Turbulent anisotropic transport in a model cloud interface

M.Iovieno, L.Gallana, M.Carbone, F.DeSanti, D.Tordella

1Politecnico di Torino, DIMEAS
www.polito.it/philofluid

UFS Schneefernerhaus - Zugspitze
April 19, 2016
Temporal evolpution of a cloud-clear air interface

Initial value problem
Context

Turbulent mixings

- A kinetic energy gradient creates an intermittent region (shearless mixing layer)
- It creates an additional compression of fluid elements in the direction of ∇E and a stretching in the other directions

Cloud droplet collisions

- Warm cloud have more turbulent kinetic energy than the surrounding clear air ($\Rightarrow \nabla E$ at the interface)
- Above 30-40 μm droplet growth is mainly determined by collisions
- Droplets accumulate in regions with high strain
- Can a shearless mixing layer change the collision rate of droplets?
Working hypothesis

- Top/bottom cloud-clear air interfaces can be seen as turbulent shearless mixing regions
- The compression of fluid elements at small scale, typically met across a shearless mixing layer, may increase the collision rate and particle numerical density
- Considering the bottom interface, gravity favours droplet exit from the cloud. Large droplets may become rain.
The role of the integral scale inhomogeneity

Uniform kinetic energy, inhomogeneous scale

Physica D, 2012.
Passive scalar transport

- Physical problem
 - Turbulent shearless mixings
 - The effect of the stratification
- Appendix
- Proposed model
- Preliminary results

Diagram:
- High energy turbulence
- Low energy turbulence
- Energy flow
- Mixing layer
- Intermittent velocity fluctuations
- Intermittent scalar fluctuations
- Scalar interface
- Intermittent scalar fluctuations
Velocity derivative skewness

General behaviour

\[\xi = \frac{\partial u_i}{\partial x_i}, \ i = x, y_1 \text{ and } y_2 \]

\[(Re_\lambda = 150, \ t/\tau = 3.5) \]

Increase of fluid filaments compression in the energy gradient direction, reduction of fluid filaments compression in the other directions.
– we introduce collisions in the dynamics of the droplets, even a simple rough model of inelastic collisions

– a feedback on the flow is proposed
Droplet dynamics model - small scale DNS

Droplet motion: Stokes drag & gravity

\[
\frac{dx_k}{dt} = v_k, \quad \frac{dv_k}{dt} = \frac{u(x_k, t) - v_k}{\tau_p} + g
\]

Evaporation-Condensation

Each droplet can change its mass by condensation and evaporation:

\[
\frac{dR_k}{dt} = C \frac{\varphi(x_k, t) - 1}{R_k}
\]

where \(\varphi \) is the relative humidity, \(\varphi = \rho_v/\rho_{sat} \) (Mason, 1971)

Collisions

Droplets are assume to coalesce when \(|x_i - x_j| \leq R_i + R_j \):

\[
m_i + m_j = m^*, \quad m_i v_i + m_j v_j = m^* v^*
\]
Physical problem
Turbulent shearless mixings
The effect of the stratification
Appendix

The cloud-clear air interface
Proposed model
Preliminary results

\[C = f(r, \kappa, D, \rho \ell) \]

- \(r \) = latent heat of evaporation condensation
- \(\kappa \) = thermal diffusivity in the air \((Pr \approx 0.7)\)
- \(D \) = diffusivity of vapour in air \((Sc \approx 0.5)\)
- \(\rho \) = density
- \(St = \tau_p / \tau_\eta = 2 \) corresponds to about 30\(\mu \)m
Flow model

Navier-Stokes, Boussinesq approximation, plus vapour transport

\[
\nabla \cdot \mathbf{u}' = 0
\]
\[
\frac{D\mathbf{u}'}{Dt} = -\nabla \tilde{p} \rho + \nu \nabla^2 \mathbf{u}' + \alpha g\theta' + \mathbf{f}
\]
\[
\frac{D\theta'}{Dt} = \kappa \nabla^2 \theta'
\]
\[
\frac{D\varphi}{Dt} = \kappa_v \nabla^2 \varphi + S\varphi
\]

