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CHAPTER 1

Introduction

1.1. Instability and Turbulence

“Nota il moto del vello dell’acqua, il quale fa a uso de’ capelli,
che hanno due moti, de’ quali l’uno attende al peso del vello,
l’altro al liniamento delle sue volte; cos̀ı l’acqua ha le sue volte
revertiginose, delle quali una parte attende a l’impeto del corso
principale, l’altra attende al moto incidente e refresso.”

Leonardo da Vinci (1452 - 1519)

[Observe the motion of the surface of the water which resembles that of hairs,
and has two motions, of which one goes on with the flow of the surface, the
other forms the lines of the eddies; thus the water forms eddying whirlpools
one part of which are due to the impetus of the principal current and the other
to the incidental motion and return flow.] (English translation from: Richter
1883).

Leonardo wrote this phrase as a comment to his drawing in Figure 1.1, and
what he describes there is the chaotic and swirling motion typical of turbulence,
by far the most common flow regime in nature. In addition to the fascinating
anatomical similarity, it seems possible to catch from this sentence a glimpse
of the same idea of Reynolds decomposition.
A turbulent flow is a chaotic and unsteady motion with a high level of vorticity
distributed along different sizes of eddies, characterized by a high diffusivity
between fluid particles and by the dissipation of energy into heat. The first sys-
tematic work about turbulence was carried out by Reynolds (1883): observing
the behaviour of a streak of coloured water inside pipes of different dimensions
in which it was driven water at different velocities and temperatures, he noticed
that when the parameter

ρ
UD

µ
(1.1)
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2 1. INTRODUCTION

Figure 1.1. Leonardo Da Vinci: An Old Man Seated in Right
Profile and Water studies (ca. 1508-10). Windsor, Royal Li-
brary, 12579r, (15.2 × 21.3 cm).

exceed a certain value, the flow became irregular (U and D are the charac-
teristic velocity and dimension of the study case respectively, while ρ and µ
are the fluid density and the dynamic viscosity). This dimensionless number
was later named Reynolds number (Re) by Sommerfeld, and proved to be both
the stability and the dynamic similarity parameter for viscous flows. When
the transition to turbulence occurs, the main flow characteristics (symmetry or
planarity for instance), are preserved just from the mean of the flow variables
and not from their instantaneous values, suggesting the decomposition of the
quantities in a mean and a fluctuating part. This was introduced by Reynolds
(1895), who succeed in averaging the Navier-Stokes equations, obtaining what
is now known as Reynolds Average Navier-Stokes equations (RANS). It was
already stated that turbulence is characterized by the coexistence of several
scales of eddies, but it was not emphasized that the eddies are related one to
the other. Richardson (1922) realized that the large eddies extract kinetic en-
ergy from the flow and transfer it by an inviscid (i.e. conservative) process to
smaller eddies, until the velocity gradient are high enough to let the viscosity
dissipate this energy into heat. This idea of a energy cascade is at the heart of
our present understanding of turbulent flows.



1.3. LAYOUT OF THE THESIS 3

1.2. The renewed interest in wall turbulence

1.3. Layout of the thesis
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CHAPTER 2

Theoretical background

2.1. Statistical principles.

Although Navier-Stokes equations show a classical deterministic approach to
the description of the fluid motion and can apply to laminar as well turbulent
flows, turbulence is usually described as a chaotic or random process. Due to
the enormous quantity of information included in the Navier-Stokes equation
and the acute sensitivity that turbulent flow fields display to perturbations in
the boundary conditions and in the initial values, turbulence does not only
appear as chaotic but it is also more easily treated as a random process, i.e.
using a statistical description.
In the following sections the main mathematical principles useful for the sta-
tistical analysis will be introduced, following mainly the text books by Pope
(2000), Kundu & Cohen (2007) and Tropea et al. (2007).

2.1.1. Distribution functions of random variables

For a random variable u = [u1; u2; u3; ...] it is possible to define the cumulative
distribution function (CDF) as

F (V ) ≡ P{u < V } , (2.1)

where P{A} represents the probability of the event A to occur. From the defini-
tion it follows immediately that F (−∞) = 0 and F (+∞) = 1, and F (V ) > F (W )

if V > W . From the CDF it is then possible to define the probability density
function (PDF) as

f(V ) ≡
dF (V )

dV
. (2.2)

The basic properties of the PDF, immediately following from the definition, are:

f(V ) ≥ 0 (2.3)

5
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and

+∞

∫
−∞

f(V )dV = 1 . (2.4)

The PDF, or equivalently the CDF, define completely a random variable, hence
two or more random variables which have the same PDF, or CDF, are statis-
tically identical.

2.1.2. Statistical moments.

The mean or first moment of a random variable u is defined as

U ≡ ⟨u⟩ ≡

+∞

∫
−∞

uf(u)du (2.5)

From the definition of mean we can define the fluctuation u′ as

u′ ≡ u −U (2.6)

and variance or second moment as the mean-square fluctuation, i.e.

⟨u′2⟩ ≡

+∞

∫
−∞

(u −U)
2f(u)du (2.7)

The square-root of the variance is the standard deviation or root mean square,

urms =
√

⟨u′2⟩. The nth central moment is defined to be

⟨u′n⟩ ≡

+∞

∫
−∞

(u −U)
nf(u)du . (2.8)

Special interest have the third and fourth statistical moment, normalized with
the proper power of the standard deviation, called respectively skewness

S ≡
⟨u′3⟩

u3rms
(2.9)

and flatness or kurtosis

F ≡
⟨u′4⟩

u4rms
. (2.10)

The skewness is a measure of the asymmetry of the PDF: it is equal to zero for
a symmetric distribution, e.g. the Gaussian distribution, while it has a positive
value if the PDF is shifted toward values greater than the mean and viceversa.
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The flatness is instead a measure of the “peakedness” of the PDF and it is
equal to 3 for a Gaussian distribution.

2.1.3. Ensemble average and time average

Statistics is based on ensemble averages, i.e. the set of samples is obtained from
different realization of the experiment that we want to describe. For instance,
if we want to characterize completely the velocity in one point in space and
time u(x⃗0, t0), we should repeat several experiments with the same boundary
conditions and measure just one sample in the desired location at the same
time from the experiment’s start. What we usually do in practice is instead to
measure the time series of the signal u(x⃗0, t) at the desired location during one
single experiment. It can be proved that if the process is statistically stationary,
i.e. if the statistics of the variable are constant in time, the ensemble average
is equal to the time average (identified in the following with an overbar). E.g.
, for the first moment we obtain:

⟨u(x⃗, t)⟩ = u(x⃗, t) , (2.11)

where

u(x⃗, t) ≡
1

T

T

∫
0

u(x⃗, t)dt . (2.12)

A process with this characteristic is said to be ergodic. When dealing with
non-stationary process, ergodicity is not fulfilled, but sometimes the average
are still defined with eq. (2.12), choosing a sampling time T small compared
to the time during which the average properties change significantly. To be
more rigorous, we should observe that to describe completely the whole ran-
dom process, i.e. the behaviour of the time-dependent random variable, we
should acquire the complete time series of several experiments and obtain for
each point in space x⃗ and for all possible choice of the set of times {t1, t2, ...tn}
the n-time joint CDF defined by

Fn(x⃗, V1, t1;V2, t2; ...;Vn, tn) ≡ P{u(x⃗, t1) < V1 ∧ u(x⃗, t2) < V2

∧ u(x⃗, tn) < Vn}
(2.13)

This means that in the case of a random process, the PDFs obtained from
the ensembles of time-series at a specified point in time t, are not sufficient to
describe completely the variable, because they do not contain any information
about the correlation in time.
In this chapter we will consider always ensemble averages, but when in chapter 5
the results of the experiments will be shown, all the statistics will be based on
time averages.
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2.1.4. Correlations

The autocovariance of a the velocity field u(x⃗, t) is defined as:

R(x⃗, t1, t2) ≡ ⟨u′(x⃗, t1)u
′
(x⃗, t2)⟩ . (2.14)

In a statistically stationary process all the statistics are independent of time
shift, we can thus write R(t1, t2) = R(t1 + T, t2 + T ). It follows that the only
important parameter for the determination of the autocovariance function is
the time lag between t1 and t2. We can thus define the autocovariance function

R(x⃗, τ) ≡ ⟨u′(x⃗, t)u′(x⃗, t + τ)⟩ . (2.15)

From the independence from a time shift it follows that the autocovariance is
an even function

R(x⃗, τ) = ⟨u′(x⃗, t)u′(x⃗, t + τ)⟩ = ⟨u′(x⃗, t − τ)u′(x⃗, t)⟩ = R(−τ) . (2.16)

The autocovariance function is usually normalized with the variance of the sig-
nal, obtaining the autocorrelation function

ρ(x⃗, τ) ≡
⟨u′(x⃗, t)u′(x⃗, t + τ)⟩

⟨u′2(x⃗)⟩
. (2.17)

From the definition it follows that

ρ(0) = 1 , (2.18)

while

∣ρ(τ)∣ ≤ 1 (2.19)

for the Cauchy-Schwarz inequality. Figure 2.1 show the streamwise velocity
autocorrelation function for current measurements of turbulent pipe flow in a
near-wall location.
To investigate the spatial structures of a turbulent flow it is possible to define
also the spatial autocorrelation

ρuu(x⃗, r⃗) ≡
⟨u′(x⃗, t)u′(x⃗ + r⃗, t)⟩

⟨urms(x⃗)urms(x⃗ + r⃗)⟩
. (2.20)

The spatial autocorrelation it is said to be longitudinal if r⃗ is parallel to u⃗,
while it is said to be transverse if it is perpendicular. In case of homogeneous
turbulence, i.e. statistically invariant under translations of the reference frame,
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Figure 2.1. Autocorrelation function for current measure-
ments of turbulent pipe flow. Re = 34 900 and r/R = 0.983

the spatial autocorrelation is more simply

ρuu(r⃗) =
⟨u′(x⃗, t)u′(x⃗ + r⃗, t)⟩

⟨u′2⟩
. (2.21)

2.1.5. Power Spectral Density (PSD)

In the analysis of a random variable we might be interested in how the power of
the signal u′2 is distributed in the frequency space. Since the Fourier transform
of u′2 does not converge, we define the power spectral density as

Suu(f) = lim
T→∞

⟨∣F(f, T )∣
2
⟩ , (2.22)

where

F(f, T ) =
1

√
T

T

∫
0

u′(t)e−i2πft dt (2.23)

is the truncated Fourier transform of the velocity fluctuation. Moreover it holds
the Wiener-Khinchin theorem, which states that the power spectral density of
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a statistically stationary random process is the Fourier transform of the corre-
sponding autocovariance function:

Suu(f) = lim
T→∞

⟨∣F(f, T )∣
2
⟩ =

+∞

∫
−∞

R(τ)e−i2πfτ dτ . (2.24)

It follows

R(τ) =

+∞

∫
−∞

Suu(f)e
i2πfτ df . (2.25)

Since u′(t) and R(τ) are real-valued functions, their Fourier transform is an
even function. In the following it will be considered just one-sided PSD Puu,
defined as

Puu(f) =

⎧⎪⎪
⎨
⎪⎪⎩

2Suu(f) 0 ≤ f < +∞

0 otherwise .
(2.26)

For τ = 0 eq. (2.25) and (2.26) give

R(0) = ⟨u′2⟩ =

+∞

∫
0

Puu(f)df , (2.27)

which relates the velocity variance to the power spectral density.

