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Introduzione

E’ esperienza comune osservare l’acqua di un fiume, un cascata, il fumo di

un camino o il soffiare di un vento forte. E’ esperienza altrettanto comune

accorgersi che questi fenomeni possiedono alcune caratteristiche simili, quali

una natura caotica, un comportamento estremamente irregolare e impredi-

cibile; o ancora la presenza di strutture di diversa scala, vortici più piccoli

e moti più estesi. In tutti questi casi, quello che stiamo osservando un

flusso turbolento. Nelle applicazioni ingegneristiche, poi, i flussi turbolenti

sono prevalenti. I processi che coinvolgono gas e liquidi in turbine, pompe,

compressori sono turbolenti; i flussi di aria ed acqua che circondano aerei, au-

tomobili, sottomarini, sono turbolenti. Ancora, il mescolamento di sostanze

chimiche in numerose reazioni avviene tramite meccanismi turbolenti, cos̀ı

come quello di aria e carburante nei motori. Solitamente, una reazione chim-

ica desiderata si deve portare a termine il più in fretta possibile; altre volte,

quando il processo di mescolamento dannoso, si vorrebbe cercare di rallen-

tarne l’evoluzione. La presenza di turbolenza rende più efficaci il trasporto e il

mescolamento dei fluidi, ed è dunque di fondamentale importanza conoscerne

le caratteristiche, quando si voglia controllare l’evoluzione di un turbulent

mixing.

Allo scopo di studiare i flussi turbolenti reali, un grosso sforzo viene fatto

per comprendere a fondo le caratteristiche di quello che è il modello ideale più

semplice, la turbolenza omogenea isotropa. Gli approcci a tale argomento

sono sostanzialmente due. L’approccio teorico ha permesso, nel corso degli

anni e grazie soprattutto al contributo del grande matematico russo Andrei

Nikolevich Kolmogorov, di sviluppare una elegante teoria che descrive (statis-

ticamente) le dinamiche, i contributi delle varie scale presenti, e permette di

predire il comportamento spettrale di una turbolenza isotropa. L’approccio

sperimentale, oltre a validare tale teoria nei suoi aspetti essenziali, ne ha evi-

denziato alcune mancanze ed inesattezze, contribuendo ad evidenziare aspetti

che erano rimasti in secondo piano nel disegno di Kolmogorov, quali la pre-
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senza e l’importanza di strutture coerenti articolate all’interno del flusso, che

rendono fondamentale un’analisi locale, basata sullo studio delle dinamiche

di tali strutture.

Lo scopo della tesi vuole essere il seguente. Da una parte, la definizione

di una grandezza locale, di semplice misurazione, ma che permetta di dare

indicazioni sull’evoluzione del flusso turbolento omogeneo isotropo a livello

globale. Uno studio statistico delle proprietà di tale quantità viene effet-

tuato, con l’obiettivo di capire quali siano le strutture che più concorrono a

determinarne il comportamento e i valori. Dall’altra, si desidera effettuare

alcune considerazioni a partire proprio da questa grandezza. Tale quantità

viene definita come rapporto di grandezze fisicamente significative, quali lo

stretching e la vorticità del campo di velocità; permette dunque di avere in-

formazioni sull’interazione delle scale e delle strutture coerenti all’interno di

un flusso turbolento.

Un secondo argomento è poi affrontato: il mescolamento di due flussi tur-

bolenti (in assenza di sforzi di taglio medio). Scopo della trattazione è uno

studio delle caratteristiche del mescolamento al variare del gradiente di ener-

gia tra le turbolenze. In particolare vengono presentati dati a conferma della

presenza di intermittenza in un mescolamento turbolento, e della dipendenza

di tale intermittenza dal gradiente di energia.

Lo schema della trattazione è il seguente. Nei primi tre capitoli ven-

gono presentati gli strumenti necessari per affrontare lo studio della dinam-

ica della turbolenza. In particolare, nel primo capitolo vengono richiamate le

equazioni della fluidodinamica, gli strumenti statistici di base e vengono in-

trodotte le prime considerazioni fisiche sull’interazione tra strutture di varie

scale nella celebre cascata di Richardson. La teoria di Kolmogorov viene pre-

sentata nel secondo capitolo; se ne mostra la consistenza con il sistema di

Navier-Stokes e si riportano alcuni risultati classici sul comportamento statis-

tico del campo di velocità in un flusso turbolento. Vengono poi introdotti

gli spettri di energia, diffusamente usati nel seguito. Nel terzo capitolo viene

segnalato come la pratica sperimentale abbia riscontrato inesattezze nella

teoria di Kolmogorov; i fenomeni che generano tali discrepanze vanno sotto

il nome generico di intermittenza.

