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Preface

Fluid and plasma turbulence is ubiquitous in nature, at all scales from cof-
fee cup to universe. Two-dimensional turbulence has the special distinction
that it is nowhere realized in nature or the laboratory but only in computer
simulations. Its importance is two-fold: first, that it idealizes geophysical
phenomena in the atmosphere, oceans and magnetosphere and provides a
starting point for modeling these phenomena second, that it presents some
special and interesting phenomena.

For these reasons we decided to perform two numerical experiments on
flat turbulence. The first is the analysis of a energy transport and will lead
us to estimate the main differences between the bi- and three-dimensional
case. We also want to analyze the intermittency of these motions and try to
estimate the time take to loose the memory of the initial condition.
Secondly, we considered the vorticity field as a vertical section of an atmo-
spheric and/or oceanic flow. We then added the effect of stratification on
mixing and attempted to conduct the same type of analysis, achieving results
very interesting.

This text is organized as follows. The next chapter summarizes the find-

ings and the main features of classical turbulence. In the second chapter,
two-dimensional turbulence is introduced with its main phenomena, such as
the inverse cascade of energy. Chapter 3 instead presents the first numerical
experiment and the results obtained from it.
The fourth chapter introduces the second part of the study and summarizes
the theoretical aspects related to the stratified flows. The numerical exper-
iment on them is described and analyzed in Chapter 5. Finally, in the last
chapter are collected the main results obtained in this study.

The entire study was conducted in collaboration with James Riley and
Oscar Flores of the University of Washington (Seattle). I take this opportu-
nity to thank them for their help and suggestions they have given me. I also
thanks Jost von Hardemberg (ISAC CNR) for giving me the opportunity to
use and modify the code he wrote
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Chapter 1

Introduction to turbulence

Turbulence is a omnipresent phenomenon of Nature. In our everyday life, we
either rarely notice it when swimming, driving a car, riding a bike, skating,
or suddenly pay serious attention to it, when the ride gets bumpy on board
a plane on stormy weather or when flying over tall mountains.
Actually, the diversity of situations where we discover turbulence as an im-
portant scientific phenomenon is impressive: flow around ships and aircrafts,
combustion in car engines and plane turbines, flow in the ocean, atmosphere,
air flow in lungs, flow of blood in arteries and heart, flow in pipelines, even
the dynamics of the financial markets can also be viewed as analogous to
turbulent flows.
The entire Universe appears to be in a state of turbulent motion, and turbu-
lence seems to be a decisive factor helping in the formation of stars and solar
systems, as indicated by astronomical observations and theoretical consider-
ations in astrophysics.
From the large variety of situations mentioned above, many of them are cases
in which turbulence is attractive from the point of view of the engineer, since
studying it leads to technological improvement. It is more fruitful then to
model regions where the turbulent flows interact with boundaries, and then
learn how to control and apply them.
For the physicist, the interesting part is how the small-scale structure of tur-
bulence is organized, preferably isolated from any boundary effects. This
is where universal aspects can be sought, in the sense that they should be
independent of the nature of the fluid or the geometry of the problem. It is
universality that makes turbulence an exciting research subject for physicists
and mathematicians.

Skipping over the dictionary definition, which does not suffice to char-
acterize the modern physical sense of the word, we stop at the definition
given in 1937 by Taylor and Von Karman: “Turbulence is an irregular mo-



tion which in general makes its appearance in fluids, gaseous or liquid, when
they flow past solid surfaces or even when neighboring streams of the same
fluid past or over one another”.

To make this more clear, we need to use the terminology of fluid dynamics.
Flows of gases and liquids can be divided into two very different types: “lam-
inar” flows, which are smooth and regular, and “turbulent”, totally opposite,
in which physical quantities as velocity, temperature, pressure, etc. fluctuate
in a sharp and irregular manner in space and time, the latter being actually
the more natural state of a flow.

In the following section will discuss briefly the history of turbulence from
Leonardo to Kolmogorov. In the second section we will provide a brief
overview of the motion equation. Finally in the last section we will talk
about the statistical description of turbulence, particularly concerning the
phenomenon of intermittency.

1.1 History of turbulence

It appears that Leonardo Da Vinci was probably the first to distinguish this
special state of the fluid motion and use the term “turbulence”.

Modern turbulence started with the experiments of Osborne Reynolds in
1883, who analyzed the conditions under which laminar flows of fluids in
pipes become turbulent. The study led to a criterion of dynamical stability
based on the “Reynolds number”:
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Re (1.1)
where U and L are the characteristic velocity and length scales of the flow
and v is the kinematic viscosity.

The Reynolds number may be interpreted as the ratio of inertial to viscous
forces present in the fluid, and for an incompressible flow, it is the only con-
trol parameter of that system.

Intuitively, as Frisch points out in his book on turbulence [3], its value can
also be seen as an indicator for the degree of symmetry of the flow. This can
easily be imagined in the experimental situation of a flow past a cylinder. For
values of the Reynolds number departing from 1, visualizations of the flow
show a gradual increase of the degree of asymmetry in the flow surrounding
the obstacle, before and after it.

Based on the technological interest raised by the remarkable momentum
transfer properties of the large scales of turbulence, experiments in the begin-
ning of the 20th century led to decisive advances in the theory of turbulence.



Representative of this time are the so-called semi-empirical approaches made
by great fluid-dynamicists, such as G. Taylor, L. Prandtl and T. Von Karméan
in the 1920s and '30s, which were used to solve important practical problems.
In a remarkable paper, Lewis Fry Richardson advanced in 1922 the assump-
tion that turbulence is organized as an hierarchy of eddies of various scales,
each generation borrowing energy from its immediately larger neighbor in a
“cascade” process of eddy-breakdown [11]. This picture, though more appro-
priate in wavenumber space, was poetically immortalized in his book inspired
from observation of clouds and the verses of Jonathan Swift: “Big whorls
have little whorls, which feed on their velocity; and little whorls have lesser
whorls, and so on to viscosity (in the molecular sense)”

This era culminated with the now fundamental ideas of Andrei Nikolaevich
Kolmogorov in the “theory of locally isotropic turbulence” (1941) [7]. In-
spired by Richardson’s energy cascade description, he assumed that with
each step in the energy transfer towards smaller scales, the anisotropic in-
fluence of the large scales will gradually be lost, such that at sufficiently
small scales the flow will be statistically homogeneous and isotropic. This
steady situation, characterized by a mean flux of energy (e), was postulated
by Kolmogorov to be universal and determined by only one parameter, (e).
Moving further down the scales, there comes a length-scale where the flow
gradients are so large that viscous effects can no longer be ignored. The scale
is determined (in a dimensional argument) from the viscosity v and (e):

We introduce below the famous self-similarity hypotheses in their original
form (according to Hinze [5]):

e (a)At sufficiently large Reynolds numbers there is a range of high wave-
numbersv(inertial-range) where the turbulence is statistically in equi-
librium and uniquely determined by the parameters (e) and v. This
state of equilibrium is universal.

e (b)If the Reynolds number is infinitely large, the energy spectrum in
the inertial range is independent of v and solely determined by the
parameter (e).



1.2 The nature of the turbulence

The equations that govern turbulence are essentially a form of Newton’s law
for the motion of a fluid that is forced, at large scales, and affected by viscous
dissipation, at small-scales:

Du ou
Dt~ ot
Here the vector u = u(x, t) denotes the velocity field at position x at moment
t, p = p(x,t) the pressure, F=F( x, t) the forcing, p is the density and p is
the kinematic viscosity.
This equation is known as the Navier-Stokes equation (N-SE), after the
physicists who added the viscous term pAu, C.L.M.H. Navier in 1827 and
G.G.Stokes in 1845. Through this term, the kinetic energy is no longer con-
served, but lost to heat.
The Navier-Stokes equation is a continuum equation.
Later on we will learn that in three-dimensional turbulence fluid motion oc-
curs on smaller and smaller scales if the Reynolds number increases. Still,
it can be proven that these scales will never be so small that the scale of
molecular graininess of of the fluid is reached. Remarkably, the argument
proving this rests intimately on the Kolmogorov scaling hypotheses of tur-
bulence. The flow velocities we consider are much smaller than the velocity
of sound, which gives the incompressibility condition:

V-u=0 (1.4)

Given an initial state of the flow field, together with the prescription of the
velocity at the boundaries, the N-SE suggests that the evolving field u(x, t >
0) is deterministic. However, we are uncertain about the uniqueness of the
solution and therefore cannot characterize the phenomenon of turbulence
as deterministic chaos. Moreover, the number of degrees of freedom of a
turbulent flow is extremely large, which warrants a statistical rather than a
deterministic description.

Furthermore, we can bring the complexity of turbulence in three main:

+pu-Vu=-Vp+pAu+F (1.3)

8ui
e Nonlinearity - the term Ujm— in the N-SE
Ly

e Existence and smoothness of solutions at all time

e Non-locality - to determine the local fields one has to integrate over
the entire space.

A more rewarding approach to deal with the extreme complexity of turbu-
lence is a statistical description.



1.3 Statistical approach and phenomenology

In principle, the phenomenology of turbulence is characterized by simple
statistical quantities, such as averages, probability distribution functions,
spectra, correlations, etc., which are calculated from data experimentally
measured or from direct computer simulations. In general, the term “averag-
ing” is never equivalent to a proper ensemble average (over all possible states
of the system), but ergodicity is invoked to replace it by time-averaging or
mixed time and limited spatial averaging. These tools are sufficient to reveal
some of the most important universal features of turbulence.

1.3.1 Small-scales of turbulence and universality

While turbulence at large Reynolds numbers consists of a wide range of
dynamical scales that contain its energy, they are bounded naturally by a
largest scale at which turbulence is stirred, and a smallest scale n, defined in
1.2, where most of the energy is dissipated. By small scales we will under-
stand the dissipative range close to n and the inertial range postulated by the
first Kolmogorov hypothesis (a). Phenomenological studies of turbulence are
mostly aimed at the study of the small scales, since it is here that universal
properties of turbulence are seen, and their characterization is considered
important for the “turbulence problem”.

The second hypothesis of Kolmogorov (b) implies that small-scale turbulence
is isotropic and homogeneous at sufficiently large Reynolds numbers, and its
statistics will be determined only by the average dissipation rate

(e) = ;<<§§j+ gzj>2> (1.5)

where v is the flow viscosity. If we consider the histogram of the fluctuations

of normalized velocity increments over a small-scale separation Au(x)/(x (e))'/3,
it follows then from (b) that this statistical quantity should be universal, i.e.
independent of the flow, Reynolds number or x. We will see next how the
Kolmogorov prediction is reflected and can be quantized using simple statis-
tical tools.

1.3.2 Structure function and intermittency

One of the most common statistical quantities used in the phenomenology
of turbulence is the structure function. We define the structure function of



order p to be

+oo
Sp(r) = (Au(x)") = / P(A(w))A(u)’d(Au) (1.6)
where Au are the velocity increments and P(Auw) is their probability distibu-
tion function. The postulated universality of the normalized PAu/(z (e))'/3
implies that structure functions exhibit scaling behavior for high Reynolds
numbers

Splx) = Cpl ()" (1.7)

when the separations x are within the inertial range, with C), universal con-
stants.