2.1.5a. Spectral estimate from finite time records. A real measurement is of
course finite in time, it is then necessary to have a reliable method to esti-
mate the power spectral density from the finite-length time series. For the
current experiments Welch’s method (Welch 1967) has been used. It consists
in dividing the time series in sections of desired length, each with 50% overlap,
and calculate the power spectral density of u(t)w(t), where w(t) is a window
function chosen to mitigate the spectral leakage (e.g. the Hamming window
function). The individual power spectral density estimates are then averaged,
obtaining a better estimate of the power spectral density of the time series.
Splitting the time series in several sections decreases the frequency resolution
of the power spectral density estimate, but increases its accuracy. Figure 2.2
illustrates the power spectral density estimate obtained with Welch’s method
of the streamwise velocity fluctuations for current measurements in turbulent
pipe flow. It is common to illustrate the power spectral density in premulti-
plied form in a semi-logarithmic plot, as shown in Figure 2.3, because as will
be explained in §5.6, the area under the premultiplied power spectra is directly
related to the streamwise velocity variance.
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2.1.6. Length and time scales of turbulent flows

In fluid mechanics the concept of similarity is of extreme importance in the
description and analysis of flows. Moreover, due to the complex nature of
turbulence most of the results are based on scaling law and dimensional argu-
ments; it is thus important to define the length, velocity and time scales of the
turbulence processes.
The most obvious scales are the ones related to the macroscopic characteristic
of the flow, e.g. a characteristic length scale for a plate is the boundary layer
thickness or for a pipe is its radius. In the following with the notation outer
scaling it will be meant the use of R as length scale, the bulk velocity Ub as
velocity scale and R/Ub as time scale (turnover time).
In a fundamental work Kolmogorov (1941) proposed that at sufficiently high
Reynolds number, the small-scales turbulent motions are statistically isotropic
and have a universal form that is uniquely determined by the dynamic viscosity
ν and the turbulent dissipation ε (i.e. the rate at which energy is dissipated into
heat by viscosity). On dimensional argument Kolmogorov derived the scales of
the turbulent eddies as

η ≡ (
ν3

ε
)

1/4

, (2.28)

tη ≡ (
ν

ε
)
1/2

, (2.29)

uη ≡ (εν)1/4 , (2.30)

that are now known as Kolmogorov’s length scale, time scale and velocity scale.
From these definitions it follows the identity

Reη =
ηuη

ν
= 1 , (2.31)

which evidence that the Kolmogorov scales effectively characterize the dissipa-
tive eddies in which the viscous forces dominate.
From the autocorrelation functions defined in eq. (2.17), we can define the in-
tegral time scale as

Λt =

+∞

∫
0

ρ(τ)dτ , (2.32)

which can be seen as the time scale over which the signal retains some signifi-
cant correlation with itself. From the autocorrelation function also the Taylor
microscale (Taylor 1935) can be defined as
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λt = [−
1

2
ρ′′(τ)]

−1/2

. (2.33)

Considering the Taylor expansion of ρ(τ) around τ = 0, we can prove that the
Taylor microscale is the value of τ where the osculating parabola of ρ(τ) in-
tercepts the τ axis. Giving a physical interpretation of the Taylor microscale
is not straightforward, but we can consider it as the scale over which the sig-
nal is strongly correlated. In complete analogy with the integral and Taylor
time scales, the longitudinal or transverse integral and Taylor length scales are
defined from the spatial autocorrelation function (eq. 2.20).

2.2. Turbulent pipe flow

2.2.1. Governing equations and wall shear stress

To analyse the turbulent pipe flow is convenient to use to define a cylindrical
reference frame, with the axial coordinate x aligned with the mean streamwise
direction of the flow, the radial direction r, normal to the pipe wall and orig-
inating in the centre of the pipe and with θ as the angular coordinate. The
velocity component are respectively u, v and w. In the following we will indi-
cate with R the pipe radius. The pipe flow is statistically axisymmetrical, for
such flows it holds

W = ⟨uw⟩ = ⟨vw⟩ =
∂

∂θ
= 0 (2.34)

and the RANS equation in cylindrical coordinates reduce to

∂U

∂x
+

1

r

∂

∂r
(rV ) = 0 (2.35)

∂U

∂t
+U

∂U

∂x
+ V

∂U

∂r
= −

1

ρ

∂P

∂x
−
∂

∂x
⟨u′2⟩ −

1

r

∂

∂r
(r⟨uv⟩) + ν∇2U (2.36)

∂V

∂t
+U

∂V

∂x
+ V

∂V

∂r
= −

1

ρ

∂P

∂r
−
∂

∂x
⟨u′v′⟩ −

1

r

∂

∂r
(r⟨v′2⟩)+

+
⟨w′2⟩

r
+ ν (∇

2V −
V

r2
)

(2.37)

where

∇
2f =

∂2f

∂x2
+

1

r

∂

∂r
(r
∂f

∂r
) +

1

r2
∂2f

∂θ2
(2.38)

We will focus the attention of this study on statistically stationary pipe flow in
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the fully developed region, in which the flow is satistically independent on the
axial direction x. We hence have:

∂

∂t
= 0 (2.39)

∂U

∂x
=
∂⟨u′2⟩

∂x
=
∂⟨v′2⟩

∂x
= 0 (2.40)

From the continuity equation (eq. 2.35), the hypothesis of fully developed flow
(eq. 2.40) and the boundary conditions V ∣w = Vcl = 0 (where the subscripts w
and cl represents the wall and centerline position respectively), we obtain

V = 0 . (2.41)

Substituting eq. (2.39), (2.40) and (2.41) in the r -moment equation (eq. 2.37)
we obtain

1

ρ

∂P

∂r
+
∂

∂r
⟨v′2⟩ =

⟨w′2⟩

r
−

⟨v′2⟩

r
, (2.42)

which integrated between the generic radial coordinate r and the pipe radius
R gives

1

ρ
(Pw − P ) − ⟨v′2⟩ =

R

∫
r

⟨w′2⟩

r
−

⟨v′2⟩

r
dr . (2.43)

Taking the derivative of eq. (2.43) along the x direction and applying the fully
developed flow hypothesis we obtain

∂P

∂x
=

dPw
dx

, (2.44)

which states that the mean axial pressure gradient is uniform along the pipe
radius. Substituting eq. (2.39), (2.40), (2.41) and (2.44) in the x -momentum
equation (eq. 2.36) we have

1

ρ

dPw
dx

= −
1

r

d

dr
(r⟨u′v′⟩) +

ν

r

d

dr
(r

dU

dr
) . (2.45)

Considering that the total shear stress τ(r) is

τ = µ
dU

dr
− ρ⟨u′v′⟩ , (2.46)
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eq. (2.45) can be written as

dPw
dx

=
1

r

d

dr
(rτ) . (2.47)

Integrating eq. (2.47) from the pipe centerline to the pipe radius gives

τ(R) =
R

2

dPw
dx

(2.48)

which relates the pressure drop with the shear stress. Integrating eq. (2.47)
from the generic radial coordinate r to the pipe radius and making use of
eq. (2.48) we obtain

τ(r) =
r

2

dPw
dx

, (2.49)

which is usually rewritten as

τ = −τw (1 −
y

R
) , (2.50)

where τw = −τ(R) is the shear stress on the wall and y = R − r is the wall-
normal distance. Profiles of Reynolds and viscous shear stress are shown in
Figure 2.4, from which is apparent that viscous stresses dominates at the wall,
while viscous stresses dominates in the outer part.
The shear stress in pipe flow is traditionally expressed in terms of friction factor

f ≡ −
dP

dx

D
1
2
ρU2

b

, (2.51)

where Ub is the bulk velocity in the pipe. From eq. (2.51) and (2.48) we obtain

f = 8
τw
ρU2

b

. (2.52)

In an influential set of experiments Nikuradse (1933) measured the friction fac-
tor in smooth pipes and for pipes with varying amount of roughness. For fully
developed laminar flow it is possible to obtain the analytical relation

f =
64

Re
, (2.53)

while for turbulent regime Prandtl proposed for smooth pipes the implicit equa-
tion
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Figure 2.4. Reynolds stresses −ρ⟨′u′v′⟩ (red) and viscous
stresses µ∂U

∂r
(blue) normalized with the wall shear stress vs.

the normalized wall distance. Solid, dashed and dash-dotted
lines represents Re = 5 000, Re = 24 000 and Re = 44 000 re-
spectively, black solid line is the total shear stress. Data from
DNS by Wu & Moin (2008).

1
√
f
= 2.0 log10(

√
fRe) − 0.8 . (2.54)

A more general relation which consider also the wall-roughness was proposed
by Colebrook (1939):

1
√
f
= −2 log10 (

1

3.7

e

D
+

2.51
√
fRe

) , (2.55)

where e/D is the roughness height normalized with the pipe diameter. Moody’s
chart (Moody 1944), shown in Figure 2.5, represents all the aforementioned
relations and is thus of common use in engineering.

2.2.2. Viscous scales and mean velocity profile

Close to the wall the main parameters in the description of the flow are the wall
shear stress τw and the cinematic viscosity ν = µ/ρ, we thus expect the flow to
scale on properly defined normalization parameters (viscous scales) based on
those quantity. We define the friction velocity
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Figure 2.5. Moody’s diagram depicting the friction factor in
function of Reynolds number.

uτ ≡

√
τw
ρ

(2.56)

and the viscous length scale

`∗ ≡
ν

uτ
. (2.57)

From those two quantities it follows the viscous timescale

t∗ =
l∗
uτ

=
ν

uτ
. (2.58)

A friction Reynolds number is also defined as

Reτ = R
+
=
R

`∗
, (2.59)

i.e. the ratio of the outer and viscous length scales. In the following the super-
script + will mean a quantity normalized with the viscous scales. In particular
we define the viscous scaled velocity
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U+
≡
U

uτ
(2.60)

and the viscous scaled wall distance or wall units denoted by

y+ ≡
y

l∗
=
uτy

ν
, (2.61)

which resemble a local Reynolds number and its magnitude can be interpreted
as the relative importance of the turbulent and viscous process.
In a fundamental work Prandtl (1925) postulated that at high Reynolds num-
ber exist close to the wall a region in which the normalized velocity is function
just of the normalized wall distance, i.e.

U+
= Φ(y+) . (2.62)

This region is called inner layer and is usually defined as y+ < 0.1R+. The
expression in eq. (2.62) is called law of the wall, and in the classical theory
and textbooks is presented as universal for all wall-bounded flows on smooth
surfaces. Extremely close to the wall (y+ < 5) we identify a viscous sublayer,
where Reynolds stress are negligible and in consequence to the choice of the
normalization, a Taylor expansion of Φ around y+ = 0 gives

U+
= y+ + o(y+) . (2.63)

For zero pressure-gradient flow the next non-zero term of the expansion is of
order (y+)4, while in presence of pressure gradient the second order term exist
and is inversely proportional to R+ (see §4.3), hence for R+ →∞ the similarity
between the different flow cases can be considered valid in this region. Further
from the wall, the viscous stresses become small compared to the turbulent
stresses, we thus expect that in the outer layer, commonly defined as y+ > 50,
the velocity field for R+ → +∞ is independent of ν and is function of y/R only.
In this region it holds the velocity-defect law, proposed by von Kármán (1930)

Ucl −U

uτ
= Ψ(

y

R
) . (2.64)

Von Kármán proposed a logarithmic behaviour of Ψ based on Prandtl’s mixing
length hypothesis. Even with a different notation and normalization he has
found what now is known as the log-law

U+
=

1

κ
ln y+B , (2.65)



2.2. TURBULENT PIPE FLOW 19

where κ and B are constant (κ is called the von Kármán constant). The log-
arithmic description is expected to hold in a portion of the overlap region, i.e.
where the inner and outer layer overlap. Another possible derivation of the
log-law was proposed by Millikan (1938), matching the derivatives of the for-
mulation in eq. (2.62) and (2.64).
The region of validity of the log-law is an open issue and in literature different
values for its bounds has been proposed: the lower ones is especially debated,
with values spanning more than one order of magnitude from y+ > 30 (Pope

2000, among others) y+ > 200 (Nagib et al. 2007; Österlund et al. 2000) or
y+ > 600 (McKeon et al. 2004). More accordance is found on the higher bound,
with almost all the authors proposing y/δ < 0.1−0.2. The values of the log-law
constants is another debated problem, related also to the choice of the bounds,
and their universality has been objected. The issue is fairly complicated and is
out of the purpose of this report, also because, as will be pointed out in §4.4,
the absence of a direct measure of τw in the current experimental apparatus
does not allow the use of the collected data for the determination of the log-law
constants. For a pleasant review on the subject the reader is referred to (Örlü
2009, §3.2-3.5).
Before the conclusion it is necessary to define the buffer layer as the region be-
tween the end of the viscous sublayer and the beginning of the log-law region,
where neither the viscous stress nor the turbulent stress are negligible.

