosis as large as 2.3 and 11, respectively
 - Iongitudinal derivative Skewness and Kurtosis as large as -5 and 50
- anisotropy quantitative data:
 - velocity: negligible for the second moments, significant for triple moments, for higher moments ?
 - Iongitudinal velocity derivatives (3rd and 4th moments): significant, it increases with the Reynolds number.

Appendix: Shearless mixing statistics

	$\overline{u_i u_i u_3}/\overline{u_3^2}^{3/2}$			Velocity Kurtosis			Long. derivative skewness			Long. derivative kurtosis			Trans. Moments		
	i=1	i=2	i=3	K_{u_1}	Ku_2	Ku_3	$S_{\partial_1 u_1}$	$S_{\partial_2 u_2}$	$S_{\partial_3 u_3}$	$K_{\partial_1 u_1}$	$K_{\partial_2 u_2}$	$K_{\partial_3 u_3}$	$S_{\partial_1 u_3}$	$K_{\partial_1 u_3}$	
$E_1/E_2:$	Mixings with $\ell_1/\ell_2 = 1, R_\lambda = 45$														
6.6	0.34	0.36	0.82	3.6	3.4	4.07	-0.11	-0.10	-1.04	5.0	4.85	6.95	0.29	6.55	
40	0.54	0.59	1.34	5.6	6.0	5.56	0.52	0.70	-2.08	7.1	6.77	12.0	0.50	8.50	
80	0.63	0.69	1.57	6.4	6.7	6.67	0.95	1.1	-2.60	8.5	8.6	17.1	0.60	13.0	
300	0.78	0.87	1.91	7.5	8.2	8.93	1.5	2.0	-3.37	16	14	24.5	1.0	13.6	
10^{4}	0.92	0.95	2.20	7.8	8.2	11.6	3.4	3.2	-4.70	20	26	37.3	1.05	23.1	
Mixings with $\ell_1/\ell_2 = 1, R_\lambda = 71$															
6.6	0.42	0.37	0.81	3.65	3.55	4.8	-0.15	-0.19	-1.08	4.45	4.65	6.20	0.20	5.95	
Mixings with $\ell_1/\ell_2 = 1, R_\lambda = 150$															
6.7	—	—	0.96	—	—	4.30	-0.30	-0.28	-1.16	5.7	5.8	7.20	0.12	7.30	
	Veeravalli and Warhaft(1989), $E_1/E_2 \approx 7$, $\ell_1/\ell_2 \approx 1.5 \div 1.7$														
bars	===	==	1.06	4.36	4.23	5.53	==	==	==	==	==	==	=	=	
plate	==	==	0.63	3.47	3.49	4.07	==	==	==		==	==	=	=	

Legend:

3 = inhomogeneous direction, 1,2 = homogeneous directions

 S_{u_i} , K_{u_i} = skewness and kurtosis of u_i

 $S_{\partial_j u_i}, K_{\partial_j u_i}$ = skewness and kurtosis of $\partial u_i / \partial x_j$