The values of the scaling exponents ¢, = p/3 follow from the postulate.
The equivalent form of the above relation for order p = 2 gives the well-known
scaling law for the energy spectrum

E(k) = C (e)*? 5/ (1.8)

The only known exact relation for structure functions can be derived directly
from the Navier-Stokes equations, namely the Kolmogorov 4/5 law

SHx) = = () x (L9)

For high orders p > 4, it is well-known the that scaling exponents ¢, devi-
ate from the Kolmogorov dimensional prediction, that is ¢, < p/3. These
deviations are known as anomalous scaling and imply that the form of the
probability distributions P(A(u) will vary inside the inertial range, such that
with the decrease of the scale towards the dissipative range, their ‘tails’” will
be increasingly flared out.

This phenomenon is called intermittency and the anomalous scaling is a
measure of it, since higher orders emphasize increasingly larger velocity ex-
cursions Au(x).

To account for intermittency, the refined (RSH) versions of the self-similarity
hypotheses were proposed by Kolmogorov (1962) [8], which incorporated the
suggestion of Obukov that the mean energy dissipation rate exhibits strongly
non-Gaussian fluctuations. In the case of anomalous scaling, one defines a
local mean dissipation rate

ex(x,) = / edV (1.10)

such that its own scaling exponent

(e )P ~ 1™ (1.11)
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will contribute to the new scaling
(AuP(x)) = C’]’D((ez> X)p/3 (1.12)

which exponents
G=p/3+T7, (1.13)

Implicitly, the constants C}, lose their universality (the famous “Landau ob-
jection”, originally formulated in 1944 [10]). The failure of the Kolmogorov
theory to explain the anomalous scaling does not stop here however. Continu-
ous improvement of experiments on intermittency brings increasing evidence
that a description of turbulence beyond the Kolmogorov formulation, which
dominated the turbulent research for more than half a century, is acutely
needed.

A number of intermittency models were proposed, which attempt to explain
in particular the anomalous scaling exponents. The most popular model to
explain the anomalous scaling exponents is the multifractal model of Frisch
(1985[4]).

10



Chapter 2

Two-Dimensional Turbulence

Probably the most common statement made about two-dimensional turbu-
lence is that it does not exist. While factually correct, it rather misses the
point. There are many flows whose large scale behavior is, in some sense,
two dimensional. Large-scale atmospheric and oceanic flows fall into this
category, if only because of the thinness of the atmosphere and oceans in
comparison with their lateral dimensions. Moreover, both rapid rotation
and strong stratification tend to promote two-dimensional flows through the
propagation of internal waves, and, of course, strong magnetic fields promote
two-dimensionality. While no flow will ever been truly two-dimensional, it
seems worthwhile to examine the dynamics of strictly two-dimensional mo-
tion in the hope that it sheds light on certain aspects of real, almost’ two-
dimensional phenomena.

In moving from three- to two-dimensions we greatly simplify the equa-

tions. Most importantly, we throw out vortex stretching. One might ex-
pect, therefore, that two-dimensional turbulence should be much simpler
than isotropic turbulence. Mathematically, this is correct, as it must be.
Curiously though, the physical characteristics of two dimensional turbulence
are, in many ways, more counter-intuitive than conventional turbulence. At
least, this is the case for one brought up in the traditions of Richardson and
Kolmogorov. For example, in two dimensions, there is an inverse cascade of
energy, from the small to the large, as small vortices merge to from larger
one.
In the next section we will see the major differences between two- and three-
dimensional turbulence. In the second one we will give a phenomenological
description of the evolution of two-dimensional turbulence. In the last sec-
tion we will mention the main results obtained so far on the energy spectrum
and will explain the inverse cascade phenomenon in a more rigorous way.
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2.1 First comparison between two- and three-
dimensional turbulence

There is in general agreement that all the flow proprieties of Newtonian fluids
in two (2D) or three (3D) dimensions are encompassed in the N-SE for the
velocity (equation 1.3), if we assumed that the flow is incompressible. The
different between 2D and 3D flows is not apparent from this equation but
becomes so on taking its curl to obtain an equation for the vorticity w = Vxu
in an incompressible framework. For each component, ¢, of w and u

Dwi
Dt

= (w- V)ui + vAw; (2.1)

Consider the special case where, at a certain instant of time, w = (0,0, w,),
with the viscous damping term being small. Then

Dw, ou,

Dt~ oz

If Ou,/0z > 0, w, will momentarily commence growing at an exponential
rate. Clearly the vorticity is not a conserved quantity in 3D; it can mag-
nified by appropriately oriented velocity gradient. As an example, imagine
water circulating as it flows downward trough a funnel. By conservation of
the angular momentum, the flow will pick up angular speed as it proceeds
downward trough the concentration, so that the magnitude of the vorticity is
increased in the direction of the velocity gradient. This amplification effect
is called vortex stretching.

Vortex stretching is at the core of the description of the turbulence en-
ergy cascade from the large scales to small scales in turbulence. In general,
in turbulence fluid elements are more lengthened than squeezed, on average.
In the end, this results in more vortex stretching than vortex squeezing. For
incompressible flow, due to volume conservation of the fluid elements, the
lengthening implies thinning of the fluid elements in the directions perpen-
dicular to the stretching directions. this reduce the radial length scale of the
associated vorticity. Finally, at the scales of the order of the Kolmogorov
micro scales, the turbulence kinetic energy is dissipated into heat through
the action of the molecular viscosity.

Also in this simplified framework, it highlights another fundamental prop-
erty of the vorticity dynamics in 3D.

We hypothesized that for a given instant vorticity exists only in one direction,
ie w, = wy, = 0and w, # 0. Since we are considering a three-dimensional flow,

12



generally may exist du,/0z and Ou,/0z nonzero. By the vorticity equation
we have
Dw, Oy Dw, Ou,,
=Ww,— =Ww,—
Dt 0z Dt 0z
This means that in the instant immediately following this one, there is
nonzero component of velocity in all directions. This phenomenon is called
the spontaneous three-dimensionalization of the field.

In three dimensional turbulence vortex stretching and the spontaneous
three-dimensionalization of the field are two important dynamical effects,
which causes the emergence of filamentary vortex tube, as those shown in
figure 2.1. These vortices seems to be the dominant flow structures in fully
developed, homogeneous and isotropic turbulence.

Figure 2.1: An example of three dimensional turbulence

This phenomenas are absent in two dimensions, because the velocity gra-
dient is always perpendicular to the vorticity, which is necessarily perpendic-
ular to the plane of the motion. Hence the first term on the right in equation
2.1 is absent, assuring that for an inviscid flow if forcing is absent, we have

Dw

—Z_0
Dt

Of course, w(x,t) can change locally, but it mean value averaged over a

sample area A
1
Z = 1 /A wid*r
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is a constant of the motion, as are all other vorticity moments. This quantity
is called the enstrophy.

In other words, in two dimensional turbulence there is an additional impor-
tant constant of motion: the enstrophy. The enstrophy constant leads to
equilibrium in which a large fraction of the energy is condensed into the
largest spatial scales of motion.

In conclusion, what distinguishes it most from 3D turbulence is the conser-
vation of vorticity along fluid particle path when viscosity and forcing are
ignored. As a consequence enstrophy cannot increase under the sole action
of non linearity.

2.2 Vortex interaction

The phenomenology of turbulence, in three or two dimensions, is usually
phrased in therms of eddies. An eddy itself is not a well defined object,
thought there have been many recent attempts using wavelet to better de-
fine the concept.

Loosely speaking it is a region in a fluid that is behaving coherently. The
extent of an eddy is dictated by boundaries within which an arbitrary deter-
mination is made some sort of structure exist. Thus an eddy can be a single
large region of rotation, such as the whirlpool which forms above a bathroom
drain. Or an eddy can be a large region containing many smaller eddies which
are interacting with one another while behaving distinctly (again by an ar-
bitrary determination) from other neighboring cluster of eddies.

Two important properties that are associated with an eddy are size and en-
ergy. These two properties allow predictions about energy motion in fluids
to be made if some knowledge of how eddies interact in the system is known.

In 2D flows, one way in which eddies (which assume the more familiar
label “vortices”) interact which each other is through a process known as
vortex cannibalization. A cannibalization event is when two neighboring
eddies of like rotational sense merge to form a single larger eddy. When
cannibalization occurs energy flows out to the length scales of the initial
eddies and into the length scale of the final eddy. “When a number of vortices
having the same sense of rotation exist in proximity to one another, they tend
to approach one another, and to amalgamate into intense vortex”(Aryton,
1919).

In a 2D turbulent flow, many eddies are generally created at a small length
scale called the energy injection scale, r4,;. The expectation is that through
interaction by cannibalization these small eddies cluster and merge into larger
eddies. These larger eddies are also expected to cluster and merge to form

14



even larger eddies and so on. This means that energy, initially injected
into the turbulence at the length scales 74,; should gradually be moved by
consecutive cannibalization events to larger length scales. In figure 2.2 we
show the scheme of the eddy cannibalization.

OO0 CCO oo OO0 COC O OC & inecionlength scale
@ @ @ @ @ @ Energy flux

Figure 2.2: The scheme of the eddy cannibalization in 2D turbulence

This type of energy motion constitutes an inverse energy cascade.
Presumably each eddy is itself formed by the clustering of smaller eddies,
which in run in turn are formed by even smaller eddies. As long as the
eddies at the very smallest scale, the injection scale, are being continuously
created to replenish those which are cannibalized, the inverse cascade range
is scale-invariant. That is to say that no length scale in the inverse cascade
range can be distinguished from any other length scale that is also in the
range. Scale invariance is exceedingly important from a theoretical stand
point. The assumption of scale invariance of fields, such as the probability
of velocity difference on a length scale r, allow important prediction about
turbulent to be made.

Before discussing locality, a delicate point must be made. if the eddies
at the injection length scale are not being continuously replenished then the
number of eddies at the smallest scales gradually begins to decrease as more
and more eddies are lost to cannibalization events. To maintain an inverse
cascade range, then, the turbulence has to be continuously forced. That
is, eddies must be continuously created at the energy injection scale. If the
turbulence is not forced then the cascade range will eventually consume itself
from small scale up, ultimately leading to a state which describes as a diffuse
gas of large individual eddies (eddies not made of clusters of smaller eddies).
The term coarsening is used to describe decaying 2D turbulence behavior in
order to distinguish it from the inverse energy cascade.

The second property assumed to hold in the inverse cascade is locality
of interaction. This property refers to constraints on the manner i which
eddies interact. If an eddy of very small size is close to, or embedded in,
an eddy of exceedingly large size, the small eddy will merely be swept along
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by the large and not strongly deformed. Likewise the large eddy will be not
significantly effected by it’s small companion. Since neither of the eddies is
strongly deformed, the cannibalization process is expected to happen over a
long period of time. On the other hand, two neighboring eddies of similar
size interact and deform one another strongly, and thus the cannibalization
process happens swiftly. Energy transfer by cannibalization is therefore most
efficient when occurring between similarly size length scales, this is what
meant by locality. Due to locality, the kinetic energy at small scales in
the inverse cascade is expected to be moved to large scales in a continuous
manner, stepping through the intervening length scales by local interactions
rather than making large lenght scale jumps by the merger of a small and
large eddy. Hence the term cascade.

