Hydrodynamic linear stability of the 2D bluff-body wake through modal analysis and initial-value problem formulation

Daniela Tordella¹
Stefania Scarsoglio² William O. Criminale³

¹Department of Aeronautics and Space Engineering, Politecnico di Torino
²Department of Hydraulics, Politecnico di Torino
³Department of Applied Mathematics, University of Washington

Massachusetts Institute of Technology
April 2010
Outline

1. Introduction

D. Tordella Massachusetts Institute of Technology
Outline

1. Introduction
2. Physical Problem
Outline

1. Introduction
2. Physical Problem
3. Normal Mode Analysis
Outline

1. Introduction
2. Physical Problem
3. Normal Mode Analysis
4. Streamwise Entrainment Evolution
5. Transient and Long-Term Behavior of Small 3D Perturbations
Outline

1. Introduction
2. Physical Problem
3. Normal Mode Analysis
4. Streamwise Entrainment Evolution
5. Transient and Long-Term Behavior of Small 3D Perturbations
6. Multiscale analysis for the stability of long 3D waves
Outline

1. Introduction
2. Physical Problem
3. Normal Mode Analysis
4. Streamwise Entrainment Evolution
5. Transient and Long-Term Behavior of Small 3D Perturbations
6. Multiscale analysis for the stability of long 3D waves
7. Conclusions
Stability analysis
- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
Linear stability analysis of the 2D bluff-body wake

- **Stability analysis**
 - Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
 - To understand the reasons for the breakdown of laminar flow;
Linear stability analysis of the 2D bluff-body wake

- **Stability analysis**
 - Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
 - To understand the reasons for the breakdown of laminar flow;
 - To predict the transition to turbulence.
Linear stability analysis of the 2D bluff-body wake

Stability analysis
- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

Linear theory
- Small disturbances;
Linear stability analysis of the 2D bluff-body wake

● **Stability analysis**
 - Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
 - To understand the reasons for the breakdown of laminar flow;
 - To predict the transition to turbulence.

● **Linear theory**
 - Small disturbances;
 - Onset of the first instability.
Stability analysis
- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

Linear theory
- Small disturbances;
- Onset of the first instability.

Two-dimensional wake past a circular cylinder
- Circular cylinder is the quintessential bluff-body;
Introduction

Physical Problem

Normal Mode Analysis

Streamwise Entrainment Evolution

Transient and Long-Term Behavior of Small 3D Perturbations

Multiscale analysis for the stability of long 3D waves

Conclusions

Linear stability analysis of the 2D bluff-body wake

- **Stability analysis**
 - Hydrodynamics stability is important in different fields (aerodynamics, oceanography, atmospheric sciences, etc).
 - To understand the reasons for the breakdown of laminar flow;
 - To predict the transition to turbulence.

- **Linear theory**
 - Small disturbances;
 - Onset of the first instability.

- **Two-dimensional wake past a circular cylinder**
 - Circular cylinder is the quintessential bluff-body;
 - Important prototype of free shear flow for the study and applications in fluid mechanics.
Modal analysis vs Initial-value problem

- **Modal analysis**
 - Flow asymptotically stable or unstable;
Modal analysis vs Initial-value problem

- **Modal analysis**
 - Flow asymptotically stable or unstable;
 - Discrete spectrum (not complete for unbounded flows);
Modal analysis vs Initial-value problem

- **Modal analysis**
 - Flow asymptotically stable or unstable;
 - Discrete spectrum (not complete for unbounded flows);
 - Convective and absolute instability.
Modal analysis vs Initial-value problem

- **Modal analysis**
 - Flow asymptotically stable or unstable;
 - Discrete spectrum (not complete for unbounded flows);
 - Convective and absolute instability.

- **Initial-value problem**
 - Temporal evolution of arbitrary disturbances;
Modal analysis vs Initial-value problem

Modal analysis
- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);
- Convective and absolute instability.

Initial-value problem
- Temporal evolution of arbitrary disturbances;
- Importance of the transient growth (e.g. by-pass transition);
Modal analysis vs Initial-value problem

- **Modal analysis**
 - Flow asymptotically stable or unstable;
 - Discrete spectrum (not complete for unbounded flows);
 - Convective and absolute instability.