As we have seen the linear or logarithmic profile are valid just in limited por-
tion of the profile. To overcome this limitation several composite profiles has
been proposed. One of the first description was given by Coles (1956) for the
boundary layer and is based on the idea that the velocity profile can be rep-
resented by the superposition of the law of the wall and an additive function
representing the outer part of the profile

U+
= U+

inner(y
+
) +

2Π

κ
W(

y+

R+
) , (2.66)

where Π and W are known as wake parameter and wake function respectively.
Nagib & Chauhan (2008) proposed a composite profile of the kind of eq. (2.66).
For the inner region they modified the Musker (1979) profile, which agrees with
the linear law of the wall close to the wall and develops into the logarithmic pro-
file at higher y+. The main shortcomings of the Musker profile are that, since
it was developed for boundary layer flow, it does not take into consideration
the second order term in the Taylor expansion of U+ at the wall (which is zero
in absence of pressure gradient) and it fails to reproduce an “overshoot” above
the logarithmic profile that DNS data show for y+ ≈ 50. Both the effects are
taken into consideration in the modified version by Nagib & Chauhan (2008),
who proposed
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U+

inner =
1

κ
ln(
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0.835
] ,

(2.67)

where

α = −
1

2(κ − a)
, β =

√
(−2aα − α2) , R =

√
α2 + β2 , s = −aR2 .

For the outer part of the profile, they proposed an empirical fitting with an
exponential function. As already stated, in this region the description must be
flow dependent because the effects of geometry are important. For pipe flow
they obtained

Wpipe = (1 −
ln(η)

2Π
)

1 − exp{η3 [p2(η −
4
3
) + p3(η

3 − 2) + p4(η
4 − 7

3
)]}

1 − exp [−(p2 + 3p3 + 4p4)/3]
(2.68)

with η = y/R, p2 = 4.075, p3 = −6.911 and p4 = 4.876 and wake parameter
Π = 0.21.



CHAPTER 3

Experimental Setup

3.1. Experimental apparatus

3.1.1. Rotating pipe flow facility

The turbulent pipe flow measurements were performed in the rotating pipe
apparatus located at the Fluid Physics Laboratory of the Linné Flow centre at
KTH Mechanics. The facility was designed, built and taken into operation in
connection to the work of Facciolo (2006), then slightly modified in order to be

used also for the works by Örlü (2009) and Sattarzadeh (2011). The schematic
of the facility is shown in Figure 3.1. Air at ambient temperature and pressure
is provided to a centrifugal fan (B), after going through a throttle valve (A)
for flow rate control. Since the regulation range provided by this valve was
not wide enough, a bypass (C) regulated by another throttle valve is inserted
after the fan. A distribution chamber (E) is mounted after the fan in order to
reduce the transmission of vibration. An electrical heater (D) for eventually
heating the air stream lies inside the distribution chamber. The flow is then
distributed in three different spiral pipes that fed axisimmetrically the air into
a cylindrical stagnation chamber (G) with one end covered with an elastic
membrane, in order to further reduce the pressure fluctuations. Once in the
stagnation chamber the air first go through a honeycomb (F) to reduce lateral
velocity component and then is fed into a 1 m long stationary pipe through a
bell mouth shaped entrance, to provide an axisimmetrical flow. This first pipe
is connected to the six meter long axially rotating pipe (L) through a sealed
rotating coupling (H). In the first section of the rotating pipe a 12 cm long
honeycomb is mounted, made of 5 mm diameter drinking straws, which, if the
pipe is swirling, brings the flow into a more or less solid body rotation. The
rotating pipe is made of seamless steel, has a wall thickness of 5 mm and an
inner diameter of 60 mm. The inner surface is honed and the surface roughness
is less than 5µm, according to the manufacturer’s specifications. The pipe
is mounted inside a rigid triangular shaped framework with five ball bearing
supports (K). The rotation is obtained via a feedback controlled DC motor
(J) capable to run the pipe to rotational speeds up to 2000 rpm. Anyway,
for the present experimental investigation only fully developed non-swirling
turbulent pipe flow has been investigated. The air stream is ejected at 1.1 m

21
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Figure 3.1. Schematic of the rotating pipe facility. A) Throt-
tle valve, B) Centrifugal fan, C) Valve regulated bypass, D)
Electrical heater, E) Distribution chamber, F) Honeycomb,
G) Stagnation chamber, H) Coupling between stationary and
rotating pipe, I) Honeycomb J) DC motor, K) Ball bearings,
L) Rotating pipe, M) Circular and plate, N) Pipe outlet

from the floor as a free jet (N) into the ambient air at rest. By placing the
apparatus in a large laboratory with a large ventilation opening more than
60 pipe diameters downstream of the pipe outlet it is ensured that the jet can
develop far away from any physical boundaries. At the pipe outlet it is possible
to mount a circular end plate of different size (M), to reduce the entrainment at
the pipe outlet for jet flow studies, but during the current measurements none
was mounted. The L/D ratio equal to 100 ensures the fully developed turbulent
flow condition both for swirling and non-swirling case: this was experimentally
proven for this apparatus by Facciolo (see Facciolo 2006, §5.1). Moreover, a
recent work from Doherty et al. (2007) showed that to obtain higher order
statistics (up to flatness) invariance a L/D = 80 was required. For the present
work a new and more powerful centrifugal fan has been installed in order to
extend the maximum Reynolds number (based on bulk velocity) up to 110 000,
while in the previous studies it was limited to 30 000. The use of this bigger fan
has also the effect to heat the flow up to 12 K above room temperature; to have a
stable condition during the measurements, it is then necessary to wait until the
equilibrium condition is reached. Figure 3.2 shows the velocity and temperature
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evolution during the starting up of the fan at the centerline position. For the
profile measurements performed in the present investigation the measurements
took between 45 min and 90 min depending on the Re number, i.e. the higher the
Re the shorter the total sampling time, due to the shorter integral time scale.
During this time the velocity and temperature at the pipe exit can safely be
assumed to be steady, if one wait long enough (about one hour) before starting
the measurements. As a double check the data were acquired twice in some
positions, one time at the beginning of the profile measurement and another
time at its end, to ensure that the results were consistent.
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Figure 3.2. Centerline temperature (a) and velocity (b) evo-
lution during the starting up of the fan.

3.1.2. Traversing system

At first a fully automatic traversing system (traversing A in the following)
was adapted for the use with the pipe flow facility. However, pointing a laser
distancemeter on the probe’s prongs it was discovered that when exposed at
the highest operating velocity (∼ 35 m/s), the probe was oscillating around the
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Figure 3.3. Inlet section of the pipe flow facility

static position with a semi-amplitude of 0.1 mm. Since the reduction of these vi-
brations appeared to be a critical task, it was decided to use a stiffer traversing
system (traversing B in the following) designed and constructed by Österlund
(1999). This traversing system was tested with the distancemeter and showed
much smaller oscillations (between 3µm and 20µm depending on the probe-
holder/probe configuration) at the highest operating velocity. These values are
of the order of (0.4 ÷ 2)`∗ for the highest Re number case, so this traversing
system was considered accurate enough and was the one used for the mea-
surements. In the following further details and the results of the vibrational
analysis for both the traversing systems are shown.

3.1.2a. Description and vibrational analysis of the traverse A. The traverse A
is showed in Figure 3.4. It is made up of an airfoil-shaped supporting arm
which slides on a small rail and a positioning screw. A 30 cm long probe holder
is connected to the supporting arm, the probe (not shown in the figure) is
inserted inside the probe holder and fastened with a small screw. The whole
system can move forward and backward sliding on two rails. It is worth noting
that with this configuration we obtain a horizontal traversing, in opposition
to the traverse B, where the traversing occurs along the vertical direction.
To check the behaviour of the traversing system under flow condition the laser
beam of a MicroEpsilon ILD 1700 distancemeter, with a nominal accuracy
of 0.5µm and a frequency resolution of 2.5 kHz, was pointed directly on the
prongs (as shown in Figure 3.6) and close to the juncture between the probe
holder and the supporting arm (point A in Figure 3.4). To have some clues
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Figure 3.4. Traversing A, with a detailed view of the junc-
ture between the positioning screw and the airfoil-shaped arm
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Figure 3.5. Prongs displacement for Traversing A at ∼ 35 m/s
in measurement position (red: standard deviation)
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Figure 3.6. Laser beam pointed on one of the prongs.

on the understanding of the vibrational mechanism, the measurements were
taken at different flow speeds and with the traversing system in two different
positions with respect to the pipe outlet: a measurement position with the
prongs positioned just at the pipe outlet and a inside position with the entire
probe holder inside the pipe, so that the support arm was not exposed to the
emanating jet. In Table 3.1 the semi-amplitude of the vibration is reported
for the different cases, while in figure 3.7 the vibration power spectra for the
prongs and the support arm are shown. The conclusions that can be drawn
from those data is that the most powerful vibrational modes are generated by
the action of the jet on the support arm and then amplified along the long and
slim rod of the probe holder.

prongs displacement point A displacement

peak std peak std

measurement position 123µm 30µm 30µm 8µm

inside position // // 3µm 1µm

Table 3.1. Vibrational analysis results for traverse A

3.1.2b. Description and vibrational analysis of traverse B. Figure 3.8 shows
the traverse B mounted on its supporting table. The entire traversing mecha-
nism is hidden from the flow inside a metallic box covered with a circular plate.
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Figure 3.7. Vibration Power Spectra for Traverse A at max-
imum velocity in meausurement position

The traversing arm moves upward and downward inside two couples of wheels,
which support it on its way, reducing vibrations. To be sure that the circular
plate did not affect the free development of the jet, two cotton wires (so called
tufts) were fixed on the plate, in order to visualize whether the flow hit the
surface or not. The vertical range is 150 mm with a relative accuracy of ±1µm.
As shown in the figure the traverse was clamped tightly to an aluminium beam,
screwed on a heavy and stable table.
In the choice of the probe/probe-holder combination there is the need to take
into account two different phenomena: the aerodynamic disturbance induced
by the probe-holder/probe configuration on the flow field and the effect of the
inaccuracy on the determination on the probe position due to oscillations and
elastic deformations induced by the flow. The choice of long and slender ge-
ometries is optimal when aerodynamic disturbances are concerned, but these
shapes can easily amplify vibrations.
To have a deeper insight on the effect of the flow on the system it was then
decided to perform a vibrational analysis on the different probe-holder/probe
configuration shown in Figure 3.9. The measurements were taken with the
probe located at the centre of the pipe and 2 cm downstream the pipe outlet.
After tightening all the stopping screws that keep the probe holder and the
probe in their place the fan was turned on and let run for a while in order that
the probe and probe holder’s position adjust under flow condition, then the
fan was turned off. Once the velocity decayed, the distancemeter was nulled,
i.e. set to zero, and the fan was turned on again and the actual measurement
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Figure 3.8. Traversing system B and its supporting table.

started. This procedure ensured that also the mean position deviation is mea-
sured correctly. The results are reported in Table 3.2.
It appears clearly that the most stable configuration is configuration (b) (straight
probe holder and straight probe), but this configuration cannot be used for
boundary layer measurements, because the aerodynamic blockage would effect
deeply the flow inside the boundary layer. It was therefore decided to use con-
figuration (c). For the highest Re case, the standard deviation is less then one
third of the viscous scale (`∗ ≈ 12µm), while the mean deviation is negligible.

bent probe holder straight probe holder

b.l. probe straight probe b.l. probe

(a) (b) (c)

displacement semiamplitude 28µm 4µm 14µm

displacement mean 2µm 0µm −2µm

displacement std 6µm 1µm 4µm

Table 3.2. Vibrational analysis results for traverse B
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4 
cm

Figure 3.9. Different probe and probe holder configurations.
a) Bent probe holder with boundary layer probe, b) Straight
probe holder with straight probe c) Straight probe holder with
boundary layer probe

3.1.3. Hot-wire calibration nozzle and pressure transducers

The hot-wire probes were calibrated with the conventional technique of the
calibration nozzle. The equipment used was a TSI Model 1127. The stagna-
tion chamber of the nozzle is fed with air coming from a compressor, and is
kept at constant pressure through a pressure regulator. We can then derive the
velocity at the nozzle outlet from Bernoulli’s equation as:

u =

√
2∆P

ρ
, (3.1)

where ∆P denotes the mean pressure difference between stagnation chamber
and the outlet and ρ the density. The total pressure (relative to the ambi-
ent) and the temperature inside the stagnation chamber are measured with a
pressure transducer and a thermocouple. Since an accurate description of the
boundary layer requires an accurate calibration at low speeds, a highly accu-
rate pressure transducer is needed. These instruments have a small range of
measurement, so it was not possible to use just one pressure transducer for the
whole calibration. For the range 0 ÷ 130 Pa (which correspond approximately
to 0 ÷ 14 m/s), a pressure transducer of type MKS 120A Baratron with a rel-
ative accuracy of ±0.05% (full scale) was used, while for the higher pressures
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range another transducer with the range 0 ÷ 1400 Pa was used. For pressure
differences lower than 130 Pa the signals of both the two pressure transducer
were acquired, in order to check whether their results were comparable, so that
no discontinuity on the data could appear when switching from one pressure
transducer to the other. In Figure 3.10 the square root of pressure (∝ U)
measured with both the pressure transducers is plotted against the signal of
the hot-wire probe (∝ Un, where n is a King’s law parameter [see eq. 3.8]
determined after calibration), we notice that the values of the two pressure
transducers are always comparable, but not for very low pressure differences
(less than 4 Pa) where just the MKS transducer has a smooth, i.e. unscattered,
behaviour.
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Figure 3.10. Comparison of the values of the two pressure
transducers in the range p = 0 − 130 Pa. This images shows
how the two pressure transducers give comparable results over
most of the common range (p = 0 − 130 Pa), but not at low
pressures (inset).