The picture of 2D turbulence and it’s inverse cascade is now almost com-

plete. Energy is continually injected into a flow in the form of small eddies.
These small eddies cluster to form large eddies moving energy to larger scales.
In turn the eddy clusters themselves cluster to form larger clusters of eddy
clusters, etcetera. In this etcetera that is the concern. At what point does
the vortex merger process and growth of larger and larger eddies stop? That
is, how is the energy injected into a 2D turbulent thermostated?
Consider first the thermostating mechanism in 3D turbulence. In 3D turbu-
lence there exists a direct energy cascade: energy is moved from large to small
scales by eddy stretching. Eventually, through continuous vortex stretching,
a smallest eddy scale is reached, at which point the kinetic energy contained
in these small eddies is dissipated into heat by the fluids internal viscosity.
all of the energy that in injected into the large length scales of a 3D turbulent
flow is eventually exhausted by viscosity at the small length scale.

Internal viscosity is a short range force, only becoming a good thermostat
when the kinetic energy reaches small length scales. Thermostating in not a
issue in 3D where the direct cascade takes energy down to such small scales.
In 2D, however, the inverse cascade moves energy in the flow would continue
to build up as larger and larger eddies form. What is needed to maintain 2D
forced turbulence in a steady state and stop the inverse cascade process in
some sort of external dissipation mechanism which is an effective thermostat
at large length scales. In other words, some sort of dissipation mechanism
that is not internal to the fluid itself must exist to take energy out of large
length scales and dictate the largest size eddies that can be formed by the
cascade.

Fortunately, 2D experiments are almost always coupled to the surround-
ing 3D environment by frictional forces. In these experiments this external
frictional force provide the turbulence with an effective large scale thermo-
stat and sets the largest length scales which can be reached by the inverse
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cascade process. The inclusion of an external thermostat completes this phe-
nomenological description of the inverse energy cascade.

Figure 2.3 shows an example of two dimensional turbulence in which we can
abserve the processes just discussed.

Figure 2.3: Time evolution of a two dimensional turbulence that shows the
cannibalization process

2.3 Batcherol’s self similar spectrum and the
inverse energy cascade

We shall restrict ourself to strictly two-dimensional turbulence, u = (ux, uy, 0)
and w = (0,0,w), and to turbulence which is homogeneous ans isotropic. We
shall ignore all body force, and address the problem of freely evolving turbu-
lence.

We define the characteristic velocity u though u? = (u2) = <u§> All existing
phenomenological theories are based on the two equations

7500 =) 22

dl1l,, )
° [2@, >] = (V) (2.3)
This state that the kinetic energy density, 1/2 (u?), and the enstrophy, (w?),

both decline monotonically in freely evolving two-dimensional turbulence.
The first of these relationships comes from taking the product of u with
Du

1
E:—;Vp—l/wa
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which yields

3[2]--< 2] 4w

We now average this equation, nothing that an ensemble average is equivalent
to a spatial average (for the ergodic theorem, see Halmos 1956), and the sta-
tistical homogeneity of the turbulence ensures that all divergences integrate
to zero. The end result is 2.2. Similarly, starting with

D
?CZZI/AW

from which

Dt\ 2

we obtain, on forming a spatial average, 2.3.

Now the key point about this two relationship is that, as Re — oo, u? is
conserved, since the enstrophy remain finite and bounded by its initial value.
This is in stark contrast to three dimensional turbulence, where a decline
in v in accompanied by a rise in (w?) in such a way that the dissipation of
kinetic energy remains finite (of order u3/l) as Re — oo. This conservation
of energy in 2D turbulence implies a long-lived evolution for these flows.

In the limit Re — oo diffusion becomes small, except at the smaller scales,
and so the isovortical lines become material lines, and are continually teased
out as the flow evolves so that the vorticity field rapidly adopts the structure
of thin, sinuous sheets, like cream stirred into coffee. This filamentation
of vorticity feeds an enstrophy cascade, lumps of vorticity are teased out of
smaller and smaller scales, which is halted at small enough for viscosity to act,
destroying the enstrophy and diffusing the vorticity. As in three dimensions,
viscosity plays a passive role, mopping up the enstrophy which has cascaded
down from above. The dynamics are controlled by the large scales, and even
as v — oo the destruction of enstrophy remain finite.

This passive role of viscosity led G. K. Batchelor to propose a self similar
distribution of energy for the large and intermediate scales. In terms of veloc-
ity increments Awu, which represent the r.m.s (root mean square) difference
in velocity between two points separated by a distance r, this self-similar
energy spectrum takes the form

D () o [(wor - 9o

Au(r)? = g () (2.4)

ut

The argument behind 2.4 is essentially a dimensional one. If the turbulence
has evolved long enough for the influence of the initial conditions to be erased,
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and viscosity controls only the smallest scales, then all that the large scale
remember is u. It follows that u, r and t are the only parameters determining
Au(r), and 2.4 is then inevitable. In this model then the integral scale grows
as [ ~ ut. That is, if we divide du by v and r by | = ut, we obtain a
self similar energy spectrum valid throughout the evolution of the flow, as is
shown in figure 2.4, and so the size of the most energetic eddies must grow
as ut.

W,

SE=-SHTIE T SEECiruir el 1o i Lure

Figure 2.4: Batchelor’s universal energy spectrum

For almost thirty years, dating from its introduction in 1969, Batchelor’s
self-similar energy spectrum, and associated theories by Kraichnan, domi-
nated the literature on two-dimensional turbulence. Note, that this dimen-
sional argument hinges on the flow remembering nothing other than u. It
might, for example, also remember the angular momentum square average.

2.3.1 The energy spectrum

For phenomenological considerations made so far, we can assume that the
energy is injected through a narrow energy band around the wave number
kinj, one can anticipate that the energy transfer to smaller k(< k;,; and the
enstrophy transfers to larger k(> k;,;- The energy and enstrophy injection
rates are denoted as ¢ = (Au(l))?/l and x; = (Au(l))?/13, respectively. If
kgis is the maximum wave number where the viscosity cannot be ignored,
the energy and the enstrophy are independent of k in the inertial range
kinj <k< kdisy that is,

Et(lf) = Gt(kdis) Xt(k) = Xt(kdis)

By dimensional analysis, one can obtain the relation,

kais €t (kdiss) ~ Xt (kdiss)
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Therefore, if v — 0 or kgiss — 00, €;(kaiss) — 0 because x;(kgss) is constant
over the inertial range. This shows that that the energy cannot be transfered
into small scales in the inertial range so that only the enstrophy transfers
to small scales. The energy spectrum in the enstrophy cascade regime is
obtained by dimensional analysis

E(k) =~ ;" k?

Similarly, the energy spectrum in the inverse energy cascade can be obtained
by showing that only the energy transfers to large scales. It is determined
by ¢ and k:

B(k) ~ /35/3

Figure 2.5 shows a simple diagram of the energy cascade E(k) in 2D tur-
bulence. When the energy £ and the enstrophy Z are injected in k;;, F
transfers to small k£ and ceases at k,,;, which is the minimum wave number
where the energy dissipation cannot be ignored, while Z goes to large k and
stops at kg;s.

A
log(e) -5/3

injection

enstrophy

/7 dissipation

log(k) ™

Figure 2.5: Energy spectrum in 2D turbulence

The energy spectrum for 2D turbulence was first calculated by Kraichnan
based on statistical physics. However, direct numerical simulations do not
very strongly support the k=3 law.

In forced turbulence, Legras, Santangelo and Benzi (1988) obtained con-
siderably steeper spectra at small scales, but Borue (1994), using higher
Reynolds numbers, obtained reasonably clean k=3 spectra. Unfortunately,
most of these calculations do not integrate the N-SE, but a modified equa-
tion with a high power of the Laplacian as dissipation therm.

The Batchelor-Kraichnan theory also predict a k2 spectrum for decay-
ing turbulence. Again, the numerical evidence is not so strong. Brachet,
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Meneguzzi, Politano and Sulem (1998) obtained a k3 spectrum in a mod-
erately long but genuine Navier Stokes simulation. Santangelo, Benzi and
Legras (1989) found that, eventually, the energy spectrum becomes quite
steep and does so in fashion which depends on the initial conditions. They
ascribe this to the formation of hierarchy coherent vortices.

Before concluding this section, we give another physical interpretation of
the results just discussed.
In the Batchelor-Kraichnan picture we have two cascades, a direct cascade
of enstrophy and an inverse cascade of energy, as anticipated by Aryton in
1919, as more and more energy moves to larger scales, the total energy being
conserved. Physically, we can picture this in therm of the filamentation of
vorticity, as shown in figure 2.6

S~——e
A 2§ >
""\
’ )
(a) Red blob (b) Red strip (c)} Red spaghetti (d) Pink cloud

Figure 2.6: Destruction of a lump of vorticity in two dimensional turbulence

A blob of vorticity will be teased out in a strip of thickness § by eddies
whose dimensions are comparable with the blob size, R. Area is conserved
by the vortex patch and so ¢ falls as the characteristic integral dimension,
[, increases. The strip is then further teased and twisted by the flow, and
in the process [ continues to grow at the rate [ =~ ut while ¢ declines. The
process ceases, for this particular vortex patch, when 6 becomes so small that
diffusion sets in, and the red spaghetti becomes the pink cloud.

The direct cascade of enstrophy is associated with the reduction in ¢, while
the inverse cascade of energy is associated with the grow of [, which charac-
terizes the eddy size associated with the vortex patch.
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Chapter 3

Numerical experiment A

The interaction of two isotropic two dimensional turbulent fields of equal
integrate scale but different kinetic energy generates the simplest kind of
inhomogeneous turbulent field.

The numerical experiment presented in this work consist of two time decaying
isotropic fields of kinetic energies F; and FEs initially match over a narrow
region. Within this region the kinetic energy varies as a hyperbolic tangent.
The following temporal evolution produces a shearless mixing.

The idea of dealing with this study is suggested by an analyses per-
formed by Tordella and Iovieno that simulated a three dimensional mixing
[15]. Drawing inspiration from this study, we decided to perform a simi-
lar simulation in two dimensional case. The possible applications for this
research would be in bettering the predictions of geophysical flow models.
To create better large scale models of atmospheric and oceanic flows, it is
necessary to understand how mixing occurs at sub-scale levels. A better un-
derstanding of how the coherent vortices, of two dimensional turbulent fields,
effect mixing would therefore be useful.

The three dimensional case, in which the inverse cascade of energy from small
to large scale, is hardly perceptible, cannot be used as an approximation for
two dimensional one. It is this inverse cascade which is assumed to be re-
sponsible for the formation of coherent, long lived vortices that develop out
of random turbulence.