- **Initial-value problem**
 - Temporal evolution of arbitrary disturbances;
 - Importance of the transient growth (e.g. *by-pass transition*);
 - Aim to understand the cause of any possible instability in terms of the underlying physics.
The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
 ⇒ Steady, incompressible and viscous;
The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
 - Steady, incompressible and viscous;
- Approximation of 2D asymptotic Navier-Stokes expansions (Belen & Tordella, 2003), $20 \leq Re \leq 100$.

D. Tordella
Massachusetts Institute of Technology
Flow behind a circular cylinder:
⇒ Steady, incompressible and viscous;

Approximation of 2D asymptotic Navier-Stokes expansions (Belen & Tordella, 2003), \(20 \leq Re \leq 100\).
The two-dimensional bluff-body wake
Normal Mode Theory

The linearized perturbative equation in terms of stream function \(\psi(x, y, t) \) is

\[
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
\]
Normal Mode Theory

- The linearized perturbative equation in terms of stream function \(\psi(x, y, t) \) is

\[
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
\]

- \textit{Normal mode hypothesis} \(\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)} \)
Normal Mode Theory

- The linearized perturbative equation in terms of stream function $\psi(x, y, t)$ is

$$
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
$$

- **Normal mode hypothesis** $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;

D. Tordella Massachusetts Institute of Technology
Normal Mode Theory

- The linearized perturbative equation in terms of stream function $\psi(x, y, t)$ is

$$
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi)\psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi)\psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
$$

- **Normal mode hypothesis** $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
Normal Mode Theory

- The linearized perturbative equation in terms of stream function $\psi(x, y, t)$ is

$$
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
$$

- **Normal mode hypothesis** $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
 - $\sigma_0 = \omega_0 + ir_0$ complex frequency (ω_0 frequency, r_0 temporal growth rate).
Normal Mode Theory

- The linearized perturbative equation in terms of stream function $\psi(x, y, t)$ is
 \[\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi \]

- **Normal mode hypothesis** $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
 - $\sigma_0 = \omega_0 + ir_0$ complex frequency (ω_0 frequency, r_0 temporal growth rate);

- **Convective instability**: $r_0 < 0$ for all modes, $s_0 < 0$ for at least one mode.
The linearized perturbative equation in terms of stream function \(\psi(x, y, t) \) is

\[
\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \psi) \psi_y + \psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \psi) \psi_x - \psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi
\]

Normal mode hypothesis \(\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{(h_0 x - \sigma_0 t)} \)

- \(\varphi(x, y, t) \) complex eigenfunction;
- \(h_0 = k_0 + is_0 \) complex wavenumber (\(k_0 \) wavenumber, \(s_0 \) spatial growth rate);
- \(\sigma_0 = \omega_0 + ir_0 \) complex frequency (\(\omega_0 \) frequency, \(r_0 \) temporal growth rate);

Convective instability: \(r_0 < 0 \) for all modes, \(s_0 < 0 \) for at least one mode.

Absolute instability: \(r_0 > 0 \), \(\partial \sigma_0 / \partial h_0 = 0 \) for at least one mode.
Stability analysis through multiscale approach

- Slow variables: \(x_1 = \epsilon x, \ t_1 = \epsilon t, \ \epsilon = 1/Re. \)
Stability analysis through multiscale approach

- Slow variables: $x_1 = \epsilon x$, $t_1 = \epsilon t$, $\epsilon = 1/Re$.
- **Hypothesis:** $\psi(x, y, t)$ and $\Psi(x, y, t)$ are expansions in terms of ϵ:

 $$(\text{ODE dependent on } \varphi_0) + \epsilon (\text{ODE dependent on } \varphi_0, \varphi_1) + O(\epsilon^2)$$
Stability analysis through multiscale approach

- **Slow variables:** \(x_1 = \epsilon x, \ t_1 = \epsilon t, \ \epsilon = 1/Re. \)
- **Hypothesis:** \(\psi(x, y, t) \) and \(\Psi(x, y, t) \) are expansions in terms of \(\epsilon \):
 - (ODE dependent on \(\varphi_0 \)) + \(\epsilon \) (ODE dependent on \(\varphi_0, \varphi_1 \)) + \(O(\epsilon^2) \)
- **Order zero:** homogeneous Orr-Sommerfeld equation
 \[A \varphi_0 = \sigma_0 B \varphi_0 \]
 \[A = (\partial_y^2 - h_0^2)^2 - i h_0 Re[u_0(\partial_y^2 - h_0^2) - \partial_y^2 u_0] \]
 \[\varphi_0 \rightarrow 0, \ |y| \rightarrow \infty \]
 \[\partial_y \varphi_0 \rightarrow 0, \ |y| \rightarrow \infty \]
 \[\Rightarrow \text{eigenfunctions} \ \varphi_0 \text{ and a discrete set of eigenvalues} \ \sigma_{0n}. \]
Stability analysis through multiscale approach