The ambient absolute pressure and the temperature are measured during the
calibration in order to calculate the air density from the ideal gas law. Reg-
ulating the total pressure inside the stagnation chamber we obtain different
known velocities at the nozzle outlet, where the hot-wire probe is mounted,
and is then possible to calibrate the hot-wire probe.
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3.1.4. Hot-wire anemometer system and data acquisition system

The hot-wire anemometer system used in the experiments was a Dantec Stream-
Line 90N10 frame in conjuction with a 90C10 constant temperature anemome-
ter module for velocity measurement and a 90C20 temperature module for cold
wire temperature measurement. In order to reduce the temperature effects on
the signal, the overheat resistance ratio (see eq. 3.12) for all the measurements
was set to 110%, a part from one measurement taken with overheat set to 80%.
A gain and offset were applied to the bridge signal in order to use all the data
acquisition card range, which was a 16-bit analog to digital converter of type
NI PCI-6014.

3.2. Hot-Wire Anemometry

3.2.1. Introduction and physical background

3.2.1a. General introduction on hot-wire anemometry. The idea lying beneath
hot-wire anemometry is that a body exposed to a fluid stream will be cooled by
the flow in a way related to the flow velocity. The first hot-wire anemometers
were used in the beginning of the 20th century and consisted of about 10 cm
long wires with a diameter of few tenths of millimetre. Nowadays, the sensitive
element of a commercially available hot-wire probe is a wire with a diameter of
5µm and a length of about 1 mm, typically made of tungsten or platinum, at-
tached on the tip of two supporting needles (prongs) and heated by an electric
current. When the probe is exposed to a fluid stream it will be cooled by the
flow, with a cooling effect which can be related to the flow velocity. To allow
velocity measurements in liquid, different type of sensor, called hot film, are
used, but a description of those is out of the purpose of this report. There are
four different ways of operating a hot-wire probe: the Constant Temperature
Anemometry (CTA), the Constant Current Anemometry (CCA), the Constant
Voltage Anemometry (CVA) and the pulsed wire anemometry. The most com-
mon is Constant Temperature Anemometry, which supply a sensor heating, i.e.
a current, which is variable with the fluid velocity in order to keep constant the
resistance, and thus the temperature, of the wire. This is obtained inserting
the probe in a Wheatstone bridge with an adjustable resistance and connecting
one side of the bridge to a differential amplifier, as shown in Figure 3.11. On
one side of the amplifier an offset voltage is imposed which, amplified, gives
a constant current through the bridge, bringing the wire under no flow con-
dition to a temperature dependent on the value of the variable resistance of
the bridge (R3 in Fig. 3.11). When the flow cool down the wire, the amplifier
senses the bridge unbalance and increases the current in order to restore the
balance, keeping the resistance of the probe constant. Measuring the voltage
at the top of the bridge we know the instantaneous current, thus the instan-
taneous heating power, which can be related to the flow velocity. In Constant
Current Anemometry the probe is inserted in a Wheatstone bridge as before,
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but now the current going through the bridge is kept constant (see Fig. 3.12).
Measuring the voltage between the two sides of the bridge is possible to know
the instantaneous value of the probe resistance, which can directly be related
to the flow velocity. In Constant Voltage Anemometry the electronic circuit is
designed in order to have a constant voltage drop on the probe (see Fig. 3.13):
the output signal E is dependent on wire resistance and thus on flow veloc-
ity. In pulsed wire anemometry two hot-wires are used: one of them heat
momentarily the fluid around itself, this spot of heated flow is then convected
downstream to the second wire which act as a temperature sensor. The time of
flight of this spot is related to the fluid velocity. This section cannot describe
all the issues related to hot-wire anemometry, but the literature on the subject
is huge and the reader is referred to classical textbooks as the ones by Perry
(1982), Lomas (1985) and Bruun (1995).

Ampli�ier
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Probe

Difference
voltage
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Figure 3.11. Schematic of a constant temperature anemome-
ter (CTA).

3.2.1b. Heat transfer from a heated cylinder. To understand how the signal
from the anemometer is related to the flow velocity, is good to start from the
analysis of the behaviour of a heated wire in a stream of fluid. In his pioneering
experimental and theoretical work, King (1914), starting from the theoretical
analysis by Wilson (1904) about the temperature profile at any point of a 2D
flowfield due to a line source of given strength, has derived a solution for the
behaviour of a heated wire in a fluid stream, with the hypothesis of constant
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Figure 3.12. Schematic of a constant temperature anemome-
ter (CCA).
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Figure 3.13. Schematic of a constant voltage anemometer (CVA).

temperature on all the wire’s surface. For the case of negligible natural con-
vection, i.e. high velocity, he found:

Wf

L(Tw − Ta)
= κ +

√
2πκcpρDV (3.2)

where Wf , L, Tw,D,Ta, κ, cp, ρ, V are respectively the heat loss due to forced
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convection, the wire’s length, temperature and diameter, the fluid’s tempera-
ture, thermal conductivity, specific heat, density and velocity. It is possible to
express the heat loss due to forced convection by means of the heat transfer
coefficient h as:

Wf = hπDL(Tw − Ta). (3.3)

These relations can also be written using the nondimensional Nusselt, Prandtl
and Reynolds numbers relative to the wire

Nu =
hD

κ
, Pr =

cpµ

κ
, Rew =

ρDV

µ
,

obtaining

Nu =
1

π
+

√
2

π
PrRew , (3.4)

which is known as King’s Law.

3.2.2. Calibration

3.2.2a. Conventional hot-wire calibration. A hot-wire probe is of course differ-
ent from a infinitely long cylinder: the wire has a finite length and is soldered
on two prongs connected to the stem of the probe. Aerodynamic disturbances
due to the probe structure, heat conduction from the wire towards the prongs
and natural convection phenomena make vain the attempts to find a general
law to relate the hot-wire signal to the flow velocity. Therefore, each probe
has to be calibrated exposing it to a set of known velocities and measuring
the voltage response. The analysis presented in the previous paragraph can
nevertheless give some clues on the general shape of the relation between ve-
locity and hot-wire signal. In steady conditions all the heat generated on the
wire by Joule’s heating is transferred to the surrounding by means of natural
convection (Wn), forced convection (Wf ), conduction (Wc) and radiative heat
transfer (Wr):

E2
w

Rw
=Wn +Wf +Wc +Wr , (3.5)

where Rw is the probe resistance and Ew is the voltage difference across the
wire, proportional to the top of the bridge voltage, which is the measured signal
E. Starting from equation (3.3), we can write the forced convection term as
function of the Nusselt number as:

Wf = LπκNu(Tw − Ta) . (3.6)
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In constant temperature anemometry the probe resistance is kept constant, we
can thus write:

E2
∝
E2
w

Rw
≈Wf ∝ Nu(Tw − Ta) , (3.7)

where the influence of the ambient temperature has to be taken into considera-
tion just when the temperature changes during a measurement or between the
calibration and the measurement (see §3.2.2b). King’s law can then be written
as

E2
= A +BUn , (3.8)

where A, B and n are constants determined fitting the calibration data to this
expression. According to equation (3.8), A is equal to the square root of the
voltage at zero velocity, but the best fit of calibration data is found for smaller
values due to the effects of free convection. At the same time, the exponent
n should have, according to the original expression of King’s law, i.e eq. (3.4),
the value n = 0.5, but the fitting of calibration data suggests usually a smaller
value. A modified version of King’s law was proposed by Johansson & Al-
fredsson (1982) to take into account the natural convection phenomena, not
negligible at low velocities:

U = k1(E
2
−E2

0)
1/n

+ k2(E −E0)
0.5 . (3.9)

When a high number of calibration points is available over the entire velocity
range, also a simple polynomial of the form

U = C0 +C1E +C2E
2
+C3E

3
+ ... (3.10)

can be used to fit the calibration data (see George et al. 1989).
In Figure 3.14 a comparison of different fitting laws of the calibration data is
shown. A high order polynomial fitting follows better the calibration data than
the modified King’s law throughout the entire range, especially at low speed,
but we can notice in Figure 3.14(b) that the modified King’s law is the only one
which has a continuous behaviour between the point at zero velocity (E0) and
the calibration point at the lowest speed. A check of the Probability Density
Function of the hot-wire signal showed that for all the measurement points the
hot-wire signal was always in the calibration range: it was hence decided to
use a 10th order polynomial fit as a calibration law. Despite the high order of
the polynomial no wiggles occurred, because of the high number of calibration
points available.
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Figure 3.14. Calibration of the hot-wire probe: different fit-
ting laws of the calibration data on the entire velocity range
(a) and a detail of the low speed range (b).

3.2.2b. Temperature compensation of the hot-wire signal. Since a hot-wire anemome-
ter measures the velocity from the cooling effect on a wire, a dependence on
the flow temperature can be easily expected, and is shown in equation (3.7).
Looking at equation (3.4), we see that Nu is mainly independent on tempera-
ture, we can thus write that at the same flow velocity:
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E(Tref)
2
= E(T )

2Th − Tref

Tw − T
, (3.11)

where Th is the fixed hot-wire operating temperature, T is the ambient tempera-
ture at which the measurement was taken and Tref is a reference temperature,
usually the average of the temperature during calibration. With the aid of
equation (3.11), we can hence compensate the temperature effect, obtaining
the bridge voltage that we would have had if we had measured at temperature
Tref . The only uncertainty is the value of Tw, which is not known a priori : a
constant temperature anemometer is operated at a certain overheat ratio, aR,
defined as:

aR =
R(Th) −R(Tref)

R(Tref)
. (3.12)

For small temperature changes a linear dependence of resistance on tempera-
ture can be assumed, leading to the expression

R(Th) = R(Tref)[1 + αel(Th − Tref)] , (3.13)

where αel is the temperature coefficient of electrical resistivity. We can thus
express the overheat ratio as:

aR = αel(Th − Tref) . (3.14)

Substituting this expression in equation (3.11), after some algebraic passages
we obtain:

E(Tref)
2
= E(T )

2
(1 −

T − Tref

aR/αel
)

−1

. (3.15)

The temperature coefficient of electrical resistivity is provided in the manu-
facturers’ data-sheet or found tabulated in literature, see for instance Bruun
(1995), but some authors (van Dijk & Nieuwstadt 2004; Örlü 2009) has noted
differences between the tabulated value and the one observed during experi-
ments. These discrepancies might be due to small impurities in the Platinum
crystal-structure (Bradbury & Castro 1972) or caused by the tormenting pro-
cess during the production of the wire, or during the assemblage on the prongs.
For these reasons the parameter αel can be considered a characteristic of every
single probe, and an iterative approach to determine its value was performed
on every probe used during the experiments. At first a set of many calibration
points (about 70) was taken at ambient temperature spanning the entire veloc-
ity range expected in the experiments with a prevalence in the low speed range,
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then a smaller set of calibration points (about 15) was taken at higher temper-
ature, heating the flow entering in the calibration unit. For every calibration
point the temperature is measured inside the stagnation chamber and not at
the nozzle exit, in order that the temperature probe would not disturb the flow
used for calibrating the hot-wire. This means that the acquired temperature
is a total temperature (T 0), different from the static temperature the flow has
at the nozzle exit. Lomas (1985), Fingerson & Freymuth (1996), Sandborn
(1972) among others have reported that the temperature sensed by a hot-wire
probe is not the static temperature, but the recovery temperature Tr defined as:

Tr
T 0

=
1 + r γ−1

γ
M2

1 + γ−1
γ
M2

, (3.16)

where r =
√

Pr (in the case of air at the temperature range of our interest
r = 0.84). For a velocity of 35 m/s and a temperature of 305 K, the difference
between total and recovery temperature is around 0.1 K, hence can safely be
neglected and the temperature of the thermocouple used as temperature T in
equation (3.15). To determine the calibration law of the probe, we want to
correct the temperature effect on each point of the first set, but to use equa-
tion (3.11) we need to know αel. An iterative procedure in two steps was used,
using as a starting point for αel the value found in literature (αel = 0.0038 K−1):
first we obtain the probe’s calibration law at a temperature equal to the average
of the static temperatures of the first set of data, correcting the temperature
effect with equation (3.11). The second step is to use equation (3.11) to fit the
calibration points taken at higher temperature on the calibration law obtained
at the first step, determining a value for αel. The procedure is then repeated
using the αel value found in the second step until convergence is reached.