The first aim of the experiment is to verify that the turbulent diffusion ve-
locity in two dimension is infinitely greater than the measured in three di-
mensions. Secondly we will try to quantify the intermittent behavior of the
vorticity fields, and finally we analyze the influence of the small scales and
the long range memory.
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To achieve these goals, the data obtained by this study will be analyzed
in three ways:

e The first part of analysis is to show how the elements are retained in
the long-term life of two kinds of interaction, the two- and the three-
dimensional ones. This analysis will be called Qualitative Universality.

e Statistics analyses on velocity moments and velocity derivative mo-
ments, respectively. This phase of the study may be indicated as large-
and small Scale coherent structures.

e In conclusion will be analyzed the long-range memory by measuring
the time take to loose the memory of the initial condition.

After this brief introduction, the numerical experiment is described in
more detail.
The two dimensional Navier-Stokes equations, that determine the flow mo-
tion, are numerically solved with a fully de-aliazed (3/2 rule) Fourier-Galerkin
pseudo-spectral method. The computational domain is a 27 x 27 rectangle
with 1024 x 1024 points. In order to achieve maximum symmetry, it is ad-
vantageous not have any boundaries. We could thus assume that the fluid
fills all of the space R?. The unboundness of the space does, however, lead
to some mathematical difficulties. We shall therefore often assume periodic
boundary conditions in space variable r = (x,y):

v(z,y) =v(x +nL,y +mL)

for all x,y and all signed integer n, m. Here L indicates the period. There-
fore the computational domain is a rectangle with periodic conditions in all
directions, see figure 3.1.

E

Mixing Layer

E2

X

Figure 3.1: Scheme of the flow
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In the scheme of the flow is immediate to observe a symmetry.
In the initial condition, the two isotropic turbulent fields are matched by
means of a hyperbolic tangent function. This transition layer represent 1/80
of the longitudinal length 27. The matched field is

u(x) = w(x)p(x) + us(x)[1 = p(z)]

p(z) = ; [1 + tanh (ai) tanh <ax_LL/2> tanh (ax ; L)]

The suffixes 1, 2 indicate high- and low- energy side of the mixing respectively,
x is the inhomogeneous direction, L is the width of the computational domain
in the x direction. Constant a determines the initial mixing layer thickness
A, conventionally defined as the distance between the points with normalized
energy values 0.25 and 0.75 when the low-energy side is mapped to zero and
the high-energy side to one. In this simulation a = 287, so A(0) = 27/80. In
this way the initial thickness is large enough to be resolved but small enough
to have large regions of homogeneous turbulence during the simulations.

In the present study the ratio of the turbulent kinetic energies has been
chosen as the sole control parameter. In particular, the following values of
energy ratio were chosen:

where

6.6 40 300 10* 108

All simulation are made with a diffusion coefficient equal to 0.244 107 [m?/s].
In order to provide additional numerical details of the simulations the tur-
bulence macroscales have been determined.

First of all, we must choose a discretization time step of need. We want to
satisfy the CFL condition with a Courant number equal to 0.25. Assuming
to have already made the equations dimensionless, we can put the maximum
of velocity unitary, and therefore:

max 0-25'2
Umar np <095 o At < "

——— ~0.001
Az 1024 0.0015

The time step was chosen so that fully satisfy this inequality. In particular
we put At = 5-107*, we are so sure of having a stable numerical method.
We can also verify that our choice of discretization time step does not imply
instability of the numerical method by looking at the time evolution of the
Courant number, calculated as c(t) = Ve (t)At/Az, and shown in figure
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Figure 3.2: Time evolution of the Courant number

3.2. It’s evident that the CFL condition is always fully satisfied, and also it
always oscillates around the chosen value 0.25.
As length scale space can be considered the width of the mixing layer at the
initial time, ie:

2

[ =—=0.079
80

From this, we can derive the LETOT, large eddy turn-over time. Indeed,
after normalization, the kinetic energy of the high energy field, is always 0.5,
having raised unit the maximum velocity, and then:

L0079
- VE, 05

As 7/At, it appears that the simulation of a LETOT requires 220 time steps.
From some preliminary tests, it was seen that after about 23 time units
mixing is complete and there is a situation similar to that sketched in figure
3.3 . But, for the purposes of this study, this situation is not useful, so we
decided to make all simulations with 5000 time steps, equivalent to 22.72
time units.

T =0.11

‘ ™\ Mixing Layer
N

Figure 3.3: Interaction between the two mixing
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3.1 Numerical method

To do these simulations, we used a two dimensional Navier-Stokes code. The
code, written by Jost von Hardenberg, operates as shown in the following
diagram.

Creation of Matching of
the two
low-energy field velacity field z
L by me;ns of Time evolution Print the PDSt_
i —+ (resolution of |- instantaneous psrocessmg},
i . tatistica
f N-SE) vorticity fields :
Creation of hyperbolic analysis
tangent
high-energy field function

Figure 3.4: Code diagram

Same way as the three-dimensional case.

The initial condition is prepared initializing the flow using Fourier mode
associated with the velocity field, fixing their amplitude to match a given
spectrum and assigning them random phases. But the two dimensional
Navier-Stokes code requires the the initial field to be in vorticity, unlike
the three-dimensional program, which uses a velocity field. This creates an
issue in using the hyperbolic function to create the energy gradient between
the two fields, which required that the field be expressed as velocities. To
solve this problem, a separate program was created that:

e accesses two vorticity fields already created with different average ki-
netic energies and vorticity distributions,

e converts the two vorticity fields into velocity fields and combines them
using the hyperbolic function,

e reconverts the final combined velocity field back into a vorticity field.

After implementing the initial conditions, the program performs the time
evolution of the vorticity field.

To understand how the code works, we have to begin by the equation. Con-
sider the N-SE in 1.3. In a two-dimensional framework the incompressibility
equation can be written d,u+0,v = 0, where (u, v) are the components of the
velocity. According to the Schwartz theorem, there exist a stream-function
1 such that

oY o

“= oy Oz
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or equivalent

u=—kx Vv (3.1)

where k is a unit vector normal to the flow. The vorticity w = V X u is
directed along the vertical axis. Taking the curl of 3.1, we find that the
vorticity is related to the stream-function by a Poisson equation

AY = —w
After this consideration we can rewrite the N-SE in the follow way:

87w+ oY Ow B pow
ot dyox Oxdy
J(Yw)

vAw

where J(1,w) indicates the Jacobian, or non-linear therm. If we pass to the
spectral space, i.e if we do an Fourier transformed, this equation become

s k2
—0 = —vk*w
dt
where k* = k7 + & is the wave vector module. By performing some simple
algebraic passage, we see how we can integrate exactly the diffusive term. In

fact, rearranging the equation and multiplying both sides by e Mt we yield:
d 2 2 2 d ~ a 2
+vkst ~ —vk=t —vk=t
dt \ ~—~— dtC

¢

The time integration is done by means of a third-step third-order Adams-

Bashforth method.

To complete this brief description of the numerical method we have yet to see

how it is treated the nonlinear term and how to avoid aliasing phenomenon.
Let’start with the non linear term. First we evaluate the velocity (u, —v)

from the vorticity in the Fourier space in this way

Then we call the FFT inverse to return in the physical space and so we can
calculate the products p; = uw and py = vw. Then we can call the FFT for
p1 and po and finally we can compute the Jacobian as follows

A

J = ikypy — ikypr (3.2)
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We can now consider the aliasing problem. The key to this de-aliasing
technique in the use of a discrete transform with M rather than N points,
where M > 3N/2. For understand what happens we can restrict at an one
dimensional problem. Let be

o M/2-1 M/2-1

4 _ _iky, _ ~iky;
T VI LI
k=—DM /2 k=—M/?2
We want to compute s; = u;v; for j =0,1,..., M — 1, where
710 otherwise
Similarly, let
1 M2 4 M M
= <. ,—tky; _
S = — Z e k=——m...,——1
.Mk:_M/2 2 2

Then
Sk=D, Unln+ Y, Uiy
m+n==k m+n=kxM
We are only interested in §; for |k| < N/2, and choose M so that the second
term on the right-hand side vanishes for these k. Since 4, and 9, are zero
for |m| > N/2, the worst case condition is

< 1-M N < 2M 1
2 272 ~ -3 *

For this reason, after each FFT, we truncate our spectral field with a trun-
cation ratio equal to 0.67. To learn more see [1].

The output of the code is a series of vorticity field. The instantaneous
vorticity are printed every 25 time steps or 2.75 time units.
Finally, any result is ensemble averaged over 100 samples and the anisotropy
and intermittency of velocity is observed.

3.2 Simulation results and discussion

The initial conditions place a kinetic energy gradient in the direction of in-
homogeneity, here denoted .

The gradient results from the different levels of kinetic energy of the two
interacting turbulence fields and the only parameter that are actually con-
trolled in the experiment are the ratio of energy £ = E;/Fj.
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This kind of mixing is characterized by the absence of a mean shear, so that
there is no production of turbulent kinetic energy and no mean convective
transport. The turbulence spreading is caused only by the fluctuating pres-
sure and velocity field. See the flow visualization in figure 3.5.
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Figure 3.5: Visualization at four time instants of vorticity contours with
energy ratio 6.6
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The behavior of the mixing is well illustrated in the figure below that
shows the trend of energy profiles at different instants of time and with
different values of £.

Energy profile
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—emme 45220

Figure 3.6: Normalized kinetic energy profile at four time instant

Analysis of the results was carried out following the scheme mentioned in
the previous paragraph.
We will start by comparing the evolution of mixing achieved in two and three
dimensions.
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3.2.1 Qualitative Universality

As mentioned, the three dimensional case cannot be used as an approximation
for the two dimensional one, now we will show some results that confirm the
stronger influence of the inverse energy cascade in the flat case.

Figure 3.7 shows the time evolution of the velocity field for the corresponding
three dimensional experiment in a 27 X 27 X 47 analytical domain and with
energy ratio 6.7.