- **Slow variables:** \(x_1 = \epsilon x, \ t_1 = \epsilon t, \ \epsilon = 1/Re. \)

- **Hypothesis:** \(\psi(x, y, t) \) and \(\Psi(x, y, t) \) are expansions in terms of \(\epsilon: \)

 \[(\text{ODE dependent on } \varphi_0) + \epsilon (\text{ODE dependent on } \varphi_0, \ \varphi_1) + O(\epsilon^2)\]

- **Order zero:** homogeneous Orr-Sommerfeld equation

 \[
 \mathcal{A} \varphi_0 = \sigma_0 \mathcal{B} \varphi_0 \quad \mathcal{A} = (\partial_y^2 - h_0^2)^2 - ih_0 \text{Re}[u_0(\partial_y^2 - h_0^2) - \partial_y^2 u_0] \\
 \varphi_0 \rightarrow 0, \ |y| \rightarrow \infty \quad \mathcal{B} = -i\text{Re}(\partial_y^2 - h_0^2) \\
 \partial_y \varphi_0 \rightarrow 0, \ |y| \rightarrow \infty \\
 \Rightarrow \text{eigenfunctions } \varphi_0 \text{ and a discrete set of eigenvalues } \sigma_{0n}.

- **First order:** Non homogeneous Orr-Sommerfeld equation

 \[
 \mathcal{A} \varphi_1 = \sigma_0 \mathcal{B} \varphi_1 + \mathcal{M} \varphi_0 \quad \mathcal{M} = \left[\text{Re}(2h_0 \sigma_0 - 3h_0^2 u_0 - \partial_y^2 u_0) + 4ih_0^3 \right] \partial_{x_1} \\
 \varphi_1 \rightarrow 0, \ |y| \rightarrow \infty \quad + (\text{Re}u_0 - 4ih_0) \partial_{x_1}^3 \partial_{yy} - \text{Re}v_1 (\partial_y^3 - h_0^2 \partial_y) + \text{Re} \partial_y^2 v_1 \partial_y \\
 \partial_y \varphi_1 \rightarrow 0, \ |y| \rightarrow \infty \quad + ih_0 \text{Re} \left[u_1 (\partial_y^2 - h_0^2) - \partial_y^2 u_1 \right] + \text{Re} (\partial_y^2 - h_0^2) \partial_{t_1}

D. Tordella

Massachusetts Institute of Technology
Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h_{0s}, σ_{0s}) of the dispersion relation $\sigma_0 = \sigma_0(h_0, x, Re)$ satisfy $\frac{\partial \sigma_0}{\partial h_0} = 0$;
Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h_{0s}, σ_{0s}) of the dispersion relation $\sigma_0 = \sigma_0(h_0, x, Re)$ satisfy $\frac{\partial \sigma_0}{\partial h_0} = 0$;

$Re = 35, x = 4$. Level curves, $\omega_0 =$ const (thin curves), $r_0 =$ const (thick curves).
Perturbative hypothesis: saddle point sequence

$Re = 35, \ x = 4. \ \omega_0(k_0, s_0), \ r_0(k_0, s_0)$.
Instability Characteristics

(a) k_0, k

(b) s_0, s

(c) ω_0, ω

(d) r_0, r

Re=35 - solid line
Re=50 - dashed line
Re=100 - dotted line
Global Pulsation

- Comparison between present solution (accuracy $\Delta \omega = 0.05$), Zebib’s numerical study (1987), Pier’s direct numerical simulations (2002), Williamson’s experimental results (1988).

\[
\begin{array}{c}
\text{Re} \\
30 \quad 45 \quad 60 \quad 75 \quad 90 \quad 105 \\
\end{array}
\]

\[
\begin{array}{c}
\omega \\
0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \\
\end{array}
\]

Defect of the volumetric flow rate D:

$$D(x) = \int_{-\infty}^{+\infty} (1 - U(x, y)) dy$$

The first R_{cr} as a possible measure of the entrainment length.