Coupling (source) terms

\[
f = -\frac{1}{V_{I(x,\delta)}} \sum_{\mathbf{x}_k \in I(x,\delta)} m_k \frac{d\mathbf{v}_k}{dt} = -\sum_k m_k \frac{\mathbf{u}(\mathbf{x}_k, t) - \mathbf{v}_k}{\tau_p}
\]
\[
S\varphi = -\frac{1}{V_{I(x,\delta)}} \sum_{\mathbf{x}_k \in I(x,\delta)} \frac{1}{\rho_{sat}} \frac{dm_k}{dt} = -\frac{4\pi \rho L}{\rho_{sat} V_{I(x,\delta)}} \sum_k R_k (\varphi(\mathbf{x}_k, t) - 1)
\]
Preliminary results – Particle movement

Flow

\[Re_\lambda \approx 50 \]
\[E_1/E_2 = 6.7 \]

Particles

\[N_p = 10^6, \ St = 2, \] collisions and coalescence
Preliminary results – Particle movement

Flow

\[Re_\lambda \approx 50 \]
\[E_1 / E_2 = 6.7 \]

Particles

\[N_p = 10^6, \; St = 2, \]
collisions and coalescence
Physical problem
Turbulent shearless mixings
The effect of the stratification
Appendix

The cloud-clear air interface
Proposed model
Preliminary results

Particle density

\[\langle n \rangle = \frac{t}{\tau} \]

- Shearless mixing, \(E_1/E_2 = 6.7 \)
- DNS \(Re_\lambda \approx 50 \)
- \(N_p = 10^6 \) particles
- collisions and coalescence
- \(St = 2 \)
Physical problem
Turbulent shearless mixings
The effect of the stratification
Appendix

Particle velocity

low energy
\(\frac{x_3}{L} = 1/4 \)

mixing
\(\frac{x_3}{L} = 1/2 \)

high energy
\(\frac{x_3}{L} = 3/4 \)
$P_{\geq k}(t) =$ fraction of particles which underwent at least k collisions

$-dN_p/dt =$ collision rate (exponent $m \approx 1.56$)
The underlying shearless flow

General flow configuration:

periodic boundary condition \Rightarrow 2 mixing layers
The underlying shearless flow

Shearless mixing layers show the following properties:

- no gradient of mean velocity, thus no kinetic energy production
- the mixing is generated by the inhomogeneity in the turbulent kinetic energy and integral scale
- the mixing layer becomes very intermittent at both large and small scales [Tordella-Iovieno *Phys.Rev.Lett.* 2011]
- the presence of a gradient of energy is a sufficient condition for the onset of intermittency [Tordella and Iovieno *JFM* 2006; Tordella et al. *Phys. Rev.* 2008]
- 2D and 3D mixings: different asymptotic layer thickness growth exponent
3D mixing: Self-similarity

\[\frac{E_1}{E_2} = 6.7, \ell_1 = \ell_2 \]

\[\Delta(t) \text{ is the conventional mixing layer thickness, } \Delta(t) \sim t^{0.46} \]
Large scale intermittency

\[S = \frac{\overline{u^3}}{\overline{u^2}^{3/2}} \]

\[K = \frac{\overline{u^4}}{\overline{u^2}^2} \]

\[u = \text{velocity component in the mixing direction} \]

\[S_{\text{max}}, K_{\text{max}} = \text{maximum of Skewness and Kurtosis in the mixing layer} \]

\[\eta_{\text{max}} = \text{normalized position of the maximum in the mixing layer} \]

(Figures: sample data from simulations with \(E_1/E_2 = 6.7, \ell_1 = \ell_1, Re_\lambda = 45 \))
We define the penetration as the position of the maximum of the skewness normalized over the mixing layer thickness: \(\eta = \frac{x_s(t)}{\Delta(t)} \)
Velocity derivative

\[Re_\lambda = 45 \]

\[Re_\lambda = 150 \]
Velocity derivative skewness

General behaviour

\[\xi = \frac{\partial u_i}{\partial x_i}, \; i = x, y_1 \text{ and } y_2 \]
\[(Re_\lambda = 150, \; t/\tau = 3.5) \]

Increase of fluid filaments compression in the energy gradient direction, reduction of fluid filaments compression in the other directions
Small scale anisotropy

Shear flows: large transversal skewness
Shearless mixings: strong differentiation of the longitudinal skewness

(1) Sreenivasan-Antonia

(2,3) Warhaft-Shen
• PRE 2008, PRL 2011, JoT 2014
The role of the integral scale inhomogeneity

Uniform kinetic energy, inhomogeneous scale

Physica D, 2012.
Energy gradient generation

Different decay exponents of the homogenous regions
⇒ generation of an energy gradient
Skewness vs. Kurtosis during the decay