Energy ratio 6.7

Figure 3.7: Initial and final velocity field for the corresponding three dimen-
sional experiment with F;/FEy = 6.7

In both experiments, the energy and the integral scale are normalized by

the values of the high energy field, while the spatial coordinate is normal-
ized by the length A. The function A is defined by mapping the low energy
side of the mixing layer to zero and the high energy side to one, and it is
equal to the distance between the points with energy values 0.25 and 0.75.
It should be noticed that by doing so, the energy gradient value, is defined
as (B — Es)/2A.
The evolution of the thickness of mixing layer is a quantity important to
the evolution of the flow. Previous studies have led to estimate the asymp-
totic behavior of this thickness for the three-dimensional case, yielding the
following results: s

Alt) t

A0) 7

What happens to the current case is instead shown in figure 3.8

It is interesting to observe that, with increasing time, all the results col-
lapse on a single curve. By executing a best fit, we estimate an asymptotic
behavior exponential with a slope equal to 0.7226.
Therefore, in two dimensions, the mixing is developing quickly. This result is
shows in figure 3.9, where we compare the asymptotic behavior of the types
of mixing with two different values of the ratio of energy.
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Figure 3.8: 2D mixing layer thickness as a function of the normalized time
for the different values of £, in log-log scale
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Figure 3.9: Comparison between the asymptotic behavior of the thickness
mixing layer in 2D and in 3D
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During the evolution of the flow, the region of high energy spreads in the
other, thereby increasing the mixing layer. Also we can see how the mixing
layer as a region of large variance diffusing into a region of lower variance. In
this spirit we can define the penetration as the position of the maximum of
the skewness (S = (u®)/(u2)*?) normalized over the mixing thickness A(t/7)

Asymptotically in time we have n = n(€) and the two trends are shown in
figure 3.10
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Figure 3.10: 2D and 3D penetration. Asymptotic behavior with the mixing
layer kinetic energy ratio

Especially for applications in geophysics, it is very important to study
how varying the turbulent diffusion velocity downgrading to 2 dimensions.
In this context it makes sense to define the rate of diffusion as the time
derivative of the maximum of the skewness. We have:

dry  dA  nd "¢
2DIU'D: = ——7T

_ a2 4028
a Ta 7 at =

dx dA  nd %%
3D :vp = -2 =g = 10T 4057
T T T

Then asymptotically in time

Up2 . t_0'28

~

_ 029

— 0
'UD,S t_0'57

Therefore in two dimensions, asymptotically in time, the turbulent diffusion
is infinitely greater than that measured in three dimensions.
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3.2.2 Large- and Small-Scale coherent structures

In this section we consider the asymptotic behavior with regards to the vari-
ation of the parameter that controls this kind of shearless mixing layer, that
is the initial energy ratio £ between the high-energy turbulent field and the
low energy one.

The two external fields show, for moderate values of £, decay exponents which
are very close, so that the two homogeneous turbulence external to the mix-
ing decay in a similar way and the value of E;/FE, remains quite constant
during the time interval considered [14]. After few initial eddy turnover time
a true mixing layer begins to emerge from the initial condition and reaches a
self similar state. This means that all normalized moment distribution across
the mixing collapse to a single curve when the position is normalized with
the mixing layer thickness.

The results show that the mixing layer is highly intermittent in the self simi-
lar stage of decay: so similarly to the case 3d [15], the experiment shows that
the presence of a turbulent energy gradient is sufficient for the appearance
of intermittency and anisotropy.

In order to study the flow intermittency, moments of the longitudinal velocity
component were computed. The velocity fluctuation u is responsible for the
energy transport across the mixing. The skewness distribution is indicative
of asymmetry between the positive and negative fluctuations is a principal

indicator of intermittent behavior. We define S(z) = <1;3> / <1;33/2 Be-

cause a Gaussian distribution is symmetric, its skewness is identically zero.
In other word, it vanishes in homogeneous isotropic turbulent flows and thus
it remains close to zero in the fields external to the mixing while takes a
positive value within the mixing layer. Figure 3.11 shows the skewness in
four different instants of time for each energy ratio considered.

During the initial eddy turnover times the skewness increases steadily,
before bending at a normalized time varying from 5 to 10. At this point the
mixing layer enters a near self-similar stage of evolution. Figure 3.12, shows
the maximum skewness inside the mixing layer as a function of time and as
a function of &£.

The intermittent flow may also be analyzed by looking at the fourth

moment of u. The Kurtosis (K = <7,Z4> / <7J22>) is a measure of whether the

data are peaked or flat relative to a normal distribution. It is constant and
equal to three in homogeneous isotropic turbulent flow. Figure 3.13 shows
the kurtosis in four different instants of time for each energy ratio considered.
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Figure 3.11: Skewness of the velocity component in the inhomogeneous direc-
tion for each energy ratio. z. is the mixing layer centre and A is the mixing

layer thickness
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Figure 3.12: Maximum of the skewness
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Kutosis profile
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Figure 3.13: Kurtosis of the velocity component in the inhomogeneous direc-

tion for each energy ratio. z. is the mixing layer center and A is the mixing
layer thickness
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In figure 3.14 we show the maximum kurtosis inside the mixing layer as
a function of time and as a function of E;/FE;. There is a peak followed
by a decrease, that could be interpreted as the fact that the more extreme
intermittent turbulent events take place at the end of the formation time
interval where the mixing process develops and before the self-similarity sets
in. from the distribution of the peak of kurtosis inside the mixing, it can be
noted that it reaches very high values, much higher than three. In fact the
kurtosis asymptotic value is about 20 and indicates the presence in mixing
layer of extremely intense intermittent events.
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Figure 3.14: Maximum of kurtosis
In conclusion, all the mixing simulated show a departure from a Gaussian

state for any turbulent energy ratio and the intermittency is high dependent
on the turbulent energy ratio between the two interacting flow.
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3.2.3 Long-range memory

When we speak of long range memory, we can interpret it as the time in
which the solution “forgets” the initial condition. To get an estimate of this,
we need to use a probabilistic description of turbulence even if we know that
the basic equation, N-SE, is deterministic, as we have anticipate in section
3.1.

To better understand what justifies this description we can start from an
example. In figure 3.15 The mean flow does not exist so that the signal
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Figure 3.15: Time evolution of the vorticity in a fixed point

appears to fluctuate around zero. When we look at this signal we can note
that:

e The signal appears highly disorganized and present structure an all
scale

e The signal appears unpredictable in its detailed behavior
e Some proprieties of the signal are quite reproducible

The first point has been amply dealt with in chapter 1 and 2. Regarding
the last point, one instance of a reproducible property is the histogram. As
shown in figure 3.16

The second point is what we want to use here. Since we cannot predict
the detailed behavior of the vorticity we can consider its time evolution in
each fixed point like a time series or a discrete stochastic process, i.e we can
consider it like a sequence of random variables. In other words we can use
some probabilistic tools to estimate the long time behavior. We then selected
some points of our analytical domain and recorded the values assumed by
vorticity in this at all the time. For each value of energy ratio, we have 50
achievements. Combining all the 50 time evolution for each point, we then
have a data set large enough to make a good statistical analysis in term of
time series.
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Figure 3.16: Histogram of the signal in the previous figure

Now we can evaluate the autocorrelation function. The autocorrelation func-
tion is defined as
(w(0) w(t))

A0 = o
This is a measure of how much the vorticity at time ¢ is influenced by its
initial value.
As a first important result we have that the autocorrelation function does
not depend on points selected.

The graph in figure 3.17 shows the autocorrelation function, obtained as
described above, for each energy ratio considered.
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Figure 3.17: Autocorrelation function for each energy ratio

All the curves collapse into one, and this shows that the long-range mem-
ory does not depend on the energy ratio.
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Then we can simply see more in detail only one of these functions. The
following figure shows the values of the correlations for E=6.6

=
_

08

06
|

ACF
04

02

0 57 114 17.01 228

Figure 3.18: Autocorrelation function for the energy ratio 6.6

We can observe how, even after 20 time units, there is not total indepen-
dence of the data from the initial value, since the autocorrelation function is
still 3%.

Finally we can try to interpolate the evolution of these curves.

The trend of these curve, in fact, discriminates whether we are dealing with
phenomena of short- or long-range dependency. The Long-range dependency
relates to the rate decay of statistical dependence, with the implication that
this decays more slowly than an exponential decay, typically a power-like
decay.

We have found that the function that best fits their trend is

((t/7) + b)

where the fitting parameters are:
a = 0.12366240.002115 (1.711%) b= 0.076141740.005588 (7.339%)

¢ = 0.811268 £ 0.02204 (2.717%)
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Figure 3.19: Fitting of the statistical dependence

In other words our autocorrelation function goes as ¢t~°® In figure 3.19 we
show the actually autocorrelation function and the with the estimated one
to give a visual comparison.

In conclusion we can therefore speak of long-range dependency.
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Chapter 4

Stratified flow

The name stratified flow is applied to a flow primarily in the horizontal di-
rection that is affected by a vertical variation of the density. Such flows are
of considerable importance in geophysical fluid mechanics. The obvious case
of the effect of vertical temperature variations on the wind near the ground is
only one of a number of examples in the atmosphere, and the effects of both
temperature and salinity variations play an important role in many aspects
of dynamical oceanography.

The density may, in general, either increase or decrease with height. The
former case gives rise to an interaction between the mean flow and the con-
vection that would occur in the absence of mean flow. However, in this
chapter we are primarily concerned with the case of stable stratification,
that is to say the density decreases with height.

Vertical motions then tend to carry heavier fluid upwards and lighter fluid
downwards, and are thus inhibited. This inhibition may take the form of
modifying the pattern of the laminar motion or of preventing or modifying
its instability. We require a quantitative criterion for this to be a strong
effect.

Since most of the experiments on stratified flows have used salt rather than
heat as the stratifying agent we shall retain the density variations explicitly,
rather than relating them to temperature variations.

In the next section we will see how obtain simplified equations for stratified
flows. In section 4.2 we will give a mathematical justification for the concept
of stable stratification. In 4.3 we will define the dimensionless parameter for
this kind of flows: the Froude number. and finally in the last section we will
introduce the internal waves, that are wave motion due to the tendency for
the vertical motion to be suppressed.
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4.1 The Boussinesq approximation

The processes that can lead to changes in air density in the atmosphere are
in principle three: the variation of atmospheric pressure with height, the
pressure changes that occur dynamically because of atmospheric motions,
the phenomena of thermal expansion. Consider separately the three effects.
The first effect and phenomena associated with stratification and correspond
to the budget in the N-SE between the vertical components external forces
and pressure

VP — fext

leading to the equation of hydrostatic balance.
The second and third effect corresponds to density fluctuations generated in
a dynamics due to motions of fluid and temperature variations. Imagine an
area of medium size &~ L whose speed and its variation are both ~ U. This
means that the corresponding time scale is &~ L/U. In the absence of external
forces and viscous terms in Navier-Stokes will therefore order of magnitude,
in sequence:

u_u 2 _AP

r L pL
where Ap is the change in pressure corresponding. From the equation of
state we have

T AP

Ap AT
P:p%%pvfh = 2 — 4+ —

P Yth 0 m

Therefore, replacing the previous one, we get

Ap ( u? AT)
— <max | —5 75
P v, T

Recall that in less than a factor O(1), vy, is the speed of sound ¢, for an
ideal gas. We thus see that if the Mach number M = u/c, and the relative
variation of the temperature scale AT /T are both small, the density vari-
ations produced are themselves small, ie, the motion of fluid will be to a
first approximation incompressible. In the troposphere, the first condition is
always verified and the only effect that produces changes in density is the
stratification.

Therefore, atmospheric motions, with a much smaller vertical scale height
of the troposphere, will be in good approximation incompressible. In the
atmosphere, things are more complicated, since changes in temperature are
associated with density variations, and even if the motions occur at scales
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much smaller than the height of the troposphere, and are in good approxima-
tion incompressible, small density variations produced are still responsible for
the same motion through convection. These effects can be taken into account
as perturbations, through the so-called Boussinesq approximation.

The Boussinesq idea consist in take into account the density fluctuation
just in the term in which it is absolutely necessary, while consider it as a
constant for all the others. To understand what this means we have to do
an relative analysis magnitude.