Velocity Flow Rate Defect and Entrainment
Velocity Flow Rate Defect and Entrainment

- **Defect of the volumetric flow rate** D:

$$D(x) = \int_{-\infty}^{+\infty} (1 - U(x, y)) dy$$

- **Entrainment** E takes into account the variation of the defect of the volumetric flow rate in the streamwise direction:

$$E(x) = \left| \frac{dD(x)}{dx} \right|$$

Results

The first R_{cr} as a possible measure of the entrainment length
Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, 1990);
Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity \((\text{Criminale & Drazin, 1990})\);
- Base flow parametric in \(x\) and \(Re \Rightarrow U(y; x_0, Re)\);
Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re)$;
- Laplace-Fourier transform in x and z directions, α complex, γ real;
Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re)$;
- Laplace-Fourier transform in x and z directions, α complex, γ real;

\[\begin{align*}
\gamma & = \text{transversal wavenumber} \\
\alpha_r & = \text{longitudinal wavenumber} \\
\phi & = \text{angle of obliquity} \\
k & = \text{polar wavenumber} \\
\alpha_i & = \text{spatial damping rate}
\end{align*}\]
Perturbative equations

- Perturbative linearized system:

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{v} = \hat{\Gamma}
\]

\[
\frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i) \left(\frac{d^2 U}{dy^2} \hat{v} - U\hat{\Gamma} \right) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\Gamma} \right]
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i) U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\omega}_y \right]
\]
Perturbative equations

Perturbative linearized system:

\[
\frac{\partial^2 \hat{\nu}}{\partial y^2} = (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\nu} = \hat{\Gamma}
\]

\[
\frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{\nu} - U\hat{\Gamma}) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\Gamma} \right]
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma \frac{dU}{dy}\hat{\nu} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\omega}_y \right]
\]

The transversal velocity and vorticity components are \(\hat{\nu}\) and \(\hat{\omega}_y\) respectively, \(\hat{\Gamma}\) is defined as \(\hat{\Gamma} = \partial_x\hat{\omega}_z - \partial_z\hat{\omega}_x\).
Perturbative equations

- Perturbative linearized system:

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{v} = \hat{\Gamma}
\]

\[
\frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i)\left(\frac{d^2 U}{dy^2} \hat{v} - U\hat{\Gamma}\right) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\Gamma}\right]
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\omega}_y\right]
\]

The transversal velocity and vorticity components are \(\hat{v}\) and \(\hat{\omega}_y\) respectively, \(\hat{\Gamma}\) is defined as \(\hat{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x\).

- Initial conditions:
 - \(\hat{\omega}_y(0, y) = 0\);
Perturbative equations

- Perturbative linearized system:

\[
\frac{\partial^2 \hat{\nu}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\nu} = \hat{\Gamma} \\
\frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2} \hat{\nu} - U\hat{\Gamma}) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\Gamma} \right] \\
\frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{\nu} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i)\hat{\omega}_y \right]
\]

The transversal velocity and vorticity components are \(\hat{\nu}\) and \(\hat{\omega}_y\) respectively, \(\hat{\Gamma}\) is defined as \(\hat{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x\).

- Initial conditions:
 - \(\hat{\omega}_y(0, y) = 0\); \\
 - \(\hat{\Gamma}(0, y) = e^{-y^2}\sin(y)\) or \(\hat{\Gamma}(0, y) = e^{-y^2}\cos(y)\);
Perturbative equations

- Perturbative linearized system:
 \[
 \frac{\partial^2 \hat{\nu}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\nu} = \hat{\Gamma}
 \]
 \[
 \frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2} \hat{\nu} - U \hat{\Gamma}) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\Gamma} \right]
 \]
 \[
 \frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i)U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{\nu} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\omega}_y \right]
 \]

 The transversal velocity and vorticity components are \(\hat{\nu} \) and \(\hat{\omega}_y \) respectively, \(\hat{\Gamma} \) is defined as \(\tilde{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x \).