![Graph showing skewness vs. kurtosis during decay](image-url)
Velocity derivative
Longitudinal derivative Skewness and Kurtosis

\[\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y} \]

\[S_{\partial u/\partial x}, S_{\partial u/\partial y} \]

\[\frac{\partial u/\partial x}{\partial v/\partial y} \]

\[K_{\partial u/\partial x}, K_{\partial u/\partial y} \]

\[\ell_1/\ell_2 = 1.5 \]
\[\ell_1/\ell_2 = 2.1 \]
\[\ell_1/\ell_2 = 2.8 \]
Velocity derivative

Longitudinal skewness vs. longitudinal kurtosis

Filled symbols $\partial u/\partial x$, empty symbols $\partial v/\partial y$
Conclusions - scale inhomogeneity

- different scales generate different decays and then an energy gradient concurrent to the scale gradient
- the transient lifetime of the kinetic energy gradient is almost proportional to the initial scale ratio
- intermittency in the interaction layer grows as the flow decays
- anisotropy and intermittency are, with a certain lag, spread also to small scales
- small scale anisotropy: strong differentiation of the longitudinal skewness but no transversal skewness
Passive scalar transport

Physical problem
- Turbulent shearless mixings
- The effect of the stratification

Appendix
- Velocity statistics
 - The role of the integral scale
 - Passive scalar transport

M. Iovieno, L. Gallana, M. Carbone, F. DeSanti, D. Tordella

UFS 2016
Passive scalar concentration

- $t/\tau = 1$
- $t/\tau = 5$
- $t/\tau = 10$

2D flow

Re$_{\lambda}$ = 150

Re$_{\lambda}$ = 250

J. Turb. 2014

M.Iovieno, L.Gallana, M.Carbone, F.DeSanti, D.Tordella

UFS 2016
Mean Scalar Diffusion

2D Mixing

3D Mixing

Energy ratio $E_1 / E_2 = 6.7$, Schmidt number = 1.
Scalar mixing layer thickness

2D Mixing

Scalar layer thickness: $\Delta \vartheta = x_{\vartheta=0.75} - x_{\vartheta=0.25}$

3D mixing: $\Delta \vartheta \sim t^{0.46}$, 2D mixing: $\Delta \vartheta \sim t^{0.7}$
Scalar variance and scalar flux

\[\frac{(x - x_c)}{\Delta \theta} \]

\[\frac{t}{\tau} \]

Scalar flow direction

Energy flow direction

M. Iovieno, L. Gallana, M. Carbone, F. DeSanti, D. Tordella

UFS 2016
Scalar intermitteny
Small scale intermittency

\[\frac{t}{\tau} \]

\[\frac{S_\theta / \partial x}{\left(x - x_c / \Delta \theta \right)} \]

\[\frac{K_\theta / \partial x}{\left(x - x_c / \Delta \theta \right)} \]

\[Re_1 = 150 \ 250 \]

\[t/\tau = 1 \ 5 \ 10 \ 12.5 \]

\[\text{energy flow} \]

\[\text{scalar flow} \]

\[\text{energy flow} \]
Scalar spectra

2D flow

3D flow ($Re_\lambda = 250$)
Scalar transport - Conclusions

2D/3D Passive scalar diffusion across an energy step

- all moments profiles are skewed towards the higher kinetic energy region
- self-similar profiles of first and second order moments
- large intermittency and non-gaussian behaviour on both sides of the mixing, even where the scalar flux is small.
- larger asymmetry in moment distributions in 2D mixing
- 2D: no stretching, inverse cascade, long-range interaction which penetrate more against the energy gradient
Mixing in presence of stratification

Temporal decay of a vapor-clear air interface

Computational domain: $L_z \approx 12 \text{ m}$
Initial vapor/clean air interface: $\Delta \theta \approx 0.3 \text{ m}$
Computational grid: $1024^2 \times 2048$

standard temperature lapse rate
$G_0 \approx 0.0065 \text{ K/m}$

Unstable Stable

$z \approx 1000 \text{ m}$

E₂ - Lower kinetic energy
E₁ - Higher kinetic energy

(unsaturated) water vapor concentration transported as passive scalar
Turbulence data (reference altitude 1000 m s.l.)