First we can consider the continuity equation:

1Dp+ 8u+(9v+aw_0
pDt  Or Oy 0z
It is always possible see the density as a constant plus a time dependent

correction term
p(l‘, Y, z, t) = pPo + p/(xv Y, z, t)

where the fluctuation p’ is related to the temperature effect. Now, since pq
is a constant, we have Dp/Dt = Dp'/Dt.

Furthermore, in the absence of other information, we assume that the typical
values given by the derivatives of u are approximately equal. It is also rea-
sonable to assume that the velocity of the fluid remains limited: a particle
of fluid that moves at speeds arbitrarily large unlimited kinetic energy, and
this seems physically unreasonable. If we indicate with U the typical ampli-
tude of fluctuations of speed and we call L the typical distance between its
maximum and its minimum, we venture to say that the typical value of the
derivative space of

The hypothesis most daring of this reasoning is assuming that

L
At ~ —
U

If this hypothesis is reasonable, we can proceed with the magnitude analysis.
In fact we have

Dp'|  Ap AU
Dt|” At T L
Moreover p = py and then
Ap'U
1 Dy
0 D[:f pol Apf
= <<1
w0
L
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That is, the term containing the density is small compared to the term con-
taining the speed as much as it is p/ with respect to the reference density py.
In other words, in the equation of continuity, the density is dominated by the
divergence of the velocity and thus, approximating, we can use the equation
of mass conservation for incompressible fluids:

V-u=20

Let us now turn to the equation. Suppose that there is no motion and that
the density is constant. In this case the pressure gradient is given by the
hydrostatic equation

Ipo

92 = —pPoyg
We can now express the pressure in the presence of motion and density
fluctuations as the sum of hydrostatic pressure py and a dynamic pressure p’

p(x7y727t) = pO(Z) +p/(x7y)zut)

Simply replacing the Navier Stokes equation is obtained

/ du / 8}9 /7
(po+p') <at+u-Vu> =-Vp — <(?z0+p°g> —p'gk + vAu
—_———

=0

The hydrostatic terms cancel each other, then the density is only two terms.
On the left side the total density multiply the acceleration term. Since by
hypothesis (po + p') = po we are allowed to disregard p’. To the right of the
term representing the forces of gravity only has the density fluctuations. In
this case we can not ignore p’, because this would be to completely eliminate
the effect of gravity in our equations. Therefore the N-SE in approximating
Boussinesq are written in this form:

V-u=20

du / )
Po a—l—u-Vu = -Vp' — p'gk +véu

Summarizing, in the Boussinesq approximation, variations of all fluid proper-
ties other than the density are ignored completely. Variations of the density
are ignored except insofar as they give rise to a gravitational force.
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4.2 Stratification and the concept of static
stability

We now want to understand under what conditions the gravity forces produce
motion in a fluid.

To do this we assume that the flow is in absence of motion (u = 0) and that
we can apply the Boussinesq approximation. In this way, the equations are
reduced to only the hydrostatic relation:

dp
5= 9 (4.1)

Suppose further that p depends only by z.

To determine if the vertical profile of density specified by p(z) is stable or
unstable, suppose we move a fluid particle from its initial height z at z + h.
The equation which give us the vertical velocity of the particle is

l;;: = —in — @g (4.2)
Po Po

For the moment we neglect the viscosity term, but just for simplifying the cal-
culation. If we suppose to known p(z), this equation contains two unknowns:
w and p. In general, therefore, is not resolvable, but in our situation we can
find an approximate solution. In fact, if the vertical velocity is initially zero
the pressure is specified by the hydrostatic equation. Also until w remains
small, we can use 4.1 to remove the pressure from 4.2 without entailing an
appreciable error. In this way we yield:

Dw

B = ez 1) = p(e)]
It is important to note that the pressure term has led p(h + z), because
that is the hydrostatic pressure at the height at which the particle was in-
creased, while the gravity term keeps p(z) because we assume that during his
motion the particles maintains its density. Now, Dw/Dt is the Lagrangian
acceleration of the particle, so we have

Dw/Dt = d*h/dt?

Also note thate p(z+h) — p(2) = dp/dz h. Then we can rewrite our equation
as follows

RN (4.3)



Is usual to define the quantity

N2 — _ﬁ@
podz

it is positive if the density decreases upward and negative otherwise. Until
the displacement h of the particle is small is easy to solve this equation,
because in this case is reasonable to consider dp/dz as a constant. Some
particular solution are almost obvious. It is easy to verify that if N? is posi-
tive, then both h(t) = cos(Nt) and h(t) = sin(Nt) satisfy the equation 4.3.
These are periodic solutions, then the fluid particle, deviated from its initial
position, not goes away from it, but it fluctuates around.
If, instead, N? is negative, we define N' = v/—N2; a pair of particular solu-
tions is given by h(t) = exp(Nt) and h(t) = exp(—Nt). The first tells us
that the displacement of the fluid particle increases indefinitely in time, and
it no return to its initial position.

So we have found our “stability criterion” of the fluid:

e Statistically stable fluid, N* > 0 density decrease upward. A fluid
particle oscillates if it deviated from its equilibrium position. The ap-
proximation made to write 4.3 are still valid.

e Statistically unstable fluid, N?> < 0 density increase upward. A fluid
particle moves away indefinitely from its initial position as soon as any
perturbation deviate from it. The approximations made to write 4.3
are valid only in the first moment after the disturbance.

If the fluid is statically stable, the quantity NV is the frequency of oscillations
performed by the fluid particle around its position. It is known as frequency
of Brunt-Vaisala

4.3 The Froude number

We consider the case of a three-dimensional flow outside boundary layers
at high Reynolds and Peclet numbers, so that both viscous and diffusive
processes are negligible. Thus we write the momentum and density equations
(for steady flow)

pu-Vu=—-Vp+ pg (4.4)

u-Vp=0 (4.5)
We take z vertically upwards and suppose that the basic stratification con-

sists of a uniform density gradient (—dp, /dz). Because pg, does not vary
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horizontally, the balance between pyg and the hydrostatic pressure can be
subtracted out from equation 4.4 just as it can for an entirely uniform den-
sity.

We now consider, superimposed on this basic configuration, a flow with length
and velocity scales L and U, produced, for example, by moving an obstacle of
size L horizontally through the fluid at speed U. This will produce a modifi-
cation of the density field which we denote by p’, related to the stratification
by equation 4.5 in the form

dpo
Vo —— =0 4.
u-Vo +w 1 (4.6)
In order of magnitude
WL \|dpg
'~ — | — 4.7
TR (4.7)

W is now restricted by the fact that the flow cannot produce buoyancy forces
associated with p’ that are larger than the other forces involved. Since the
buoyancy force does not contribute directly to the horizontal components of
4.4 it is convenient to work in terms of the vorticity form of this equation
~0p  L0p
u-Vw—w-Vu)=—-gliz——j=—
p( )= -8 ( oy 1 ox
Since the order of magnitude of w is U/L this indicates that the order of
magnitude of p’ must remain not greater than

(4.8)

/o p0U2
gL

Comparison of this with 4.7 indicates that
%74 £o U 2

U~ gL?

p

dpo

dz

= Fr? (4.9)

When Fr? is small the horizontal motion has only much weaker vertical mo-
tion associated with it. F'r is called Froude number, 1/Fr? is sometimes
known as the Richardson number.

Similar analysis can be given for flows in which viscous and/or diffusive ef-
fects are strong. This is a matter of some complexity, since different detailed
treatments are appropriate for low, intermediate and high Prandtl number.
Thus we omit consideration of it; when we talk below of low Froude number
flows, it is assumed that any other criterion for the flow to be strongly con-
strained by stratification is also fulfilled.

Often low Froude number motion can be considered to be entirely two-
dimensional in horizontal planes. In general we can have three situations:
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e F'r — 0o, g = 0, non stratified flow,
e ['r — 0, strong stratification,

e Fr = 1, intermediate case

4.4 Internal waves

Stratified fluids can support a variety of types of wave motion, which have
no counterparts in unstratified fluids. The reason is basically the tendency
for vertical motion to be suppressed: a fluid particle that does get displaced
vertically tends to be restored to its original level; it may then overshoot
inertially and oscillate about this level.

In this section we shall be examining the consequences of this in the simplest
possible context: the internal waves. To study internal waves in their purest
form, a few assumptions are necessary:

e there is no ambient rotation,

e the domain is infinite in all directions,

e there is no dissipative mechanism of any kind,

e the fluid motions and wave amplitudes are small.

This last assumption is made to permit the linearization of the governing
equations. However, we reinstate a term previously neglected, namely, the
vertical acceleration term Odw/0t in the vertical momentum equation. We
do so anticipating that vertical accelerations may play an important role in
gravity waves. The inclusion of this term breaks the hydrostatic balance.
Finally, we decompose the fluid density as follows

p=po+p(z)+p(2tz1)

where pg is the reference density (a pure constant). p(z) is the ambient equi-
librium stratification, and p/(x,y, z,t) is the density fluctuation induced by
the wave (lifting and lowering of the ambient stratification). The inequality
|p| << po is enforced to justify the Boussinesq approximation, whereas the
further inequality |p’| << |p| is required to linearize the wave problem.
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The total pressure field is decomposed in a similar manner. With the pre-
ceding assumptions, the governing equations become

ou 10y

" 4.1
ot po Ox (4.10)
9, 10y
g% (4.11)
ot po Oy
ow Loy 1
Nl 4.12
5 R L (4.12)
Ou Ov  OJw 0 113)
Ox * dy * 0z (4
op' dp
En + w% =0 (4.14)
(4.15)

The factor dp/dz in the last term can be transformed by introducing the
stratification frequency defined earlier. For simplicity, we will assume it
to be uniform over the extent of the fluid. This corresponds to a linear
density variation in the vertical. Because all coefficients in the preceding
linear equations are constant, a wave solution of the form

ei(kszrknyrkzszt)
is sought. Transformation of the derivatives into products (e.g., 9/0x be-
comes ik, ) leads to a 5-by-5 homogeneous algebraic problem. The solution
is non-zero if the determinant vanishes, and this requires that the wave fre-
quency w be given by
2 1.2

2 _ a2 ky + K,

k2 + k2 + k2
in terms of the wavenumber, k,, k, and k., and the stratification frequency,
N. This is the dispersion relation of internal gravity waves.

A number of wave properties can be stated by examination of this relation.
First and foremost, it is obvious that the numerator is always smaller than the
denominator, meaning the wave frequency will never exceed the stratification
frequency; that is

w

(4.16)

w<N

for positive frequencies. The reason for this upper bound can be traced back
to the presence of the vertical acceleration term. Indeed, without that term
the denominator in reduces from k2 + /{;5 + k? to only k2, implying that the
non-hydrostatic term may be neglected as long as k? + k < k2. This occurs
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for waves with horizontal wavelengths much longer than their vertical wave-
lengths; the frequency of those waves is much less than N.