3.2.3. Probe manufacturing and L/d choice

Even if it is possible to buy already made hot-wire probes from several ma-
nufacturers, the sizes and geometries of them might not fit the needs of the
user, especially when the study of the small scales of turbulence is concerned:
for having a long life expectancy, commercially available probes are made of a
welded tungsten wire with a length of at least 1 mm and a diameter of 5µm,
which can be too large for some applications. Moreover, when using a “off the
shelf” probe, delivering and repairing time can become an issue. In the Fluid
Physics Laboratory of the Linné Flow Centre at KTH Mechanics, a “hot-wire
corner” to build and repair hot-wire probes inhouse was established since the
mid 80ies. All the probes used for the measurements in this report have been
built there, following the guidelines from Alfredsson & Tillmark (2005) and the
“oral tradition” of my revisors and of the other researchers of the department.
In the following a description of the procedure followed for building the probes
is reported.
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Figure 3.15. Calibration of the probe. Open circles: cali-
bration point at ambient temperature, solid line: calibration
law at ambient temperature, plus symbols: calibration points
at higher temperature, star symbols: calibration points taken
at higher temperature, with temperature effect correction

The main components of a hot-wire probe are two small cylinders called prongs
with the function of supporting the wire in the desired position and guaran-
teeing electrical connection, a rigid frame with structural functions and the
wire itself. The prongs were obtained from steel piano wires with a diameter
of 0.3 − 0.5 mm, cut to the desired length (about 8 cm) and made pointy by
electro-etching with nitric acid with a concentration of 65%(m

m
). The choice

of the diameter has been made in order to fulfil mainly three constrains: the
lower limit is set by the flexural rigidity and the condition that the temper-
ature of the prongs be nearly equal to that of the ambient air, whereas the
upper limit is set by the requirement that the prongs do not (or to the least)
distort the flow in the vicinity of the sensing elements (van der Hegge Zijnen
1951). To speed up the reaction a voltage difference was applied between the
wires and the acid, and to obtain the pointy shape the two prongs were moved
periodically in and out the acid in order that the foremost part would stay a
longer time in the acid. To reduce the aerodynamic blockage of the probe in
the near wall measurement the prongs were bent toward the wall. For doing
this operation the device shown in figure 3.16 has been designed and built,
in order to have a repeatable shape of the prongs. The two steel wires were
then inserted in a ceramic tube with two holes, of the type used to insulate
thermocouples, to provide electrical insulation and flexural rigidity. When the
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desired spacing between the prongs is obtained, they are glued with epoxy to
the ceramic tube. On the side of the prongs opposite to where the wire will be
soldered, electrical cables ending with golden connector are soldered, in order
to connect the probe to the anemometer’s cable. Figure 3.17 shows a hot-wire
probe together with its components. Once the probe support is assembled, the

Figure 3.16. Bending device used to have a repeatable shape
of the prongs.

Figure 3.17. Probe’s components together with a finished
probe (top).

sensing element (i.e. the wire) has to be fixed on the prongs’ tips. The wire of
commercially available probes are usually tungsten wire welded on the prongs,
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but to manufacture the probe on your own it is easier to use platinum wires,
which can be soldered. Moreover, tungsten wires with diameter smaller than
2.5µm are not available, therefore the choice of platinum wires is mandatory
to build small hot-wire probes. The work has to be done under a microscope
and it is necessary to use two micromanipulators, one for the wire and one for
the soldering iron. The platinum wires used as a sensing elements are usually
available as Wollastone wire, i.e. fine platinum wire clad in a silver coating, thus
they have to be immersed for some minutes in the acid in order to etch away
the silver. The procedure starts with cutting a small piece of Wollastone wire
(about 2 cm), clamping it into a crocodile clamp and immersing the desired
length of wire in a beacker containing nitric acid. When the silver is etched
away and the platinum wire exposed, the clamp can be mounted on the micro-
manipulator. The prongs have to be prepared for the soldering, cleaning them
with an antioxidant product and covering them with a thin layer of soldering
tin (operation made with the aid of a soldering iron). When the prongs are
ready, they are covered again with soldering liquid: this will help to keep the
wire still for capillarity effect. The wire can now be positioned on the outer-
most part of the prongs, perpendicular to them. When the wire is in position,
a small soldering iron mounted on a micromanipulator is made to touch one
prong, in order to solder the wire on it (see Fig. 3.18). The same operation is
repeated with the other prongs. After checking if the resistance value is around
the expected one for the wire length and diameter, the wire excess is broken
by bending it moving back and forth the micromanipulator. Figure 3.19 shows
one of the hot-wire probes built and used for the experiments.

Figure 3.18. Close-up figure of the soldering process for a
0.25 mm long boundary layer probe.



42 3. EXPERIMENTAL SETUP

Figure 3.19. Close-up figure of a hot-wire probe built for the experiments.

The geometrical parameter L/d, where L is the hot-wire length and d is its
diameter, has a leading important in the dynamic behaviour of the hot-wire
probe. When the probe is operated, since the Joule heating on the prongs is
negligible for their low resistance, they have almost the same temperature of
the stream and thus act as heat sinks. A temperature profile T (x, t) (with x
the distance measured from the centre of the wire) generates along the wire,
governed by the differential equation (Lord 1981):

−
κwπd

2

4

∂2T

∂x2
+ hπd(T − Ta) +mc

∂T

∂t
=
I2

L
[RTref

+ αel(T − Tref)] , (3.17)

where κw is the thermal conductivity of the wire material, h the heat transfer
coefficient between wire and the flow, Ta the adiabatic temperature of the wire,
m the mass of the wire per unit length, c the specific heat of the wire material,
I the applied current, Tref is a reference temperature and RTref

is the resis-
tance at that temperature. The first term in this equation represent the heat
conduction along the wire, the second the convective heat transfer between the
wire and the flow, the third one the unsteady heat storage in the wire and the
last one the Joule hating considering the variation of resistance along the wire.
Equation (3.17) can be split in two equations, one for the mean and one for
the fluctuating quantity. Solving the mean quantity equation we get the mean
temperature distribution, which has the form (Lord 1981):

T = T a +
a2

αelb2
Ra + (Ts − T a −

a2

αelb2
Ra)

cosh (2bx/L)

cosh b
, (3.18)
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where Ra is the mean resistance at the adiabatic temperature, Ts is the tem-
perature of the prongs and the parameters a and b are defined as:

a2 =
αelI

2
L

πd2κw
, b2 =

hL2

dκw
− a2 .

From equation (3.18), we can notice from the term cosh 2bx/L that low value
of L/d mean a longer part of the wire affected by the heat conduction towards
the prongs. Other formulations of the temperature profile along the wire are
possible, see for instance Bruun (1995, p.24). The effect of the steady temper-
ature profile along the wire is taken into account by the calibration procedure,
even when a big portion of the wire is affected by the heat transfer towards
the prongs, but conduction losses to the sensor support influence the dynamic
behaviour, especially at low frequencies. It is possible to find in literature sev-
eral criteria on the lower limit for L/d in order that the loss for conduction
towards the prongs does not affect significantly the sensor response. Lingrani
& Bradshaw (1987b), Willmarth & Sharma (1984), Blackwelder & Haritonidis
(1983) among others have found as limiting value L/d > 150 − 200, when an
optimal turbulence intensity measurement is concerned, while Künn & Dressler
(1985) proposed L/d > 300 for optimal spectrum measurement. Lately, Hult-
mark et al. (2011) proposed a new parameter, Γ, to describe the significance of
heat conduction towards the prongs, instead of the aforementioned L/d.

Γ = (
L

d
)

√

4aR (
κf

κw
Nu) ,

where all the parameters were introduced before a part from κf which is the
thermal conductivity of the fluid evaluated at the wire temperature. They
found that Γ > 14 is required to avoid not-negligible end-conduction effects.
Since this parameters is not probe-specific but is dependent on the operative
condition in which the measurement is performed (i.e. local velocity and over-
heat ratio), its use as a criteria in probe manufacturing is not straightforward
when a probe is meant to be used in various situations, but it can be helpful
in the data analysis.
In Table 3.3 a list of the probes built and used for the measurements is pre-
sented. The high L/d value of probe A is due to the fact that the probe was
used both as a hot-wire probe for velocity measurements and as a cold-wire
probe for temperature measurements. The low value of L/d for probe C is due
to the limitation on the resistance value that can be handled properly by the
anemometer.
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probe L d L/d αel

A 0.24 mm 1.25µm 200 2.5 ·10−3 K−1

B 0.32 mm 2.50µm 128 3.7 ·10−3 K−1

C 0.80 mm 5.00µm 160 3.6 ·10−3 K−1

D 1.50 mm 2.50µm 600 3.3 ·10−3 K−1

Table 3.3. List of the characteristics of the probes used in the measurements

3.2.4. Cold-wires for temperature measurements

When a hot-wire probe is operated in constant current mode with a current low
enough to make the Joule heating negligible, it is referred as cold-wire and can
be used to measure the instantaneous temperature of a fluid stream. The un-
heated wire exposed to a fluid stream will have an instantaneous temperature
equal to the one of the flow, its resistance will thus vary due to the tempera-
ture effect on resistance showed in equation (3.13), changing the voltage drop
through it. The probe indicated with letter D in Table 3.3, was used also as a
cold wire: a calibration a against thermistor thermocouple was performed and
a linear relationship between the temperature and the signal from the constant
current anemometer (CCA) was found to represent the calibration curves over
the temperature range of interest.
For cold-wire temperature measurements, the frequency response of the probe
is much lower than for a hot-wire velocity measurements with the same probe.
As pointed out in Millon et al. (1978), the attenuation of the signal is due
both to the thermal inertia of the wire and to the heat conduction towards
the prongs. The attenuation due to heat conduction towards the prongs is
mainly active in the low frequency range, while the thermal inertia of the wire
attenuate mainly the high frequency range. The transfer function of the probe
depends strongly on the geometry of the prongs and on how the wire is bonded
at its end, as pointed out in Parantheon et al. (1982) and Dénos & Sieverd-
ing (1997). Tsuji et al. (1992) recommend an L/d ratio larger than 400 in
order not to have unacceptable error in the measured temperature variance,
but their results are relative to a probe in which the prongs are soldered to a
un-etched portion of the Wollastone wire of length L/2 on each side (where L
is the sensitive, i.e. etched, portion of the wire). Since this geometry, according
to Parantheon et al. (1982), proved to reduce the heat loss to the prongs, an
even larger L/d ratio was chosen. Since the cut-off frequency of the probe is
mainly due to the thermal inertia of the wire, the end-conduction effect can
be neglected in its determination: experimental data in Dénos & Sieverding
(1997) suggest a cut-off frequency of around 900 Hz for a platinum wire with a
diameter of 2.5µm and a length of 1.5 mm operated at 20 m/s.
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Measurement matrix and preparations