High energy region E_1: $u_{\text{rms}} = 0.2 \text{ m/s}$, $\ell = 0.3 \text{ m}$, $Re_\lambda \approx 250$

$E_1/E_2 \approx 6.7$, $Pr = 0.72$, $Sc = 0.61$

Parametric study on Initial Stratification

<table>
<thead>
<tr>
<th>$\nabla \theta$ [K/m]</th>
<th>$\Delta \theta$ [K]</th>
<th>N_{ic} [s$^{-1}$]</th>
<th>Fr_T^2</th>
<th>Re_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013</td>
<td>0.004</td>
<td>0.021</td>
<td>970</td>
<td>7</td>
</tr>
<tr>
<td>0.20</td>
<td>0.06</td>
<td>0.052</td>
<td>160</td>
<td>112</td>
</tr>
<tr>
<td>0.65</td>
<td>0.2</td>
<td>0.150</td>
<td>19</td>
<td>273</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>0.335</td>
<td>3</td>
<td>833</td>
</tr>
<tr>
<td>30.0</td>
<td>10.0</td>
<td>1.060</td>
<td>0.4</td>
<td>2635</td>
</tr>
<tr>
<td>-6.5</td>
<td>-0.2</td>
<td>/</td>
<td>-19</td>
<td>-273</td>
</tr>
<tr>
<td>-3.0</td>
<td>-1.0</td>
<td>/</td>
<td>-3</td>
<td>-833</td>
</tr>
</tbody>
</table>

$N_{ic} = \sqrt{\alpha g \frac{d\theta}{dx_3}}$ is the Brunt-Väisälä frequency

$Fr_T^2 = \frac{u'_{\text{rms}}^2}{N_{ic}^2 \ell^2}$ is the ratio between kinematic and buoyancy forces

$Re_b = \frac{\varepsilon N_{ic}^2}{\nu}$ is the ratio between diffusivity and buoyancy
Velocity and temperature variance $t/\tau = 6$

Stable cases
- Formation of a pit of kinetic energy (strong strat)
- Reduction of scalar fluctuation

Unstable cases
- Enhance of kinetic energy
- Mild reduction of scalar fluctuation

M. Iovieno, L. Gallana, M. Carbone, F. DeSanti, D. Tordella

UFS 2016
Flow structure

Vertical Velocity ($Fr = 1.8$, $t/\tau = 8$)

Run flow visualization
High order moments $t/\tau = 6$

Stable cases
- General reduction of intermittency
- Strong stratification produces two velocity intermittent sublayers

Unstable cases
- Increase of velocity intermittency
- Negligible effects on scalar
- No changes in behaviour
Creation of a pit of energy in the centre of the mixing:

- Presence of two opposite mean turbulent kinetic energy gradients
- Very low energy inside the pit (reduced transport)
- The pit onset and intensity depend on the stratification level
Pit of kinetic energy

Creation of a pit of energy in the centre of the mixing:

- Presence of two opposite mean turbulent kinetic energy gradients
- Very low energy inside the pit (reduced transport)
- The pit onset and intensity depend on the stratification level

\[
Fr = 1.8
\]

\[
\frac{t/\tau}{\approx 1.0}
\]

\[
\frac{t/\tau}{\approx 2.0}
\]

\[
\frac{t/\tau}{\approx 4.0}
\]

\[
\frac{t/\tau}{\approx 6.0}
\]

\[
\frac{t/\tau}{\approx 8.0}
\]

\[
\frac{x_3}{L_3}
\]

\[
\frac{E_p}{E_m}
\]

\[
1 + 0.008(t/\tau)^{1.74}
\]

\[
1 + 0.013(t/\tau - 1.5)^{1.42}
\]
Instability growth factor

\[Fr^2 = -19 \]

Growth factor

- Growth given by the ratio respect to the unstratified case
- \(\zeta = \frac{E_{Fr^2 = -3}}{E_{Fr = 31}} - 1 \)
- Instability effects becomes relevant after \(t = 2\tau \)
- The instability exponent is equal to 1.532

Computed values
Exponential fit \(\zeta = 0.7(t/\tau)^{1.532} \)
Dissipation

\[Fr = 1.8 \]

Dissipation rate

- \(\varepsilon \) turbulence dissipation rate
 \[\varepsilon = \frac{1}{2} \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]

- In the energy pit the dissipation is higher than its isotropic value \(E^{3/2} / \ell \) (about 30%)

- Self-similarity in PDFs regardless of vertical position
Dissipation

\[F r^2 = -19 \]