For progressively shorter waves, the correction becomes increasingly impor-
tant, the frequency rises but saturates at the value N. We may then ask what
would happen if we agitate a stratified fluid at a frequency greater than its
own stratification frequency. The answer is that, with such short periods,
fluid particles do not have the time to oscillate at their natural frequency
and instead follow whatever displacements are forced upon them; the distur-
bance turns into a local patch of turbulence, and no energy is carried away
by waves. Using a neutrally buoyant float in the ocean, D’Asaro and Lien
(2000) have shown that in stratified waters values of w/N in the range 0.2-1
generally correspond to internal waves whereas, at the same places, values
above one (1 < w/N < 50) correspond to turbulent fluctuations.

Another important property derived from the dispersion relation 4.16 is that
the frequency does not depend on the wavenumber magnitude (and thus on
the wavelength) but only on its angle with respect to the horizontal plane.
Indeed, with k, = kcosvcosyp, k, = kcosUsinp, and k, = ksind, where
k = (kI + k2 + k2)1/2 is the wavenumber magnitude, ¥ is its angle from
the horizontal (positive or negative), and 1 is the angle of its horizontal
projection with the z—axis, we obtain

w = £+N cos?

proving that the frequency depends only on the pitch of the wavenumber,
and, of course, the stratification frequency. The fact that two signs are al-
lowed indicates that the wave can travel in one of two directions, upward or
downward along the wavenumber direction. On the other hand, if the fre-
quency is imposed (e.g., by tidal forcing), all waves regardless of wavelength
propagate at fixed angles from the horizontal. The lower the frequency, the
steeper the direction. At the limit of very low frequencies, the phase propa-
gation is purely vertical (¢ = 90°).

Let us rotate the x and y axes so that the wavenumber vector is contained
in the (z,z) vertical plane (i.e., k, = 0 and there is no variation in the y-
direction and no v velocity component).
The expressions for the remaining two velocity components and the density
fluctuation are

k.
u= _Aifa;km sin(kyx + k.2 — wt) (4.17)
gw .
w = —i—Aﬁsm(k‘xa: + k,z — wt) (4.18)
(4.19)
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Pogkz .
p = —Ak% 12 sin(kyz + k2 — wt) (4.20)

Pl = +Apgcos(kyx + k,z — wt) (4.21)

For k,, k., and w all positive, the structure of the wave is depicted on Figure
4.1.

Figure 4.1: Vertical structure of an internal wave

The areas of upwelling (crests) and downwelling (troughs) alternate both
horizontally and vertically, and lines of constant phase (e.g., following crests)
tilt perpendicularly to the wavenumber vector. The trigonometric functions
in the solution tell us that the phase k,x + k,z — wt remains constant with
time if one translates in the direction (k,, k) of the wavenumber at the speed

W

This is the phase speed, at which lines of crests and troughs translate.

Because the velocity components, u and w, are in quadrature with the den-
sity fluctuations, the velocity is nil at the crests and troughs but is maximum
a quarter of a wavelength away. The signs indicate that when one compo-
nent is positive, the other is negative, implying downwelling to the right and

CcC =
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upwelling to the left, as indicated in Figure 4.1.

The ratio of velocities (—k,/k,) further indicates that the flow is everywhere
perpendicular to the wavenumber vector and thus parallel to the lines con-
necting crests and troughs. Internal waves are transverse waves.

A comparison of the signs in the expressions of w and p’ reveals that rising
motions occur ahead of crests and sinking motions occur ahead of troughs,
eventually forming the next crests and troughs, respectively. Thus, the wave
moves forward and, because of the inclination of its wavenumber, also up-
ward.

The propagation of the energy is given by the group velocity, which is the
gradient of the frequency with respect to the wavenumber

Ow wk?
Ow wk,
= i (4.23)
(4.24)

The direction is perpendicular to the wavenumber (k,, k,) and is downward.
Thus, although crests and troughs appear to move upward, the energy actu-
ally sinks. It is possible verify that, irrespective of the signs of the frequency
and wavenumber components, the phase and energy always propagate in the
same horizontal direction (though not at the same rates) and in opposite
vertical directions.

Let us now turn our attention to the extreme cases. The first one is that
of a purely horizontal wavenumber (k, = 0,9 = 0). The frequency is then
N, and the phase speed is N/k,. The absence of wavelike behavior in the
vertical direction implies that all crests and troughs are vertically aligned.
The motion is strictly vertical, and the group velocity vanishes, implying
that the energy does not travel.

The opposite extreme is that of a purely vertical wavenumber (k, = 0,9 =
90°). The frequency vanishes, implying a steady state. There is then no
wave propagation. The velocity is purely horizontal and, of course, laterally
uniform. The picture is that of a stack of horizontal sheets each moving,
without distortion, with its own speed and in its own direction.

If a boundary obstructs the flow at some depth, none of the fluid at that
depth, however remote from the obstacle, is allowed to move. This phe-
nomenon, occurring at very low frequencies in highly stratified fluids.
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Chapter 5

Numerical experiment B

Starting by the numerical experiment presented in chapter 3, we want now
see what happens by adding the stratification effects. The results obtained
in this way can be considered as the vertical section of a three-dimensional
stratified flow.

To have a situation as close as possible to that of departure, we created an
initial density field by combining two constant density field with the same
hyperbolic tangent used for the vorticity field. In particular, we divided the
density field as follows:

p=po+py)+p(r,y1)

where pg is a constant, p(y) is a linear function and p’ is the fluctuation
component. The trend of this components are shown in figure 5.1

y (a) ) (b) 1y (c)

=l
=
o

po (e]

Figure 5.1: Initial density fields: (a) is the linear function, (b) fluctuation
part, (c) total density
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In this contest, using the Boussinesq approximation, the equation that
we are going to resolve are the follows

V-u=0

ou 1 A

— 4+ (u-Vu=——Vp—- —gj7 +vViu
5 T(w-V) PR

op' dp
£+u~Vp’—|—vdZ: AVEY

The last equation is a model equation to close the problem. As we said in
the previous chapter, density variation in the vertical direction are generally
caused by variation of temperature and concentration (for example, variation
of salinity in the oceanic flows).

If we had not used this model, our system (and code) would have been consid-
erably more complicated because we should have added a transport-diffusion
equation for each variable that influences density along the equations that
link these entities to density.

On the contrary, we have gathered all these effects in our third equation and,
using more lab tests (as the ones made by Waraft [17]), it is possible to better
estimate all the coefficients, according to what we are aiming to simulate.
In this way, we can explain the presence of the diffusive term in a density
equation, even if this term would have no meaning from a strictly physics
point of view. k, the diffusion coefficient for this variable and in our simula-
tion is always equal to 0.3 1072 [m?/s]. We can also define a pseudo Schmidt
number as Sc = 1 = 1.32 107*

Note that we can still use periodic boundary condition because p’ is pe-
riodic and p appears only as a derivatives and thus as a constant.

In the present study, we have fixed the energy ratio at 6.6 and the Froude
number has been chosen as the sole control parameter. In particular we have
compared the results obtained in the case without stratification with the
stratified flow at Froude number equal to 10 and 0.1 The other parameter
of the simulation are the same that introduced in chapter 3. Also the data
analysis will be carried out following, as far as possible, the same pattern
used for the previous numerical experiment.

5.1 Numerical method

To obtain these new simulations it was, obviously, necessary modify the code.
First of all we have chose as inhomogeneous direction the gravity direction,
i.e. y, in other word we have rotate our vorticity field.

Then the variables of the density field were added at the code and we have
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wrote a function to create the initial fluctuating density field. This function
operates as follows:

e read the density gradient, a;, which must be negative for a stable strat-
ification,

e create the total density field with this operation

ply) = ; [1 + tanh (az) tanh <ay—LL/2> tanh (ay ELﬂ

p(-y) = pip(y) + p2 [1 — p(y)]

where p; = —a27 and p; =0

e change the value of p in the vertical extremes of the domain in order
to satisfy the periodicity condition. In this way we obtain the function
shown in figure 5.1(c)

e subtract the linear function p = ay + p; and yields the fluctuating
density fields shown in 5.1(b).

Then we have wrote the subroutines for time evolution of p’. In so doing, we
used the same logic with which the vorticity was resolved previously. In the
spectral space, the equation to solve is:

d —kk2t~ | __ 7 ikw ~ —vk?t d A Y, —vk3t
7 (e w) = (—J — kQOM> e = %’r = —nlte

T

nlt

To calculate the non linear term, first we evaluate the velocity (u, —v) from
the vorticity in the spectral space in this way

Then we call the FFT inverse to return in the physical space and so we can
calculate the products r = p'w and ry = p'w. Then we can call the FFT for
r1 and 7y and finally we can compute the non linear term as follows
3 . A~ . ka A A
nlt, = ikyps — ik, —ﬁa @p1 (5.1)

——
grad(kz ky)
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where the term grad(k,, k,) is calculated solely in the function that define
the spectral vector. To conclude, we have also changed the vorticity non
linear term, defined in 3.2, adding the gravity term as follows:

ity = ikoPa — ikypy — iky—p) (5.2)
Po

5.2 Simulation results and discussion

The initial conditions place a kinetic energy gradient in the direction of the
gravity. As seen in the previous chapter, the stratification tends to inhibit
vertical motions. At the same time, however, the previous numerical exper-
iment shows the existence of a turbulent diffusion velocity in the inhomo-
geneity direction. We must therefore understand which of the two effects
prevails. Is intuitive to suppose that this depends on the Froude number.

To better understand what happens we’re going to see some graphic re-
sults.

In the figure 5.2 we show the time evolution of density and vorticity with
Fr = 10, i.e. in a flow is not strongly stratified. Regarding the density field,
there was a significant interaction between the two initial fields. This is due
mostly to the term va and suggests that the rate of turbulent diffusion is
still dominant in relation to gravity. This is confirmed by the vorticity where
we can still see the completion of mixing between the two initial fields.

In figure 5.3 we have the similar results for Fr = 0.1, i.e. by increasing the
stratification of a factor thousand. This change leads to significant changes
in the pattern of the flow. The two density fields can not interact and seem
almost frozen in the initial conditions. Only the thickness of the mixing
layer increases slightly over time. Furthermore, inhibition of vertical motion
is prevalent enough to lead to a layer of zero vorticity in the middle of the
domain. This is a typical internal wave characteristics of the stratified flows.
Importantly, this is not due to the fact that the turbulent diffusion go up and
gravity down but only to the inhibition of vertical motions: if we inverted
the initial vorticity field we would have the same situation but reversed.
We then found the first key result of these simulations: the penetration
occurs only for large enough Froude numbers. Find the level of stratification
that discriminates the two behaviors could be future studies on this type of
problem.
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Figure 5.2: Visualization at four time instants of density (top) and vorticity
(bottom) contours, which Fr=10, in the central zone of the analytical domain
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Figure 5.3: Visualization at four time instants of vorticity contours, which
Fr=0.1, in the central zone of the analytical domain
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Analysis of the results continues in the next section where we estimate the
length scale evolution in the different cases. To do this we will analyze the
kinetic energy and the total density profile. In section 5.2.2 we do statistics
analyses on velocity moments to see the intermittent behavior of the flow.
Adding the forcing term, the long-range interactions between fluid particles
are hidden by the force of gravity, and then study the autocorrelations in
time of vorticity is meaningless.