4.1. Measurement matrix and acquisition procedure

The full range of experimental condition is given in Table 4.1, where the exper-
iments are grouped according to the hot-wire probe used. The measurements
have been taken with the probe located around two diameters upstream the
outlet, in order to prevent the influence of the emanating jet on the results.
Before starting the measurement, the probe was moved toward the wall with
small steps and operated; when the influence on the statistics of the heat trans-
fer toward the wall became evident (see §4.3), the position of the probe was
considered to be the closest possible to prevent damages and the traverse sys-
tem was nulled. The position offset yw from the acquired position and the real
one was calculated a posteriori from the velocity profiles, with a procedure
which will be described in §4.4. The centerline velocities Ucl presented in Ta-
ble 4.1 are the velocities measured at the position y = R+yw, i.e. the centerline
position for the traverse system, but, since with the procedure described yw
proved to be always less then 60µm and the velocity profile is extremely flat
around the centerline at the Reynolds numbers of interest, we can consider
this value trustable. ReD is the Reynolds number based on pipe diameter and
bulk velocity, which was obtained by mean of a trapezoidal integration of the
velocity along the measurement points, adding the no-slip condition fo y = 0.
In Table 4.1 R+ is the already defined friction Reynolds number, `∗ is the vis-
cous scale while the letters identifying the probe are the ones used in Table 3.3.
L+ is the hot-wire length in viscous unit and can be related to the spatial-
resolution effect; the sampling time is given with respect to the viscous time
unit as ∆t+ = (fsamplt∗)

−1 which can be related to the time-filtering effects.
Finally, the total sampling time T is given in outer scaling as TUcl/R, which,
according to Klewicki & Falco (1990), should exceed several thousands to ob-
tain converged statistics for higher order moments. Since the measurements
have been taken using two different fans, this was indicated in the column fan.
As will be explained in §4.2 the two fans generate different temperature profiles
in the pipe, so the correction scheme for temperature effects is different, but no
relevance of this difference has been noticed in the results. The symbols in the
last column are the one which will be used to identify the single experiment in

45
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all the following images.

Case Ucl ReD R+ `∗ probe fan L+ ∆t+ TUcl/R sym.

(m/s) (µm)

A1 6.30 19 750 566 53 A s 5 0.09 15 700 ▽

A2 12.45 39 420 1 038 29 A s 8 0.30 20 800 ◻

A3 13.75 41 480 1 079 28 A b 9 0.35 22 900 ◯

A4 20.11 63 920 1 568 19 A s 13 0.70 26 800 △

A5 23.60 71 480 1 721 17 A b 14 0.88 31 500 ◊

A6 32.14 95 780 2 224 13 A b 18 1.51 32 100 +

B1 14.27 43 640 1 145 26 B b 12 0.38 23 800 ◯

B2 25.11 76 960 1 858 16 B b 20 1.01 33 500 ◊

B3 35.47 107 300 2 483 12 B b 26 1.85 35 500 +

C1 6.56 20 360 585 51 C s 16 0.15(∗) 16 400 ▽

C2 11.46 34 890 937 32 C b 25 0.39(∗) 19 100 ◯

C3 13.08 41 150 1 077 29 C s 29 0.50(∗) 21 800 ◻

C4 23.56 72 440 1 749 17 C b 47 1.35(∗) 31 400 ◊

C5 31.72 95 910 2 251 13 C b 60 2.28(∗) 31 700 +

D1 15.06 45 740 1 174 26 D b 59 0.41 25 100 ◯

D2 25.65 77 970 1 872 16 D b 94 1.04 34 200 ◊

D3 35.25 104 981 2 420 12 D b 121 1.78 35 300 +

Table 4.1. Experimental parameters for present hot-wire ex-
periments. Explanation of column headings and abbreviations
is given in §4.1.
(∗) sampling frequency limited by the dynamic response of the
hot-wire probe and not by the setting of the data-acquisition
system; in these cases the frequency response was estimated
with the square-wave test on the probe.

4.2. Temperature compensation

When the bigger fan (indicated with b in Tab. 4.1) was used to drive the flow
through the pipe, the temperature reached in the centerline values of even 12 K
above the room temperature. Since the diabatic surface of the pipe adjust its
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temperature depending on the temperature difference between centerline and
external ambient, a temperature profile generates inside the pipe, in order to
respect the boundary conditions on temperature and heat flux at the wall.
Hot-wire data need to be compensated for temperature effects (see §3.2.2b),
we must hence know or estimate with sufficient accuracy the local temperature
during the experiments. The temperature profile inside the pipe were measured
with probe D operated as a cold-wire for R+ = 1167, R+ = 1821, R+ = 2453, and
in all the experiments the room and centerline temperature were measured with
thermistor thermocouple before and after each measurement. The temperature
proved do be steady during the time necessary for a whole profile acquisition,
with a maximum variation ∆Tbefore−after < 0.3K, moreover the difference in
temperature between the centerline and the room temperature depended with
good approximation just on flow velocity. It was then decided that to estimate
the temperature profile inside the pipe, it was sufficient to shift the measured
temperature at approximately the same R+ in order to match the measured
centerline temperature. If this method seems too approximate, one should
consider that the aim is not to have an accurate temperature profile for all the
experiments, but to correct the hot-wire signal. For this task an accuracy on the
local temperature of ±0.5K is sufficient, consider T −Tref = 0.5 in eq. (3.15) with
an overheat ratio aR = 1.1 lead to a correction of less than 1/1000 of the hot-
wire signal, which can be safely considered negligible. Moreover the sensibility
of the correction to en error in the value of the temperature decreases with
increasing T − Tref . When the smaller fan (indicated with s in Tab. 4.1) was
used, the centerline temperature proved to be always less then 0.2 K higher than
the wall temperature: to correct the hot-wire signal a simple average between
the two values was used.

4.3. Heat transfer toward the wall and data selection criteria

Hot-wire data in the region very close to the wall proved to be not accurate:
when the thermal conductivity of the wall is much higher than the one of the
fluid, the wall extracts heat from the fluid heated by the wire, changing the
temperature distribution around the wire and leading to an additional heat
transfer from it. If the hot-wire (as often happens), has been calibrated in a
free stream, this additional heat loss is read as an additional velocity of the
flow. Since this effect increases rapidly approaching the wall, the measured
mean velocity seems to increase instead of decrease approaching the wall. A
general description of the problem is provided by Bruun (1995), a literature
survey about the experimental data and theoretical knowledge of the problem
can be found in Bhatia et al. (1982), while more recent publications are dis-
cussed by Lange et al. (1999) and Zanoun et al. (2009). Most of the studies
agree that for measurements closer than y+ ≲ 5−6 the heat transfer toward the
wall is not negligible and affects heavily the acquired data.
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The effect of the additional heat transfer on the velocity variance is not straight-
forward and an analysis of its influence on the velocity probability density func-
tion, or equivalently on the cumulative distribution function (CDF), is required.
In the near-wall region Alfredsson et al. (2011a) established the self-similarity
of the CDF in the viscous sublayer. Starting from this consideration, they
found that “the turbulent signal is mainly affected by heat transfer to the wall
during periods of low streamwise velocity and not necessarily for periods of
high velocity”. The unsymmetrical behaviour of the measured CDF is evident
from the Figure 4.1, where the cumulative distribution function contours in
the near-wall region for the measurement case C2 are shown, and is in con-
trast with the expected self-similarity of the CDF in the viscous sublayer. This
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Figure 4.1. Velocity CDF contour for case C2. Dashed line:
limit of the CDF (i.e. F (u) = 0 and F (u) = 1); solid line: CDF
contour for F (u) = [0.025; 0.975] with step of 0.05.

asymmetry lead to a damping of the streamwise velocity variance, which ap-
pears to decrease faster than in reality. Following what proposed by Alfredsson
et al. (2011a), Figure 4.1 can also be used to evidence the heat conduction
effects: because of the self-similarity of the CDF in the viscous sublayer, the
CDF contour lines are expected to be parallel in a log-log plot. The departure
from parallelism that can be noticed in the near-wall region is due to the heat
conduction effect.
Since the heat loss toward the wall lead to an increase in the measured mean
velocity and a decrease in the measured streamwise velocity variance, a good
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indicator of the effects of the heat conduction toward the wall on the measure-
ment is thus the local streamwise turbulence intensity (urms/U). Close to the
wall U+ and u′+ can be written as a Taylor expansion, obtaining for a pipe flow:

U+
= y+ −

1

R+
y+2

+ o(y+2
) (4.1)

and

u′
+

= a1y
+
+ a2y

+2
+ o(y+2

) , (4.2)

from which is possible to obtain

u′

U
= a1 + (a2 +

a1
R+

)y+ + o(y+2
) . (4.3)

The coefficient a1 is positive while a2 is negative, but (a2+
a1
R+ ) is negative (R+

has of course a lower bound, because the flow has to be turbulent in order to
define R+). We can thus conclude that the local turbulence intensity in the
proximity of the wall is monotonically increasing toward a certain value. As
shown by Alfredsson et al. (1988), the asymptotic behaviour of the local turbu-
lence intensity is related to the streamwise fluctuating skin friction component:

a1 =
u′

uτ
=
τ ′x
τ
. (4.4)

The results of recent direct numerical simulations has shown a Reynolds number
dependence of a1, as clearly shown in Figure 4.2. In the measured data, instead,
urms/U reaches a maximum and then start to decrease because of the additional
heat transfer to the wall. For all the current experiments, all the point with
y+ < 6 or closer than 1 `∗ to the measured peak in the streamwise turbulent
intensity are considered affected by additional heat loss toward the wall and
are gray shaded in all the following images. Figure 4.3 shows the streamwise
turbulent intensity vs. y+ for all the current measurements plotted together
with DNS data from Wu & Moin (2008).

4.4. Wall position and friction velocity determination

Since the inner region of wall bounded flows scales on y+, one should not just
measured accurately the flow-field, but should also obtain reliable values of the
friction velocity and absolute position. A review of the common measurement
technique to obtain an absolute wall position measurement can be found in
Örlü et al. (2010), but there is also stated that the accuracy of the measure-
ment techniques available at present time is not sufficient when compared to
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Figure 4.2. Details of the near-wall region of streamwise tur-
bulence intensity vs. y+ at different R+. Data from DNS by
Wu & Moin (2008).

the size of the viscous scale `∗ of moderately high Reynolds number flows. Con-
sidering now uτ , a direct measurement of the wall shear stress should always
be performed when the interest is to enforce the validity of a scaling behaviour
or to determine the log-law constants κ and B (Nagib et al. 2004), but, since
a direct measurement of the wall shear stress was not available in the current
experimental setup, a fitting algorithm was used to determine both the shear
stress and the absolute position. Aware of the shortcomings of this approach
the data will not be used to enforce any analytical description of the mean
velocity profile.
To determine yw and uτ , the data considered unaffected by additive heat loss to
the wall (see §4.3) were fit on the composite velocity profile proposed by Nagib
& Chauhan (2008) (see eq. 2.67), with parameter κ = 0.384 and a = −10.43
when R+ > 900, and κ = 0.384 a = −10.68 when R+ ≈ 550: κ = 0.384 is the
value found for pipe flow in experiments by Monty (2005) and simulation by
Wu & Moin (2008), while the value for a were obtained by a comparison of
the composite profile with in-house DNS data. The fitting procedure was not
performed on the whole profile, but just in its inner part, i.e. for y+ < 85 when
R+ > 900 and for y+ < 40 when R+ ≈ 550, in order to consider just the near-wall
points, where the composite fit is more accurate.
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Figure 4.3. Streamwise turbulence intensity vs. y+ for all the
current measurements (see Tab. 4.1 for symbols explanation),
plotted together with DNS data (magenta line) from Wu &
Moin (2008) (R+ = 1142). Gray shaded points are the one
identified as affected by additional heat loss or with y > R.