- Initial conditions:
 - \(\hat{\omega}_y(0, y) = 0; \)
 - \(\hat{\Gamma}(0, y) = e^{-y^2} \sin(y) \) or \(\hat{\Gamma}(0, y) = e^{-y^2} \cos(y); \)

- Boundary conditions: \((\hat{u}, \hat{v}, \hat{w}) \rightarrow 0 \) as \(y \rightarrow \infty \).
Measure of the Growth

- Kinetic energy density e:

$$
e(t; \alpha, \gamma) = \frac{1}{2} \frac{1}{2y_d} \int_{-y_d}^{y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

$$= \frac{1}{2} \frac{1}{2y_d} \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{y_d} \left(|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2 \right) dy$$
Measure of the Growth

- **Kinetic energy density \(e \):**

\[
e(t; \alpha, \gamma) = \frac{1}{2} \frac{1}{2} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy
\]

\[
= \frac{1}{2} \frac{1}{2} \frac{1}{2y_d |\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\hat{\nu}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2) dy
\]

- **Amplification factor \(G \):**

\[
G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}
\]
Measure of the Growth

- **Temporal growth rate** r (*Lasseigne et al.*, 1999):

 $$
 r(t; \alpha, \gamma) = \frac{\log|e(t; \alpha, \gamma)|}{2t}, \quad t > 0
 $$
Measure of the Growth

- **Temporal growth rate** r \((\text{Lasseigne et al., 1999})\):

 \[
 r(t; \alpha, \gamma) = \frac{\log |e(t; \alpha, \gamma)|}{2t}, \quad t > 0
 \]

- **Angular frequency (pulsation)** ω \((\text{Whitham, 1974})\):

 \[
 \omega(t; \alpha, \gamma) = \frac{d\varphi(t)}{dt}, \quad \varphi \text{ time phase}
 \]
Effect of α_i and k

Effect of the symmetry of the perturbation

(a) $x_0=10$ (intermediate)
--- $x_0=50$ (far)

$\tau_{\text{far}} = 100$

Re=100

$k=0.6$

$\alpha_i=0.02$

$\phi = \pi/4$

asymmetric input

(b) $x_0=10$ (intermediate)
--- $x_0=50$ (far)

Re=100

$k=0.6$

$\alpha_i=0.02$

$\phi = \pi/4$

symmetric input

(c) $k=0.6$
--- $\alpha_i=0.02$
--- $\phi = \pi/4$

(d) $x_0=10$
--- $\text{Re}=100$

--- ω

sym

asym

D. Tordella
Massachusetts Institute of Technology
Effect of ϕ

- $\phi=0$
- $\phi=\pi/2$

$\tau_{\text{inter}} = 2.5$

$\alpha_i = 0.02$
$k = 0.7$
$x_0 = 10$
$Re=100$

$\phi=0$
$k = 0.7$
$x_0 = 10$
$Re=100$

$\alpha_i = 0.02$

-asymmetric input-
Comparison with modal analysis and laboratory data
Angular frequency and temporal growth rate, $\alpha_i = 0.05$, $\phi = 0$, $x_0 = 10$.

Full linear problem

- Linearized 3D equations and Laplace-Fourier transform \((x, z)\);
Full linear problem

- Linearized 3D equations and Laplace-Fourier transform \((x, z)\);
- Base flow parametric in \(x\) and \(Re \Rightarrow (U(y; x_0, Re), V(y; x_0, Re))\).
Full linear problem

- Linearized 3D equations and Laplace-Fourier transform \((x, z)\);
- Base flow parametric in \(x\) and \(Re \Rightarrow (U(y; x_0, Re), V(y; x_0, Re))\);

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{v} = \hat{\Gamma}
\]
\[
\frac{\partial \hat{r}}{\partial t} = G\hat{\Gamma} + H\hat{v} + K\hat{\omega}_y
\]
\[
\frac{\partial \hat{\omega}_y}{\partial t} = L\hat{\omega}_y + M\hat{v}
\]
Full linear problem

- Linearized 3D equations and Laplace-Fourier transform \((x, z)\);
- Base flow parametric in \(x\) and \(Re\) \(\Rightarrow (U(y; x_0, Re), V(y; x_0, Re))\);

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2 i k \cos(\phi) \alpha_i) \hat{v} = \hat{\Gamma} \\
\frac{\partial \hat{f}}{\partial t} = G\hat{\Gamma} + H\hat{v} + K\hat{\omega}_y \\
\frac{\partial \hat{\omega}_y}{\partial t} = L\hat{\omega}_y + M\hat{v}
\]