5.2.1 Qualitative Universality

As mentioned in section 4.4, stratified flows can support a variety of types
of wave motion, which have no counterparts in unstratified fluids since the
tendency for vertical motion to be suppressed.

In the previous section we have anticipated what this means in our case.
Now let us to make a more detailed analysis that will lead us to estimate as
the mixing layer thickness varies as a function of Froude number.

To do so is very useful to examine the profile of kinetic energy in various
cases as is shown in figure 5.2.1.
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Figure 5.4: Time evolution of the energy profile with different Fr
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First we observed a sharp decrease of energy in the mixing interface. This
is reasonable since this is the only area in which a density gradient is present
from initial time. So close to interface the work done by buoyancy forces
reaches its maximum value and the interface behaves like a energy well.

At the edge of the domain instead we have developed independent of the
Froude number. This is because the density is constant at the boundary.
It is clear that in this situation is no longer possible do the same type of
analysis of the unstratified case. It has not sense to speak of penetration and
also the definition of A given previously here becomes meaningless because
the energy is no longer a monotonous pattern.

But we can still define the mixing layer basing on the total density profile as
the distance between the points with a density value equal to 25% and 75%
of maximum density.

Figure 5.5 shows the time evolution of the total density profile in the three
cases considered, while in figure 5.6 is represented the evolution of mixing
layers corresponding.

No stratification Fr=10 Fr=0.1

Figure 5.5: Time evolution of the total density profile in the different intensity
of stratification considered

Mixing layer thickness
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Figure 5.6: Mixing layer thickness as a function of the normalized time with
different Fr

61



The final thickness of the layer of mixing decreases with increasing strat-
ification. By executing a best fit, we can estimate the asymptotic behavior
with the follows slope:

e No stratification — 0.7226
e Fr=10 — 0.302
e Fr=0.1 — 0.2818

Clearly we have not yet enough data to make a reasonable fit of these results.

5.2.2 Large- and Small- Scale coherent structures

In this section we analyze the skewness and the kurtosis distribution of the
velocity in order to see the intermittent behavior of the flow. In the not strat-
ified case, we saw that the intermittent behavior was mostly concentrated in
the area of mixing. For Froude numbers less than infinity intermittence ex-
tends even beyond. Look at the trend of skewness shown in figure 5.7
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Figure 5.7: Skewness of the velocity component in the inhomogeneous di-
rection for each Fr. z. is the mixing layer center and A is the mixing layer

thickness
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For stratification very intense, at the initial time the skewness presents
almost a symmetry: in the high energy the skewness is negative, in the low
energy is positive and is zero in the separation layer. This trend is preserved
in time but the peaks become lower and central area shrinks. In the last
moments the skewness zero zone disappears and a peak is predominant at
the interface between zones of high energy and layer separation.

Conversely, the intermediate case initially presents a nearly symmetrical
distribution of the third moments when compared to the unstratified case.
Evolving over time the peak moves increasingly moving to the left. It is
important to note that the position of the maximum skewness shifts to the
left. This means that despite the vorticity fields continue to interact with each
other, the penetration as defined in 3.2.1 is negative. In other words, even
for Froude numbers greater than one, inhibition of vertical motion generates
an inverse penetration.

The intermittent flow may also be analyzed by looking at the fourth
moment of v.It is shown in figure 5.8
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Figure 5.8: Kurtosis of the velocity component in the inhomogeneous direc-
tion for each Fr. =z, is the mixing layer center and A is the mixing layer
thickness
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Similar to before, for Fr = 0.1 there are two peaks: one at the interface
between zones of high energy and the middle layer and a smaller one at
the other interface. These peaks are getting higher and more distant in the
evolution of time. For Fr = 10 we have not evolved very far from what occurs
in the non stratified case, but the peak is slightly lower and moving to the
left, i.e. towards the area of high energy.
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Chapter 6

Conclusion

We first considered the simplest kind of two dimensional turbulent shearless
mixing process which is due to the interaction of two isotropic turbulent field
with different kinetic energy but the same spectrum shape. This mixing is
characterized by the absence of advection, production of turbulent kinetic
energy, and an integral scale gradient. First, we demonstrated that, in this
situation, asymptotically in time, the turbulent diffusion is infinitely greater
than that measured in three dimensions.
We then analyzed the third and fourth moments of velocity. This analysis
indicates that the flow is highly intermittent. This refutes the thinking of
many who believe that the departure from Gaussianity is impossible in 2D
turbulence which is absent in the phenomenon of vortex stretching.
Finally we estimated the time in which the solution “forgets” the initial
condition by studying the autocorrelation time of the vorticity at different
points. We discovered that this does not depend neither by the points se-
lected, neither by the ratio of energy used. The vorticity is almost completely
unrelated after 5 LETOT but retains a dependence of 3% even after 20 time
units. The autocorrelation function is proportional to t %% and this indicates
the presence of a long-range interaction.

Later we changed the experiment by adding the effect of a stable strati-
fication. This changes significantly the evolution of the flow.
First, we have observed for small Froude numbers the two fields can not
interact through the central area of domains, where it forms a layer of zero-
vorticity separation. Under this layer forms a energy well. The reason is
because some kinetic energy is being converted into potential energy by the
gravity force. By skewness analysis, we see that there is a inverse penetra-
tion even for stratification not too strong. Finally, defining the thickness of
mixing on the total density profile, we have seen that its asymptotic behavior
is exponential with a slope that decreases with decreasing of Fr.

65



Bibliography

1]

C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral
method. Fundamentals in single domains. Springerl, 2006.

P.A. Davidson. An introduction to magnetohydrodynamics. Cambridge
university press, 1988.

U. Frish. Turbulence: The legacy of A.N.Kolmogorov. Cambidge Uni-
versity Press, 1995.

U. Frish and G. Parisi. A multifractal model of intermittency. in tur-
bulence and predictability in geophisical fluid dynamics and climate dy-
namics. 1985.

J. Hinze. Turbulence. McGraw-Hill, 1959.

H. Kellay and W. Goldburg. Two-dimensional turbulence: a review of
some recent experiment. Rep. Prog. Phys., 65, 2002.

A. Kolmogorov. The local structure of turbulence in incompressible
viscous fluid flow for very large reynolds number. Dokl. Akad. Nauk, 26,
1941.

A. Kolmogorov. A refinement of previous hypotesis concerning the local
structure of turbulence in incompressible viscous fluid at high reynolds
number. J. Fluid Mech, 13, 1962.

P. Kundu and I. Cohen. Fluid Mechanics. Academic press, 2002.
L. Landau and E. Lifshitz. Fluid mechanics 2nd ed. 1987.

L. Richardson. Weather prediction by numerical process. Cambidge
University Press, 1992.

J. Riley and S.M. deBruynKops. Dynamics of turbulence strongly influ-
enced by buoyancy. Phys. Fluids, 15, 2003.

66



[13] J. Riley and M.P. Lelong. Fluid motions in the presence of strong stable
stratification. Ann. Rev. Fluid Mech., 32, 2000.

[14] D. Tordella and M. Iovieno. Numerical experiments on the intermedi-
ate asymptotics of shear-free turbulent transport and diffusion. J.Fluid
Mech., 549, 2006.

[15] D. Tordella, M. Iovieno, and P.R. Bailey. Sufficient condition for gaus-
sian departure in turbulence. Phys.Rev., 77, 2008.

[16] D.J. Tritton. Physical fluid dynamics. Oxford science publications, 2006.

[17] S. Veeravalli and Z. Warhaft. The shearless turbulence mixing layer. J.
Fluid. Mech., 207, 1989.

67



List of Figures

2.1
2.2
2.3

24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

3.11

3.12
3.13

3.14
3.15

An example of three dimensional turbulence . . . . . . . . .. 13
The scheme of the eddy cannibalization in 2D turbulence . . . 15
Time evolution of a two dimensional turbulence that shows

the cannibalization process . . . . . . . . .. ... ... .. 17
Batchelor’s universal energy spectrum . . . . . . . . ... ... 19
Energy spectrum in 2D turbulence . . . .. .. .. ... ... 20
Destruction of a lump of vorticity in two dimensional turbulence 21
Scheme of the flow . . . . ... ... ... ... 23
Time evolution of the Courant number . . . . . . . . ... .. 25
Interaction between the two mixing . . . . . .. .. ... ... 25
Code diagram . . . . . . . . .. ... 26
Visualization at four time instants of vorticity contours with

energy ratio 6.6 . . . . ... oL oo Lo 29
Normalized kinetic energy profile at four time instant . . . . . 30
Initial and final velocity field for the corresponding three di-

mensional experiment with Fy/Fy =6.7 . . ... ... .. .. 31
2D mixing layer thickness as a function of the normalized time

for the different values of £, in log-log scale . . . . . . . .. .. 32
Comparison between the asymptotic behavior of the thickness

mixing layer in 2D and in 3D . . . . ... ..o 0oL 32
2D and 3D penetration. Asymptotic behavior with the mixing

layer kinetic energy ratio . . . . ... ... oo 33

Skewness of the velocity component in the inhomogeneous di-
rection for each energy ratio. x. is the mixing layer centre and
A is the mixing layer thickness . . . . . ... ... ... ... 35
Maximum of the skewness . . . . . . ... ... ... .. ... 35
Kurtosis of the velocity component in the inhomogeneous di-
rection for each energy ratio. x. is the mixing layer center and

A is the mixing layer thickness . . . . . ... ... ... ... 36
Maximum of kurtosis . . . . . . ... ... 37
Time evolution of the vorticity in a fixed point . . . . . . . .. 38

68



3.16 Histogram of the signal in the previous figure . . . .. .. ..
3.17 Autocorrelation function for each energy ratio . . . . . .. ..
3.18 Autocorrelation function for the energy ratio 6.6 . . . . . . . .
3.19 Fitting of the statistical dependence . . . . . . . . . .. .. ..

4.1 Vertical structure of an internal wave . . . . . . . . . .. . ..

5.1 Initial density fields: (a) is the linear function, (b) fluctuation
part, (c) total density . . . . . . .. ... L
5.2 Visualization at four time instants of density (top) and vor-
ticity (bottom) contours, which Fr=10, in the central zone of
the analytical domain . . . . . . . . .. ... 0L
5.3 Visualization at four time instants of vorticity contours, which
Fr=0.1, in the central zone of the analytical domain . . . . . .
5.4 Time evolution of the energy profile with different Fr . . . . .
5.5 Time evolution of the total density profile in the different in-
tensity of stratification considered . . . . . . . . ... ... ..
5.6 Mixing layer thickness as a function of the normalized time
with different Fr. . . . . . ..o
5.7  Skewness of the velocity component in the inhomogeneous di-
rection for each Fr. x. is the mixing layer center and A is the
mixing layer thickness . . . . . ... .. ... o000
5.8 Kurtosis of the velocity component in the inhomogeneous di-
rection for each Fr. x. is the mixing layer center and A is the
mixing layer thickness . . . . . . ... ... ... ... ...

69