4.5. Convergence proof

Figures from 4.4 to 4.7 show the statistics calculated for different sampling time
for the case with the lowest sampling time in outer scaling (Case A1). We can
state that for this case, and thus also for all the other cases, the measurements’
sampling time was sufficient to have converged statistics for all the statistical
moments considered in the analysis.
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Figure 4.4. Convergence proof of the mean velocity for case A1
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Figure 4.5. Convergence proof of the velocity variance for
case A1



4.5. CONVERGENCE PROOF 53

10
0

10
1

10
2

10
3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y+

S

 

 

5 s
10 s
15 s
20 s
25 s
30 s
35 s
40 s
50 s
55 s
60 s
70 s
75 s

Figure 4.6. Convergence proof of the velocity skewness for
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CHAPTER 5

Results and Discussion

In this section the results of the velocity measurements are presented in viscous
scaling. After the discussion of the first four statistical moments, autocorrela-
tion spectra and probability density function will be presented. In the last part
of this section the results of the temperature measurement performed with the
cold-wire will be shown.

5.1. Global quantities

In Figure 5.1 R+ = R/`∗, where `∗ was calculated from the uτ obtained from
the fitting on the composite profile, is plotted against the Reynolds number
ReD for all current measurements, together with the linear fit of the data
R+ = 2.16 ·10−2ReD +178.0. In Figure 5.1 the ratio between the centerline and
the bulk velocity is plotted against the R+.

5.2. Mean velocity profiles

Figure 5.3 shows the mean velocity for all the seventeen experiments, while from
Figure 5.4 to 5.7, measurements with approximately the same R+ but different
L+ are compared: we notice that no spatial resolution effect are visible on
the mean velocity. Figure 5.8 shows the Reynolds number effect on the mean
profile: it appears clearly that the range of the overlap region, where the log-
law is expected to hold, extends with the Reynolds number. Its lower bound is
indeed expressed in viscous scale and is thus dependent on the viscous length
`∗, while its higher limit is classically expressed in outer scaling, i.e. is Reynolds
number independent for a pipe flow. As already stated in §2.2.2, the log-law
region’s bounds are debated, with some authors proposing a lower bound of
the order of hundreds inner units. In this perspective we should not expect a
fully logarithmic behaviour in none of the current experiments, but a trend in
the velocity profile reaching an almost-logarithmic behaviour can be observed
at least in the highest Reynolds cases (Fig. 5.7).

55



56 5. RESULTS AND DISCUSSION

2 3 4 5 6 7 8 9 10 11

x 10
4

500

1000

1500

2000

2500

Re
D

R
+

Figure 5.1. Plus: R+ obtained with the fitting procedure vs.
ReD for all current measurements; solid line: linear fit of the
data, R+ = 2.16 ·10−2ReD + 178.0.
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Figure 5.2. Ratio between centerline and bulk velocity vs.
R+ for all current measurements.
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Figure 5.3. Mean velocity profile in viscous scaling for all the
experiments. Symbols as in Tab. 4.1, black lines are the linear
profile U+ = y+ and the log-law with κ = 0.38, B = 4.4. Gray
shaded points are the one identified as affected by additional
heat loss or with y > R.
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Figure 5.4. Mean velocity for R+ ≈ 550.
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Figure 5.5. Mean velocity for R+ ≈ 1000. Green line: DNS
data from Wu & Moin (2008).
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Figure 5.6. Mean velocity for R+ ≈ 1700.
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Figure 5.7. Mean velocity for R+ ≈ 2400.
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5.3. Streamwise velocity variance

Figures from 5.9 to 5.11 show the measured streamwise velocity variance pro-
files grouped with the Reynolds number. Spatial filtering effects are evident,
with a strong attenuation of the measured variance for higher values of L+,
especially apparent in the near-wall region but still active up to y+ ≈ 200 as
found by Lingrani & Bradshaw (1987a). The series of data with green symbols
in Figure from 5.9 to 5.11 are obtained with the probe B, which has L/d = 128,
so we might expect an attenuation of the velocity variance due to the heat loss
towards the prongs (see §3.2.3): in the following the data taken with that probe
will be neglected.
Figure 5.12 shows instead profiles at different Reynolds number but almost
constant L+, in order to evidence the Reynolds number effect on the velocity
variance profiles without the masking due to spatial filtering. The value of the
peak in the turbulence intensity grows with the Reynolds number, with a total

rise in u′2
+

∣m of approximately 15%, which exceed the expected experimen-
tal uncertainty. Not only the peak value increase, but the velocity variance

increase throughout the logarithmic region. The growth of u′2
+

∣m with Rey-
nolds number is consistent with experimental data for pipe and channel by Ng
et al. (2011), for boundary layers by DeGraaff & Eaton (2000) and Metzger &
Klewicki (2001) and in channel flow DNS by Jimnez & Hoyas (2008), but is in
contrast with the experimental data by Hultmark et al. (2010) obtained in the
Superpipe facility at Princeton University.
Ng et al. (2011) explained the growth in the peak of velocity variance as the
effect of the increasing contribution with Reynolds number of large scales mo-
tion on u spectra, in analogy with what done by Marusic et al. (2010a) for
boundary layer data.

5.3.1. Correction schemes for spatial resolution effects.

In the following two different corrections schemes for spatial resolution effects
will be applied on the data, and their results will be compared.
From an analytical point of view, it is possible to reach, with some assumptions,
an expression of the attenuation factor of the measured streamwise velocity
variance due to spatial resolution effects. This was first performed by Dryden
et al. (1937) and extended to consider also misalignment of the probe by Se-
galini et al. (2011a). Neglecting the typical non-linearity of of the hot-wire
probe response, considering a probe perpendicular to the main velocity compo-
nent u and a negligible normal component (assumption valid in wall-bounded
flow, especially close to the wall where the filtering effect is stronger), we can
write the measured velocity um as an integral average of the velocity along the
wire:
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um =
1

L

L/2

∫

−L/2

u(η, t)dη . (5.1)

With the assumption of homogeneous flow along the wire, the last expression
can be written with the use of two point correlation ρ11 leading to

F2 =
u′2m

u′2
=

2

L2

L

∫
0

(L − r)ρ11(r)dr , (5.2)

where F2 is the attenuation due to the spatial resolution effect while r is the
spanwise separation distance between the two points. Segalini et al. (2011a)
expressed the eq. (5.2) as a Taylor expansion in all the even derivatives of the
two-point correlation function as

F2 = 1 −
N

∑
i=1

2L2i

(2i + 2)!

d2iρ11
dr2i

. (5.3)

Considering just the second derivatives of ρ11, which is related to the Taylor
microscale λg as

ρ′′11(0) = −
2

λg
, (5.4)

we have

F2 = 1 −
L2

6λ2g
. (5.5)

To use this correction directly, λg has to be measured or estimated. Segalini

et al. (2011b) proposed a method to obtain an estimate both of u′2m and λg,
given that two measurements with the same flow condition are performed with
(at least) two probes with different wire length. The method is applied on the
data obtained from the current experiments and leads to the result showed in
Figures from 5.13 to 5.15.

Lately, a semi-empirical correction scheme has been proposed by Smits et al.
(2011b). It is based on the fact that the filtering effect is related to the ratio
of the wire length on the local size of the eddies contributing to the turbulence
intensity. In the near-wall region the small-scales eddies are the ones which
contribute mostly to the local turbulence intensity: since they scale with the
Kolmogorov length-scale η, the ratio L/η should be the parameter to use when
the filtering effect of the probe needs to be accounted. Since η+ is approxi-
mately constant close to the wall, also L+ can be used to describe the filtering
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effect in this region. According to the attached eddies hypothesis by Townsend
(1976), further from the wall the energy-containing eddies scale with the dis-
tance from the wall, so an attenuation of the kind

∆u′2 = u′2 − u′2m = f(L/y) (5.6)

should be expected.
Considering the whole velocity profile, Smits et al. (2011b) proposed the ex-
pression

u′2m

u′2
= [1 +M(L+)f(y+)]−1 . (5.7)

In the last expression

M(L+) =
A tanh(αL+) tanh(βL+ −E)

u′2m∣z+=15
(5.8)

is a correlation for the filtered velocity variance at the location of the inner
peak found by Chin et al. (2009) (α = 5.6 ·10−2, β = 8.6 ·10−3, A = 6.13 and
E = −1.26 ·10−2 are fitting parameters with no particular physical meaning) and

f(y+) =
15 + ln(2)

y+ + ln[e15−y+ + 1]
(5.9)

takes into account what said before about the local size of the smallest eddies
contributing to the turbulence intensity, being almost constant in the viscous
layer and then approaching the hyperbole k/y+.
The results of this correction scheme on the current experimental data are
shown in Figures from 5.16 to 5.18.

In Figure 5.19 the results of the two correction schemes presented above are
compared. We notice an almost complete accordance at the lowest Reynolds
number, but discrepancies appear for the higher Reynolds cases in the value
of the peak of streamwise velocity variance, with the correction proposed by
Smits et al. (2011b) leading to a higher value than the one by Segalini et al.
(2011b). Both the corrections show the Reynolds number dependence both
of the peak in the streamwise velocity variance and of the profile inside the
logarithmic region already found in Figure 5.12.
Figure 5.20 show the value of the measured peak in the streamwise veloc-
ity versus R+ for the current experiments, the experiments from Sattarzadeh
(2011) and various DNS data. Figure 5.21 is the same of 5.20 but with the
experimental data corrected with the scheme proposed by Smits et al. (2011b).
Figure 5.22 and 5.23 show respectively the uncorrected and corrected local
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turbulence intensity at y+ = 15 for the same set data of Figure 5.20: a clear
Reynolds number dependence can be notice for the spatial resolution corrected
data. Figure 5.24 and 5.25 illustrate instead the maximum for the local turbu-
lence intensity for uncorrected and corrected data respectively. The Reynolds
number dependence here is not as clear as before, because this quantity reaches
its maximum for a wall distance where the experimental results are already af-
fected by the heat conduction towards the wall, which influence different probes
in a different way.
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Figure 5.9. Streamwise velocity variance profiles for R+ ≈

1000. Magenta dashed line: DNS data from Wu & Moin
(2008).
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Figure 5.10. Streamwise velocity variance profiles for R+ ≈ 1700.
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Figure 5.11. Streamwise velocity variance profiles for R+ ≈ 2400.
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Figure 5.12. Streamwise velocity variance profiles for differ-
ent R+ and L+ ≈ const. Green hexagram: experimental data
from Sattarzadeh (2011); all other symbols: current measure-
ments.
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Figure 5.13. Streamwise velocity variance profiles for differ-
ent R+ ≈ 1000 corrected as proposed by Segalini et al. (2011b).
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Figure 5.14. Streamwise velocity variance profiles for differ-
ent R+ ≈ 1700 corrected as proposed by Segalini et al. (2011b).
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Figure 5.15. Streamwise velocity variance profiles for differ-
ent R+ ≈ 2400 corrected as proposed by Segalini et al. (2011b).
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Figure 5.16. Streamwise velocity variance profiles for differ-
ent R+ ≈ 1000 corrected as proposed by Smits et al. (2011b).
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Figure 5.18. Streamwise velocity variance profiles for differ-
ent R+ ≈ 2400 corrected as proposed by Smits et al. (2011b).
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Figure 5.20. Peak of the Streamwise velocity variance pro-
files vs. R+. green hexagram: uncorrected data from Sat-
tarzadeh (2011); blue hexagram: DNS data from Veenman
(2004); red hexagram: DNS data from Wagner et al. (2001);
magenta hexagram: DNS data from Wu & Moin (2008); all
the other symbols: current experiments (see Tab. 4.1).
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Figure 5.21. Peak of the Streamwise velocity variance pro-
files vs. R+. Symbols as in Fig. 5.20. but with experimental
data corrected as proposed by Smits et al. (2011b).
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Figure 5.22. Local turbulence intensity for y+ = 15 vs. R+

for experimental and simulation data. Symbols as in Fig. 5.20.
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Figure 5.23. Local turbulence intensity for y+ = 15 vs. R+

for experimental and simulation data. Experimental data are
corrected as proposed by Smits et al. (2011b), symbols as in
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Figure 5.24. Maximum value of the local turbulence inten-
sity vs. R+ for experimental and simulation data. Symbols as
in Fig. 5.20.
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Figure 5.25. Maximum value of the local turbulence inten-
sity vs. R+ for experimental and simulation data. Experi-
mental data are corrected as proposed by Smits et al. (2011b),
symbols as in Fig. 5.20.
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5.4. Turbulence intensity - Diagnostic plots