- \(G = G(y; x_0, k, \phi, \alpha_i, Re), \) and similarly \(H, K, L\) and \(M\), are ordinary differential operators.
Multiple scales hypothesis

- Regular perturbation scheme, $k \ll 1$:

\[\hat{v} = \hat{v}_0 + k\hat{v}_1 + k^2\hat{v}_2 + \cdots, \]
\[\hat{\Gamma} = \hat{\Gamma}_0 + k\hat{\Gamma}_1 + k^2\hat{\Gamma}_2 + \cdots, \]
\[\hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \cdots. \]
Multiple scales hypothesis

- Regular perturbation scheme, $k \ll 1$:

 \[
 \hat{v} = \hat{v}_0 + k \hat{v}_1 + k^2 \hat{v}_2 + \cdots, \\
 \hat{\Gamma} = \hat{\Gamma}_0 + k \hat{\Gamma}_1 + k^2 \hat{\Gamma}_2 + \cdots, \\
 \hat{\omega}_y = \hat{\omega}_{y0} + k \hat{\omega}_{y1} + k^2 \hat{\omega}_{y2} + \cdots.
 \]

- Temporal scales: $t, \tau = kt, T = k^2 t$;
Multiple scales hypothesis

- Regular perturbation scheme, $k \ll 1$:
 \[
 \hat{\nu} = \hat{\nu}_0 + k \hat{\nu}_1 + k^2 \hat{\nu}_2 + \cdots ,
 \hat{\Gamma} = \hat{\Gamma}_0 + k \hat{\Gamma}_1 + k^2 \hat{\Gamma}_2 + \cdots ,
 \hat{\omega}_y = \hat{\omega}_{y0} + k \hat{\omega}_{y1} + k^2 \hat{\omega}_{y2} + \cdots .
 \]

- Temporal scales: $t, \tau = kt, T = k^2 t$;
- Spatial scales: $y, Y = ky$.
Order O(1)

\[
\frac{\partial^2 \hat{V}_0}{\partial y^2} + \alpha_i^2 \hat{V}_0 = \hat{\Gamma}_0
\]

\[
\frac{\partial \hat{\Gamma}_0}{\partial t} - G_0 \hat{\Gamma}_0 - H_0 \hat{V}_0 = 0
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} - L_0 \hat{\omega}_y = 0
\]
Multiple scales equations up to $O(k)$

- **Order $O(1)$**

$$\frac{\partial^2 \hat{v}_0}{\partial y^2} + \alpha_i^2 \hat{v}_0 = \hat{\Gamma}_0$$

$$\frac{\partial \hat{\Gamma}_0}{\partial t} - G_0 \hat{\Gamma}_0 - H_0 \hat{v}_0 = 0$$

$$\frac{\partial \hat{\omega}_y}{\partial t} - L_0 \hat{\omega}_y = 0$$

where $G_0 = G_0(y; x_0, \phi, \alpha_i, Re)$ and similarly for H_0 and L_0.

Introduction
Physical Problem
Normal Mode Analysis
Streamwise Entrainment Evolution
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves
Conclusions

Formulation
Comparison between multiscale and full problem results
Multiple scales equations up to $O(k)$

- **Order $O(k)$**

\[
\frac{\partial^2 \hat{v}_1}{\partial y^2} + \alpha_i^2 \hat{v}_1 = -2 \frac{\partial^2 \hat{v}_0}{\partial y \partial Y} + 2i \cos(\phi) \alpha_i \hat{v}_0 + \hat{\Gamma}_1
\]

\[
\frac{\partial \hat{\Gamma}_1}{\partial t} - G_0 \hat{\Gamma}_1 - H_0 \hat{v}_1 = -\frac{\partial \hat{\Gamma}_0}{\partial \tau} + G_1 \hat{\Gamma}_0 + H_1 \hat{v}_0 + K_1 \hat{\omega}_y 0
\]

\[
\frac{\partial \hat{\omega}_y 1}{\partial t} - L_0 \hat{\omega}_y 1 = -\frac{\partial \hat{\omega}_y 0}{\partial \tau} + L_1 \hat{\omega}_y 0 + M_1 \hat{v}_0
\]
Multiple scales equations up to $O(k)$

