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Shearless turbulence mixing.
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• no mean shear ⇒ no turbulence production

• the mixing layer is generated by the turbu-
lence

inhomogeneity, i.e.:
� by the gradient of turbulent energy

and
� by the gradient of integral scale



Previous investigations:

Esperiments with grid turbulence:

– Gilbert B. J. Fluid Mech. 100, 349–365 (1980).

– Veeravalli S., Warhaft Z. J. Fluid Mech. 207,191–229 (1989).

Numerical simulations (DNS):

– Briggs D.A., Ferziger J.H., Koseff J.R., Monismith S.G. J. Fluid Mech. 310, 215–

241 (1996).

– Knaepen B., Debliquy O., Carati D. J. Fluid Mech. 414, 153–172 (2004).

• in (passive) grid turbulence the higher energy is always associated to
larger integral scales, so the two parameters are not independent ⇒
guess about no intermittency in the absence of scale gradient and
turbulence production.

• numerical simulations reproduced the 3,3:1 laboratory experiment by
Veeravalli and Warhaft.



New decay properties

• the two parameters, the turbulent kinetic energy ratio E and the
integral scale ratio L, has been independently varied

• the persistency of intermittency in the limit of no scale gradient (L →
1) and absence of turbulence production has been investigated.

In particular we present:

•Part 1: results from numerical simulations (DNS and LES, 2005 JFM,
to appear)

•Part 2: intermediate asymptotics analysis (L → 1, 2005 IFIP TC7
and DLES6; L �= 1, in preparation)



Part 1: numerical experiments

Numerical simulations (DNS and LES) have been carried out with

• Fixed energy ratio E ∼ 6.7 and varying scale ratio 0.38 ≤ L ≤ 2.7

•No scale gradient (L = 1) and variable energy ratio 1 ≤ E ≤ 58.3

•Reynolds number: Reλ ≈ 45 (DNS, LES) and Reλ ≈ 450 (LES, IAM
model, Tordella & Iovieno Phys.Fluids 2002)

•Numerical method: Fourier-Galerkin pseudospectral on a 2π×2π×4π
parallelepiped (Iovieno et al. Comp.Phys.Comm. 2001)
Resolution: DNS = 1282 × 256, LES = 322 × 64

• Initial conditions: two turbulent fields coming from simulations of
decaying homogeneous isotropic turbulence.



Decay exponents

•The two homogeneous fields decay algebrically in time, according to
theoretical (and experimental) results (see Karman and Howarth 1938,
Sedov 1944, Batchelor 1953, Speziale 1995)

E = A(t + t0)
−n

•Decay rates n1, n2 are higher than the limit, n = 1, for high Reynolds
number, but still close to this value (n1 ≈ n2 ≈ 1.2 − 1.4), so that
the energy and scale ratios remain nearly constant (up to 10%) during
the decay
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•All mixings have an intermediate self-similar stage of decay



Energy similarity profiles
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∆(t) = mixing layer thickness, �(t) = 1
3

∑
i

∫∞
0 Rii(r,t)dr

Rii(0,t)
, where Rii is the

longitudinal velocity correlation (see e.g. Batchelor, 1953).



Higher order moments: skewness and kurtosis profiles

S =
u3

u2
3
2

K =
u4

u22 ⇒ S ≈ 0, K ≈ 3 in homogeneous isotropic turb.

Case A: E = 6.7, L = 1, the two fields have the same integral scale.
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Case C: E = 6.5, L = 1.5 : the gradients of energy and scales have
the same sign: larger scale turbulence has more energy
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Penetration - position of the maximum of skewness/kurtosis
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(b) Penetration with L = 1
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a � 0.36, b � 0.298

Scaling law (energy gradient):
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Part 2: similarity analysis

Properties of the numerical solutions:

• A self-similar decay is always reached

• It is characterized by a strong intermittent penetration, which de-
pends on the two mixing parameters:

– the turbulent energy gradient

– the integral scale gradient

This behaviour must be contained in the turbulent motion equations:

• the two-point correlation equation which allows us to consider both
the macroscale and energy gradient parameters
(Bij(x, r, t) = ui(x, t)uj(x + r, t));

• the one-point correlation equation, the limit r → 0, which allows us
to obtain the third order moment (skewness) distribution.
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Definition of two-point double correlation:

Bij(x, r, t) = ui(x, t)uj(x + r, t) (1)

Bpi(x, r, t) = p(x, t)ui(x + r, t) (2)

Bip(x, r, t) = ui(x, t)p(x + r, t) (3)

Definition of two-point triple correlation:

Bij|k(x, r, t) = ui(x, t)uj(x, t)uk(x + r, t) (4)

Bi|jk(x, r, t) = ui(x, t)uj(x + r, t)uk(x + r, t) (5)



We consider the equation for the two-point lateral correla-
tions in the limit rx → 0 (cylindrical polar coordinates)
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Hypothesis and semplifications

• The two homogenous turbulences decay in the same way, thus

E1(t) = A1(t + t0)
−n1, E2(t) = A2(t + t0)

−n2

the exponents n1, n2 are close each other (numerical experiments,
Tordella & Iovieno, 2005). Here, we suppose n1 = n2 = n = 1, a value
which corresponds to Rλ 	 1 (Batchelor & Townsend, 1948).

• In the absence of energy production, the pressure-velocity corre-
lation has been shown to be approximately proportional to the
convective fluctuation transport (Yoshizawa, 1982, 2002)

−ρ−1pu = a
u3 + 2v2

1u

2
, a ≈ 0.10,

• Single-point second order moments are almost isotropic through the
mixing:

u2 � v2
i



Similarity hypothesis

The moment distributions are determined by

• the coordinates x, r0, t

• the energies E1(t), E2(t)

• the scales �1(t), �2(t).

We introduce the variable separation

Bxx(x, r0, t) = Bxx(−∞, 0, t)ϕxx(η, ξ) (7)

Bxx|x(x, r0, t) = B
3
2
xx(−∞, 0, t)ϕxx|x(η, ξ) (8)

where
η =

x

∆(t)
, ξ =

r0

�(x, t)

and where ∆(t) is the mixing thickness and �(x, t) is the local integral
scale. Bxx(−∞, 0, t) is the one-point correlation in the homogeneous
region of high kinetic energy, which is equal to (2/3)E1(t).



⇒ similarity conditions:

By introducing the similarity relations in the equation and by imposing
that all the coefficients must be independent from x, t, it is obtained

∆(t) ∝ �1(t)

and by taking the limit ξ → 0 ⇒ similarity equation:
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with boundary conditions

lim
η→−∞ϕxx(η) =
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By introducing a Taylor microscale and an integral scale defined on
the lateral double velocity correlation
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1the first is just a normalization condition, which is implied by the position ξ = r0/�(x, t).



The previous similarity equation may then be written as
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(12)
In case the ratio λT/λI is constant, then the term inside square brackets
will also be constant. But this term vanishes when η → ±∞, which
means that it is always zero. So that

λ2
I(η)

λ2
T (η)

=
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3
R�(η) ∝ R�(η) (13)

and the solution is independent on the scale variation.
We take this position as a representation of the mixing with L =
�1(t)/�2(t) = 1 (where subscripts 1 and 2 refer to the high/low energy
regions respectively)



Normalized energy and skewness distributions; E = 6.7 and L = 1.
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Position of the skewness maximum
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When L = 1 the ratio λT/λI cannot be constant inside the mixing, which
implies that the shape of the double correlation, even if normalized
with the local energy and integral scale, is changing through the layer.
We can suppose

λI(η) =
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The two parameter a e b are function of L, a = 1 makes the distribution
of integral scale different from the energy distribution (modifies the
thickness of ”scale mixing layer” with respect to that of the energy),
b = 0 modifies the shape of the correlation function inside the mixing
(changes the distribution of the Taylor microscale with respect to that
of the integral scale). We obtaine:
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The integral of this term in η = (−∞,∞) vanishes for ∀k ≥ 2.



The associated contribution to the skewness is an additive term
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For instance, by taking k = 2 and b = 0.1,

a = 3, 4 − 2, 4L
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CONCLUSIONS

The intermediate asymptotics of the turbulence diffusion in the ab-
sence of production of turbulent kinetic energy are considered.

• An intermediate similarity stage of decay always exists.

• When the energy ratio E is far from unity, the mixing is very
intermittent.

• when L = 1, the intermittency increases with the energy ratio E
with a scaling exponent that is almost equal to 0.29 .

• intermittency smoothly varies when passing through L = 1:
it increases when L > 1 (concordant gradient of energy and scale),
it is reduced when L < 1 (opposite gradient of energy and scale)

indipendently from the numerical simulations

• the self-similar decay of the shearless mixing is consistent with the
similarity analysis of the two-point double velocity correlation equa-
tion.

• a relation between the integral scale and the Taylor microscale vari-
ation across the mixing has been obtained.
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Shearless turbulence mixing. Skewness maximum and E



Shearless turbulence mixing. Skewness maximum and pen-
etration
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