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Linear stability analysis of the 2D bluff-body wake

Stability analysis
Hydrodynamics stability is important in different fields (aerodynam-
ics, oceanography, atmospheric sciences, etc).

To understand the reasons for the breakdown of laminar flow;
To predict the transition to turbulence.

Linear theory
Small disturbances;
Onset of the first instability.

Two-dimensional wake past a circular cylinder
Circular cylinder is the quintessential bluff-body;
Important prototype of free shear flow for the study and applications
in fluid mechanics.
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Modal analysis vs Initial-value problem

Modal analysis
Flow asymptotically stable or unstable;

Discrete spectrum (not complete for unbounded flows);
Convective and absolute instability.

Initial-value problem
Temporal evolution of arbitrary disturbances;
Importance of the transient growth (e. g. by-pass transition);
Aim to understand the cause of any possible instability in terms of
the underlying physics.
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The two-dimensional bluff-body wake

Flow behind a circular cylinder:

⇒ Steady, incompressible and viscous;
Approximation of 2D asymptotic Navier-Stokes expansions (Belan
& Tordella, 2003), 20 ≤ Re ≤ 100.
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The two-dimensional bluff-body wake
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Stability Analysis
Results

Normal Mode Theory

The linearized perturbative equation in terms of stream function
ψ(x , y , t) is

∂t∇2ψ + (∂x∇2Ψ)ψy + Ψy∂x∇2ψ − (∂y∇2Ψ)ψx −Ψx∂y∇2ψ =
1

Re
∇4ψ

Normal mode hypothesis⇒ ψ(x , y , t) = ϕ(x , y , t) ei(h0x−σ0t)

ϕ(x , y , t) complex eigenfunction;
h0 = k0 + is0 complex wavenumber (k0 wavenumber, s0 spatial
growth rate);
σ0 = ω0 + ir0 complex frequency (ω0 frequency, r0 temporal growth
rate);

Convective instability: r0 < 0 for all modes, s0 < 0 for at least
one mode.
Absolute instability: r0 > 0, ∂σ0/∂h0 = 0 for at least one mode.
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Stability Analysis
Results

Stability analysis through multiscale approach

Slow variables: x1 = εx , t1 = εt , ε = 1/Re.

Hypothesis: ψ(x , y , t) and Ψ(x , y , t) are expansions in terms of ε:
(ODE dependent on ϕ0) + ε (ODE dependent on ϕ0, ϕ1) + O(ε2)
Order zero: homogeneous Orr-Sommerfeld equation

Aϕ0 = σ0Bϕ0 A = (∂2
y − h2

0)2 − ih0Re[u0(∂2
y − h2

0)− ∂2
y u0]

ϕ0 → 0, |y | → ∞ B = −iRe(∂2
y − h2

0)

∂yϕ0 → 0, |y | → ∞

⇒ eigenfunctions ϕ0 and a discrete set of eigenvalues σ0n.
First order: Non homogeneous Orr-Sommerfeld equation

Aϕ1 = σ0Bϕ1 +Mϕ0 M =
[
Re(2h0σ0 − 3h2

0u0 − ∂2
y u0) + 4ih3

0

]
∂x1

ϕ1 → 0, |y | → ∞ + (Reu0 − 4ih0)∂3
x1yy − Rev1(∂3

y − h2
0∂y ) + Re∂2

y v1∂y

∂yϕ1 → 0, |y | → ∞ + ih0Re
[
u1(∂2

y − h2
0)− ∂2

y u1

]
+ Re(∂2

y − h2
0)∂t1
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Hypothesis: ψ(x , y , t) and Ψ(x , y , t) are expansions in terms of ε:
(ODE dependent on ϕ0) + ε (ODE dependent on ϕ0, ϕ1) + O(ε2)
Order zero: homogeneous Orr-Sommerfeld equation

Aϕ0 = σ0Bϕ0 A = (∂2
y − h2

0)2 − ih0Re[u0(∂2
y − h2

0)− ∂2
y u0]

ϕ0 → 0, |y | → ∞ B = −iRe(∂2
y − h2

0)

∂yϕ0 → 0, |y | → ∞

⇒ eigenfunctions ϕ0 and a discrete set of eigenvalues σ0n.
First order: Non homogeneous Orr-Sommerfeld equation

Aϕ1 = σ0Bϕ1 +Mϕ0 M =
[
Re(2h0σ0 − 3h2

0u0 − ∂2
y u0) + 4ih3

0

]
∂x1

ϕ1 → 0, |y | → ∞ + (Reu0 − 4ih0)∂3
x1yy − Rev1(∂3

y − h2
0∂y ) + Re∂2

y v1∂y

∂yϕ1 → 0, |y | → ∞ + ih0Re
[
u1(∂2

y − h2
0)− ∂2

y u1

]
+ Re(∂2

y − h2
0)∂t1
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Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h0s, σ0s) of the
dispersion relation σ0 = σ0(h0, x ,Re) satisfy ∂σ0/∂h0 = 0;
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Instability Characteristics
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Global Pulsation

Comparison between present solution (accuracy ∆ω = 0.05), Ze-
bib’s numerical study (1987), Pier’s direct numerical simulations
(2002), Williamson’s experimental results (1988).
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The first Rcr as a possible measure of the entrainment length

Velocity Flow Rate Defect and Entrainment

Defect of the volumetric flow rate D:

D(x) =

∫ +∞

−∞
(1− U(x , y))dy

Entrainment E takes into account the variation of the defect of the
volumetric flow rate in the streamwise direction:

E(x) =

∣∣∣∣dD(x)

dx

∣∣∣∣
Tordella & Scarsoglio, Phys. Letters A, 2009.
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Initial-Value Problem
Exploratory Analysis of the Transient Dynamics
Asymptotic State

Formulation

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, 1990);

Base flow parametric in x and Re⇒ U(y ; x0,Re);
Laplace-Fourier transform in x and z directions, α complex, γ real;

y 

z 

x

cylinder axisk α
γ

φ r 

U
f

γ = transversal wavenumber
α

r
 = longitudinal wavenumber

k = polar wavenumber

φ = angle of obliquity

α
i
 = spatial damping rate
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Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − α2
i + 2iαrαi )v̂ = Γ̂

∂Γ̂

∂t
= (iαr − αi )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi )Γ̂]

∂ω̂y

∂t
= −(iαr − αi )Uω̂y − iγ

dU
dy

v̂ +
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi )ω̂y ]

The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂x ω̃z − ∂z ω̃x .
Initial conditions:

ω̂y (0, y) = 0;
Γ̂(0, y) = e−y2

sin(y) or Γ̂(0, y) = e−y2
cos(y);

Boundary conditions: (û, v̂ , ŵ)→ 0 as y →∞.
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Measure of the Growth

Kinetic energy density e:

e(t ;α, γ) =
1
2

1
2yd

∫ +yd

−yd

(|û|2 + |v̂ |2 + |ŵ |2)dy

=
1
2

1
2yd

1
|α2 + γ2|

∫ +yd

−yd

(|
∂v̂
∂y
|2 + |α2 + γ2||v̂ |2 + |ω̂y |2)dy

Amplification factor G:

G(t ;α, γ) =
e(t ;α, γ)

e(t = 0;α, γ)
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Measure of the Growth

Temporal growth rate r (Lasseigne et al., 1999):

r(t ;α, γ) =
log|e(t ;α, γ)|

2t
, t > 0

Angular frequency (pulsation) ω (Whitham, 1974):

ω(t ;α, γ) =
dϕ(t)

dt
, ϕ time phase
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Effect of αi and k
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Effect of the symmetry of the perturbation
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Comparison with modal analysis and laboratory data
Angular frequency and temporal growth rate, αi = 0.05, φ = 0, x0 = 10.

0 0.5 1  1.5 2  2.5
0

0.5

1

1.5

2

2.5 (a) 

k 

Williamson(1989)

  ω Re=50 

Tordella    
et al.(2006)

sym 
asym 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

  ω

k 

Tordella    
et al.(2006)

Williamson(1989)

(b) 

Re=70 

asym 
sym 

0 1 2 3
0

1

2

3
(c) 

Re=100   ω

k 
Williamson(1989)

Tordella    
et al.(2006)

asym 
sym 

0 1 2
−0.1

−0.05

0

0.05

0.1

k 

r 

(d) Tordella    
et al.(2006)

sym 
asym 

Re=50 

0 0.5 1 1.5 2 2.5
−0.1

−0.05

0

0.05

0.1

0.15
(e) Tordella    

et al.(2006)

 r Re=70 

k 
sym 
asym 

0 1 2 3
−0.05

0

0.05

0.1

0.15

0.2

k 

 r 

Re=100 

Tordella    
et al.(2006)

asym 
sym 

(f) 

Scarsoglio, Tordella & Criminale, ETC XII, 2009.

D. Tordella Massachusetts Institute of Technology



Introduction
Physical Problem

Normal Mode Analysis
Streamwise Entrainment Evolution

Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Conclusions

Formulation
Comparison between multiscale and full problem results

Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);

Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.
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Multiple scales hypothesis

Regular perturbation scheme, k � 1:

v̂ = v̂0 + kv̂1 + k2v̂2 + · · · ,
Γ̂ = Γ̂0 + k Γ̂1 + k2Γ̂2 + · · · ,
ω̂y = ω̂y0 + k ω̂y1 + k2ω̂y2 + · · · .

Temporal scales: t , τ = kt , T = k2t ;
Spatial scales: y , Y = ky .
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Multiple scales equations up to O(k)

Order O(1)

∂2v̂0

∂y2 + α2
i v̂0 = Γ̂0

∂Γ̂0

∂t
−G0Γ̂0 − H0v̂0 = 0

∂ω̂y0

∂t
− L0ω̂y0 = 0

where G0 = G0(y ; x0, φ, αi ,Re) and similarly for H0 and L0.
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Effect of the symmetry of the perturbation
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Asymptotic state

Temporal asymptotic values of the angular frequency ω and the
temporal growth rate r .
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Conclusions

Modal analysis
Synthetic perturbation hypothesis (saddle point sequence);

Absolute instability pockets in the intermediate wake;
Frequency in good agreement with numerical and experimental data;
No information on the early time history of the perturbation;

Initial-value problem
Different growths of energy and variety of temporal scales shown by
the transient;
Asymptotic good agreement with modal analysis and with experi-
mental data (in terms of frequency and wavelength);
Multiscaling O(1) well approximates the full linear problem;
More difficult handling of the parameters.
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Conclusions

Next Steps

Energy spectrum of a general pre-unstable large set of multiple
transient three dimensional waves.

⇒ Comparison with the Kolmogorov’s 5/3 law;
Initial-value problem for the cross flow boundary layer (U(y),W (y));
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