- Order $O(k)$

\[
\frac{\partial^2 \hat{v}_1}{\partial y^2} + \alpha_i^2 \hat{v}_1 = -2 \frac{\partial^2 \hat{v}_0}{\partial y \partial Y} + 2i \cos(\phi) \alpha_i \hat{v}_0 + \hat{\Gamma}_1
\]

\[
\frac{\partial \hat{\Gamma}_1}{\partial t} - G_0 \hat{\Gamma}_1 - H_0 \hat{v}_1 = - \frac{\partial \hat{\Gamma}_0}{\partial \tau} + G_1 \hat{\Gamma}_0 + H_1 \hat{v}_0 + K_1 \hat{\omega}_y \hat{v}_0
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} = - \frac{\partial \hat{\omega}_y}{\partial \tau} + L_1 \hat{\omega}_y + M_1 \hat{v}_0
\]

where $G_1 = G_1(y, Y; x_0, \phi, \alpha_i, Re)$ and similarly for H_1, K_1, L_1 and M_1.
Effect of α_i and k

Effect of the symmetry of the perturbation

- **Re=100**, **k=0.02**, **ϕ=π/2**
- **x₀=10**, **αᵢ=0.08**

- **G** vs. time **t** for **O(1)** full problem, compared to symmetrical (sym) and asymmetrical (asym) cases.
- **r** vs. time **t** for **O(1)** full problem, compared to symmetrical (sym) and asymmetrical (asym) cases.
Asymptotic state

- Temporal asymptotic values of the angular frequency ω and the temporal growth rate r.

![Graph showing temporal asymptotic values of ω and r for different cases.](image)
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
Conclusions

- Modal analysis
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
 - *No information on the early time history of the perturbation*;
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
 - *No information on the early time history of the perturbation*;

- **Initial-value problem**
 - Different growths of energy and variety of temporal scales shown by the transient;
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
 - *No information on the early time history of the perturbation*;

- **Initial-value problem**
 - Different growths of energy and variety of temporal scales shown by the transient;
 - Asymptotic good agreement with modal analysis and with experimental data (in terms of frequency and wavelength);
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
 - *No information on the early time history of the perturbation*;

- **Initial-value problem**
 - Different growths of energy and variety of temporal scales shown by the transient;
 - Asymptotic good agreement with modal analysis and with experimental data (in terms of frequency and wavelength);
 - Multiscaling $O(1)$ well approximates the full linear problem;
Conclusions

- **Modal analysis**
 - Synthetic perturbation hypothesis (saddle point sequence);
 - Absolute instability pockets in the intermediate wake;
 - Frequency in good agreement with numerical and experimental data;
 - *No information on the early time history of the perturbation*;

- **Initial-value problem**
 - Different growths of energy and variety of temporal scales shown by the transient;
 - Asymptotic good agreement with modal analysis and with experimental data (in terms of frequency and wavelength);
 - Multiscaling $O(1)$ well approximates the full linear problem;
 - *More difficult handling of the parameters.*
Next Steps

- Energy spectrum of a general pre-unstable large set of *multiple transient three dimensional waves*.
Next Steps

- Energy spectrum of a general pre-unstable large set of *multiple transient three dimensional waves*.
 ⇒ Comparison with the Kolmogorov’s 5/3 law;
Next Steps

- Energy spectrum of a general pre-unstable large set of *multiple transient three dimensional waves*.
- ⇒ Comparison with the Kolmogorov’s 5/3 law;
- Initial-value problem for the cross flow boundary layer \((U(y), W(y))\);
Next Steps

- Energy spectrum of a general pre-unstable large set of *multiple transient three dimensional waves*.
 ⇒ Comparison with the Kolmogorov’s 5/3 law;
- Initial-value problem for the cross flow boundary layer \((U(y), W(y))\);
Next Steps

- Energy spectrum of a general pre-unstable large set of *multiple transient three dimensional waves*.
- ⇒ Comparison with the Kolmogorov’s 5/3 law;
- Initial-value problem for the cross flow boundary layer \((U(y), W(y))\);

![Graphical representation of the cross flow boundary layer](image)

- Initial-value problem for compressible flows.

D. Tordella
Massachusetts Institute of Technology