Dissipation rate

- \(\varepsilon \) turbulence dissipation rate
 \[\varepsilon = \frac{1}{2} \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]
- Dissipation remains almost constant inside and outside the mixing region
- Self-similarity in PDFs regardless of vertical position
Entrainment

Entrainment of dry air over time

\[w_e = \frac{d\zeta(\theta=0.25)}{dt} \]

- \(w_e \) is the vertical velocity of the water vapor front \(x_{3,1} \) (where mean vapor concentration is 25% of the maximum)
- Exponential decay for weak stratification
- Faster damping for strong stratification
- Slower damping for unstable stratification

Entrainment velocity

- \(Fr = 12.7 \)
- \(Fr = 4.4 \)
- \(Fr = 1.8 \)
- \(Fr = 0.6 \)
- \(Fr^2 = -19 \)
- \(Fr^2 = -3 \)
Mixing layer thickness

\[\Delta \chi = x_{3,1} - x_{3,2} \]

- \(x_{3,1} \) is the water vapor front (where \(\langle \chi \rangle = 0.25 \))
- \(x_{3,2} \) is the clear air front (where \(\langle \chi \rangle = 0.75 \))
- Thickening stops on pit onset with mild transient for stable cases
- Overgrowth for unstable cases
Mixing layer thickness

Thickness of the vapor layer

- $\Delta \chi = x_{3,1} - x_{3,2}$
- $x_{3,1}$ is the water vapor front (where $\langle \chi \rangle = 0.25$)
- $x_{3,2}$ is the clear air front (where $\langle \chi \rangle = 0.75$)
- Thickening stops on pit onset with mild transient for stable cases
- Overgrowth for unstable cases
Conclusions - stable stratification

- Horizontally layered structure characterized by a low kinetic energy sublayer in case of local, stable, intense stratification (pit of energy)
- The pit of energy acts as a barrier and blocks entrainment
- Two highly intermittent regions with opposite local kinetic energy gradient
- This situation strongly reduces the entrainment of dry air

Conclusion - unstable stratification

- Exponential growth of the energy in the mixing region respect to the external region.
- Greater intermittency in the mixing layer
- Enhancing of the entrainment after an initial transient (when buoyancy forces overcome inertial forces)
- Faster thickening of the mixing layer
- No relevant differences in dissipation respect to unstratified cases
Dissipation

\[
\frac{\epsilon}{\langle \epsilon \rangle} \cdot \text{PDF}(\epsilon)
\]

\(Fr = 1.8 \)

- Pit
- High energy
- Low energy
- Main gradient
- Secondary gradient
• Thickening stops at the pit onset
• Milder transient for advected scalars
• Reduction for energy due to the enlargement of the pit width
 (vertical kinetic energy flux makes the gradient increasingly steeper)
A posteriori estimate of the velocity divergence following Durran (JFM 2007): \(-\partial_z \bar{\rho} u_z / \bar{\rho} = \nabla \cdot \mathbf{u}\)
Possible models

Mellado-Stevens *J. Atm. Sci.* 2014

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\frac{D\mathbf{u}}{Dt} = -\nabla \frac{p}{\rho_a} + \nu \nabla^2 \mathbf{u} - b(g/g)
\]

\[
\frac{D\chi}{Dt} = \kappa \nabla^2 \chi, \quad b = b(\chi)
\]

\(\chi = \text{mixture fraction, } b = \text{buoyancy}\)

Umid air:

\[
\nabla \cdot \mathbf{u} = 0 \tag{1}
\]

\[
\frac{Du}{Dt} = -\nabla \frac{p}{\rho_a} + \nu \nabla^2 \mathbf{u} + f \tag{2}
\]

\[
\frac{D\chi}{Dt} = \kappa \nabla^2 \chi - \dot{C}_{\text{cond}}, \quad \chi = \frac{\rho_v}{\rho_a} \tag{3}
\]

Water droplets:

\[
\frac{D^2 X_\beta}{Dt^2} = \frac{1}{\tau_\beta} \left[\mathbf{u}(X_\beta, t) - \dot{X}_\beta \right] + g \quad \forall \beta = 1 \ldots N_p \tag{4}
\]

\[
r_\beta \frac{Dr_\beta}{Dt} = K (\varphi - 1), \quad \dot{C}_{\text{cond}} \propto \sum_{\beta \in \Delta} (\varphi(X_\beta, t) - 1) r_\beta \tag{5}
\]