In Figure 5.26 the turbulence intensity profiles for the current experiments are
shown in viscous unit. Figure 5.27 illustrates the diagnostic plot as introduced
by Afredsson & Örlü (2010) for the current measurements and DNS data. Since
in this way of representing the data neither the friction velocity nor the absolute
position appear, the already cited difficulties in the determination of these two
quantity can be neglected, leading to a rapresentation dependent just on the
actual velocities measured. We notice how in the outer region all the data
collapse on the same trend for all the Reynolds numbers, in accordance with
to what stated in Afredsson & Örlü (2010). In order to observe the Reynolds
number effect on the diagnostic plot not masked by spatial resolution issues,
data taken at constant L+ are shown in Figure 5.28.
In Figure 5.29 the turbulence intensity urms/U is plot against the mean velocity
normalised with the centerline velocity U/Ucl, together with the linear fit for
the outer region proposed in Alfredsson et al. (2012). The Reynolds number
effect on this representation is more clear in Figure 5.30, where data with
constant L+ are considered. It appears clearly (even if higher Reynolds number
separation would be useful), that for higher Reynolds number the data remain
on the straight line until lower values of U/Ucl. In Alfredsson et al. (2011b) this
behaviour was used to infer the existence of an “outer” (compared to y+ = 15,

but still in the logarithmic region) maximum of u′2.
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Figure 5.26. Turbulence intensity profiles for current exper-
iments, data obtained with probe having L/d < 160 has been
neglected. Symbols according to Tab. 4.1.
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5.5. Higher order statistical moments

From Figure 5.4 to 5.7 the skewness profiles for measurements with approxi-
mately the same R+ but different L+ are compared: the spatial filtering effects
are evident and can lead to an incorrect sign of the quantity and to mask the
local minimum located around y+ ≈ 30. Profiles with same L+ but different R+

are shown in Figure 5.34.
The flatness profiles are shown in Figures from 5.35 to 5.37, grouped with the
Reynolds number. Also in this case spatial resolution is critical for the correct
individuation of the minimum of the flatness profiles. In Figure 5.38 profiles
obtained with the same L+ but different R+ are compared.



74 5. RESULTS AND DISCUSSION

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

U/U
cl

u rm
s/U

cl

Figure 5.27. Diagnostic plot for the current measurements
and DNS data. Magenta line: DNS data from Wu & Moin
(2008); all other symbols: see Tab. 4.1.
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Figure 5.31. Velocity skewness profiles for R+ ≈ 1000.
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Figure 5.32. Velocity skewness profiles for R+ ≈ 1700.
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Figure 5.33. Velocity skewness profiles for R+ ≈ 2400.
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L+ ≈ const. Green hexagram: experimental data from Sat-
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Figure 5.35. Velocity flatness profiles for R+ ≈ 1000.
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Figure 5.36. Velocity flatness profiles for R+ ≈ 1700.
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Figure 5.37. Velocity flatness profiles for R+ ≈ 2400.
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5.6. Power spectra of streamwise velocity

In Figure 5.39 the one-dimensional pre-multiplied power spectral density map
(f+Pu+u+) of streamwise normalized velocity u+ as a function of streamwise
wavelenght (λ+x) and wall-normal position y+ is presented for case A6. The
streamwise wavelengths were inferred from the time-series of velocity using the
Taylor hypothesis (Taylor 1938) and the local mean velocity as the convective
velocity of the waves. This representation is very common in literature, but
the applicability of Taylor hypothesis to wall-bounded turbulence has been re-
cently debated by Del Álamo & Jimnez (2009), who showed from simulation
results that close to the wall the long wavelengths does not travel with the lo-
cal mean velocity but with the bulk velocity; the scale separation of convection
velocity was also observed by Chung & McKeon (2010). For this reason, in the
figures following Figure 5.39 the spectra will be presented as a function of the
normalized frequency f+, which is related to what effectively measured using
a fixed hot-wire probe. The results of Figure 5.39 are consistent with what
commonly reported in literature for the same range of Reynolds number, with
the main energy mode located at y+ ≈ 15 and λ+ ≈ 1000. This energy mode,
clearly related to the inner peak in the velocity variance (cfr. Fig. 5.11), repre-
sents the energy contribution of the near-wall counter-rotating and elongated
vortical structures first observed by Kline et al. (1967).
Figure 5.40 and 5.41 show the spatial resolution effect on the spectra: as for the
streamwise velocity variance (cfr. Fig. 5.9) the attenuation is evident mainly in
the near-wall region and lead to an underestimation of the inner peak inten-
sity. Figure 5.42 show instead the Reynold number dependence of the spectra,
showing cases with L+ approximately constant, in order to minimize the in-
fluence of spatial resolution issues. A substantial similarity can be noticed in
the near-wall region, but a higher intensity of the low-frequency energy modes
can be noticed in the overlap region in the higher Reynolds number cases, with
traces of an outer peak in Figure 5.42c. This outer peak is most likely related
to the energy contribution of the Very Large Scale Motion (VLSM), first iden-
tified in pipe flow by Kim & Adrian (1999) and further investigated both for
pipe and channel flow by Monty et al. (2007). The spectral peak separation is
expected to appear for R+ ≳ 1700 (see Hutchins & Marusic 2007), but a higher
R+ is required to distinguish properly the outer peak. Its location has been
found by Mathis et al. (2009) to correspond well with the geometric centre of

the logarithmic region (in the log-plot), they hence proposed y+ = 3.9
√
R+ as

the outer peak’s position. Figure 5.43 show premultiplied power spectra at
selected y+ position for the same cases showed in Figure 5.42. Wall normal
position of y+ ≈ 15, 50, 3.9

√
R+ were chosen because they are respectively the

location of the inner peak, of the conventional start of the outer layer and of
the outer peak. In order to maintain the uniformity in the figure the position
y+ = 3.9

√
R+ was chosen even when data obtained at R+ = 585 were concerned,

even if in this case the definition of a log-region, and hence of its geometric



5.6. POWER SPECTRA OF STREAMWISE VELOCITY 81

midpoint, can be objected because of the low Reynolds number. We can notice
how the energy content of the low frequency modes increase at all the wall-
normal positions with the increase of the Reynolds number, while the value
of the peak of the premultiplied spectra is constant with the Reynolds num-
ber, in accordance with the experiments by Ng et al. (2011). For R+ = 585
(Fig. 5.43a), the energy signature of the near wall cycle dominates at all the
location plotted, while in R+ = 2224 (Fig. 5.43c) the maximum of the energy

spectra at y+ = 3.9
√
R+ is reached for a low-frequency mode. This peak is

located at f+ ≈ 10−3, and is likely related to the VLSM: since in literature
VLSM are reported to scale in outer variables, it is better to express this value
as fR/Ucl ≈ 0.027.
With the aid of the premultiplied power spectra it is possible to explain the
velocity variance growth with the Reynolds number at the inner peak location
and in the logarithmic region (cfr. Fig. 5.12, 5.19 and 5.21). In fact, from
eq. (2.27) we have:

+∞

∫
0

Puu(f) df = u′2 , (5.10)

which can be written as

+∞

∫
0

Pu+u+ν d(
f+u2τ
ν

) = u′2 (5.11)

and finally

ln 10

+∞

∫
0

f+Pu+u+ d(log f+) =
u′2

u2τ
= u′2

+

. (5.12)

The area under the premultiplied u spectra is hence proportional to the stream-
wise velocity variance. From Figure 5.43 appears clearly that the increase of
the energy content of the low-frequency modes is responsible of the increase of
the peak in the streamwise velocity variance and throughout the logarithmic
region.
Figure 5.44 presents the velocity power-spectra in log-log style for the same
cases and wall-normal position of Figure 5.43.



82 5. RESULTS AND DISCUSSION

Figure 5.39. Premultiplied u power-spectra map vs. stream-
wise wavelength λ+ estimated using the mean velocity. The
data at the left of the white solid line were considered affected
by additional heat transfer.
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Figure 5.40. Premultiplied u power-spectra map for R+ ≈

1000 but different L+. The data at the left of the white solid
line were considered affected by additional heat transfer.
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Figure 5.41. Premultiplied u power-spectra map for R+ ≈

2400 but different L+. The data at the left of the white solid
line were considered affected by additional heat transfer.
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Figure 5.42. Premultiplied u power-spectra map for different
R+ and L∗ ≈ const. The data at the left of the white solid line
were considered affected by additional heat transfer.
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5.7. Cumulative distribution function (CDF)

In Figure 5.45 and 5.46 the CDF contour of streamwise velocity u are shown for
measurements with approximately the same R+, but different L+. We notice
that for higher L+ the CDF contour are more narrow and this is especially
evident in the extrema of the PDF. Figure 5.47 illustrates instead the R+

dependence of the CDF contour for measurements with approximately the same
L+.
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Figure 5.45. CDF contour for R+ ≈ 1000 and different L+.
Dashed line: extrema of the CDF (i.e. maximum and minimum
of u(t)); solid line: CDF contour for F (u) =
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5.8. Integral timescale profiles
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5.9. Temperature profiles

The temperature profiles at three different R+ were acquired with a cold-wire
probe, with the main purpose of providing the data necessary to correct the
hot-wire signal (see §4.2). For each temperature measurements, the centerline
velocity was also measured with a hot-wire probe, in order to obtain R+ (and
thus `∗) from a linear fit similar to the one showed in Figure 5.1, but with a
Reynolds number based on the centerline velocity instead of the bulk velocity.
The experimental condition are reported in Table 5.1, where the notations are
the same used in Table 4.1.

Case Ucl R+ `∗ probe fan L+ ∆t+ (∗) TUcl/R

(m/s) (µm)

T1 15.16 1 167 26 D b 58 12 15 200

T2 25.17 1 821 16 D b 91 31 25 200

T3 35.64 2 453 12 D b 123 56 35 600

Table 5.1. Experimental parameters for present cold-wire ex-
periments. Same notations of Tab. 4.1.
(∗) The sampling period is based on the actual sampling fre-
quency f = 2kHz, but a low-pass filter set at f = 1kHz was
used.

Figure 5.48 illustrates the profile of the dimensionless temperature Θ, defined as

Θ =
T − Tmin

Tcl − Tmin
, (5.13)

where Tmin is the lowest temperature measured with the cold-wire probe (ap-
proximately equal to the wall temperature). In Figure 5.49 the dimensionless
temperature variance

Θ′2 =
T ′2

(Tcl − Tmin)2
(5.14)

is plotted against y+. In the Figure L+ and R+ effects coexist, but the spatial
resolution effects is much more evident, as can be deduced from the reduction
of the temperature variance.
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von Kármán, T. 1930 Mechanische Ähnlichkeit und turbulenz. In Proc. Third Int.
Congr. Applied Mechanics, Stockholm, pp. 85-105 .

Kim, K. & Adrian, R. 1999 Very large-scale motion in the outer layer. Phys. Fluids
11, 417–422.

King, L. V. 1914 On the convection of heat from small cylinders in a stream of
fluid: Determination of the convection constants of small platinum wires, with
applications to hot-wire anemometry. Proc. R. Soc. A 90, 563–570.

Klewicki, J. C. & Falco, R. E. 1990 On accurately measuring statistics assciated
with small-scale structure in turbulent boundary layers using hot-wire probes.
J. Fluid Mech. 219, 119–142.



REFERENCES 97

Kline, S., Reynolds, W., Shrub, F. & Rundstadler, P. 1967 The structure of
turbulent boundary layers. J. Fluid Mech. 30, 741–773.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous
fluid for very large reynolds numers. (eng. trans. in proc. r. soc. a 434, 9-13).
Dokl. Akad. Nauk SSSR [in Russian]. 32, 19–21.

Kundu, P. K. & Cohen, I. M. 2007 Fluid Mechanics, Fourth Edition. Academic
Press.
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