- no energy equation (temperature) and no stratification;
- necessity to follow a huge number of particles;
- droplet collisions?
Lalas-Einaudi *J.Appl.Meteor.* 1973

Three phases system: ρ_d, ρ_v, ρ_w “density” of dry air, vapour and water droplet phases

$$\partial_t \rho_k + \partial_j (u_j^{(k)} \rho_k) = \Gamma_k \quad \forall k$$

(6)

Γ_k = phase change rates, $(\Gamma_w = \Gamma, \Gamma_v = -\Gamma, \Gamma_d = 0)$

$$(\rho_d + \rho_v) D_t u = -\partial_i (p_d + p_v) + (\rho_d + \rho_v) g + (\theta_d + \theta_v) + \Gamma (u - v) / 2$$

(7)

$$\rho_w D_t v = \rho_w g + \theta_w + \Gamma (u - v) / 2$$

(8)

$u = \text{fluid velocity}, \ v = \text{water droplet phase velocity}$

$$(\rho_d c_d + \rho_v c_v) D_t T = -(p_d + p_v) \nabla \cdot u + \Phi_d + \Phi_v + \nabla (\theta_d + \theta_v) \cdot (u - v) + \Gamma (c_v (T_w - T + L_v)$$

(9)

$$\rho_w D_t T_w = \Phi_w + \Phi_v + \Gamma |u - v|^2 / 8 - \Gamma L_v$$

(10)

atmosphere must be saturated at all heights at all times, otherwise T_w, ρ_w and p_w are not defined (different set of equations for undersaturated air!)
CSU-GCM model, e.g. Fowler at al. *J.Climate* 1996

$q_v, q_c, q_i = $ water vapour, cloud water and cloud ice content

$$\frac{\partial \pi^* q}{\partial t} + \nabla \cdot (\pi^* u q) + \frac{\partial}{\partial \sigma} (\pi^* u_y q) = \text{source terms} \quad \forall q$$

where $\sigma =$ stretched vertical coordinate (with the pressure), π^* pressure scale (used in σ definition)

$$\frac{\partial \pi^* \theta}{\partial t} + \nabla \cdot (\pi^* u \theta) + \frac{\partial}{\partial \sigma} (\pi^* u_y \theta) = \text{source terms}$$

$\theta =$ potential temperature

used in general circulation models; many modelled terms which account for many microphysical processes (including phase changes)!
Physical problem

Turbulent shearless mixings

The effect of the stratification

Appendix

Mixing layer thickness

Other ideas

Physical Problem

Turbulent shearless mixings

The effect of the stratification

Appendix

Mixing layer thickness

Other ideas

Biona, Druilhet, Benech and Lyra **2001**

Lothon M, Lenschow D H and Mayor S D **2009**

Radkevich, Lovejoy, Strawbridge, Schertzer and Lilley **2008**

Graph: Logarithmic Plot

- **Logarithmic Scale:**
 - $\log_{10}(E [m^3 s^{-2}])$ for $-4 \leq E \leq 2$
 - $\log_{10}(\kappa_z [m^{-1}])$ for $-5 \leq \kappa_z \leq -0.5$

- **Data Points:**
 - **Biona**
 - [elevation 1.3 ÷ 22 m]
 - **Katul**
 - (pineforest) [elevation 30 m]
 - **Katul**
 - (hardwood) [elevation 50 m]
 - **Lothon**
 - (lidar measurement) [altitude s.l. 1÷1.5 km]
 - **Radkevich**
 - (cirrus lidar measurement) [altitude s.l. 8 km]
 - **Radkevich**
 - (aerosol lidar measurement) [altitude s.l. 5 km]
 - **Present work** [altitude 1 km]

Legend:

- **Green Line:** Biona
- **Red Dashed Line:** Katul (pineforest)
- **Red Dotted Line:** Katul (hardwood)
- **Blue Dashed Line:** Lothon (lidar measurement)
- **Pink Dotted Line:** Radkevich (cirrus lidar measurement)
- **Pink Dashed Line:** Radkevich (aerosol lidar measurement)
- **Black Solid Line:** Present work

Label: Range simulated around the cloud - clear air interface
Energy spectra exponent

$Fr = 12.7$

$Fr = 1.8$

Creation of a pit of energy in the centre of the mixing:

- Exponent evaluated in inertial range
- Very low energy inside the pit (reduced transport)
- The pit onset and intensity depend on the stratification level