Il capitolo quattro introduce la qunatità oggetto di studio, la funzione f ;

tale grandezza viene definita come criterio per la localizzazione delle piccole

scale in una simulazione numerica di tipo LES (large eddy simulation).
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Lo studio sistematico della funzione e del legame fisico tra questa e le scale

della turbolenza è oggetto del quinto capitolo. In esso vengono riportati

i risultati ottenuti tramite un lavoro di filtraggio del flusso: modificando

il campo di velocità in modi diversi è stato possibile analizzare il legame

statistico tra la quantità f e le strutture della turbolenza, evidenziando cos̀ı

un più evidente significato fisico di f .

Infine, il capitolo sesto è dedicato al problema del shearless mixing layer,

ovvero al mescolamento di due flussi turbolenti. Benchè i flussi siano isotropi,

la differenza relativa di energia genera disomogeneità nel mescolamento. Lo

studio de tale problema, soprattutto tramite simulazioni numeriche, argo-

mento relativamente recente. In questo lavoro viene analizzata l’evoluzione

del mixing layer, mettendo in risalto il ruolo dell’energia turbolenta (o meglio,

del rapporto tra le energie dei due flussi) come parametro fondamentale che

regola l’intermittenza del mescolamento.
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Chapter 1

Equations of turbulence

1.1 The equations of fluid dynamics

We briefly review the equations governing the motion of Newtonian fluids.

The basic idea is the continuum hypothesis, i.e. the assumption that a fluid,

although having a discrete molecular nature, can be regarded as a continuum

fluid. The continuum fluid properties are obtained by averaging the molecular

properties of the fluid on volume which is small compared with the flow

scale, but large enough so that the average is independent of the choice of

the integration volume. Using this fundamental assumption, one can derive

balance equations for physical quantities as density, momentum, kinetic or

total energy, and so on. The first is the continuity equation, which expresses

the mass-conservation principle:

∂ρ

∂t
+ ∇ · (ρU) = 0 (1.1)

where U(x, t) is the velocity of the fluid particle in x at time t, and ρ(x, t)

the density. The object of our discussion will be constant density fluids (in

time and space)

ρ(x, t) = ρ = const;

in this case the evolution equation has the simpler form

∇ · U = 0 (1.2)

thus stating that the field is divergence-free or solenoidal.

The momentum equation is based on Newton’s second law; it relates the

particle acceleration to the forces (body forces and surface forces) acting on
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1.1. The equations of fluid dynamics

the fluid. In the case of Newtonian fluids, this equation takes the form of the

well known Navier-Stokes equation

ρ(
∂Ui

∂t
+ Uj

∂Ui

∂xj

) = − ∂p

∂xi

+ µ
∂2Ui

∂xjxj

(1.3)

where p(x, t) is the (modified) pressure (a term which takes into account

both the pressure and the gravitational potential), and the constant µ is the

viscosity coefficient. Using the material derivative

D

Dt
=

∂

∂t
+ Uj

∂

∂xj

the equation is often written in the form

DUi

Dt
= −1

ρ

∂p

∂xi

+ ν
∂2Ui

∂xjxj

(1.4)

where ν = µ/ρ is called kinematic viscosity. The flow of a constant-property

Newtonian fluid is governed by equations (1.2) and (1.4). At a solid wall, the

usual boundary conditions are the impermeability condition n · U = 0 and

the no-slip condition U − n(n · U) = 0.

1.1.1 The vorticity equation

The concept and effects of vorticity play a central role in our discussion and

in the study of turbulence in general. So we spend a few more words about

its definition and properties.

The vorticity of a fluid motion is defined as

ω = curl(U)

so it is a vector field defined in each point, at each time. As we shall see in a

moment, the vorticity corresponds to the rotation of the fluid. A flow with

ω = 0 is called irrotational flow.

In order to understand the physical significance of vorticity, we compare

two examples. The first one is the so-called ideal vortex field, i.e. every

fluid particle is moving on a circular path above the z-axis, with a radial

distribution of velocity. In cylindrical coordinate we have

UΦ =
K

r
, Ur = Uz = 0
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1.1. The equations of fluid dynamics

(K is a constant). Taking the curl of this field we obtain

ωr = ωz = 0

ωΦ =
1

r

∂

∂r
(rUΦ) = 0

for r 6= 0. It can be seen from Stokes theorem that the vorticity goes to infin-

ity on the axis r = 0. Thus, this is a case of irrotational motion everywhere

(except the axis).

The second example is the shear-flow

U = U(y), V = W = 0

whose vorticity vector is

ωx = ωy = 0, ωz = −∂U

∂y

so that, in general, there can be non-zero vorticity in each point.

Let’s compare these examples. In the first case all the fluid particles (for

r 6= 0) move around a circular path, but the vorticity is zero. In the second

case, each particle moves in a straight line, but it has vorticity. This shows

one important feature of the rotation described by the vorticity vector: it

does not correspond to motion of particles on a close path, but to a change

of orientation in space. Thus, in the second example a change in orientation

is given by the presence of stress (∂U
∂y

) which deforms the particle; while in

the first case the particles are moving on a circular path, but conserve the

same orientation in space, so that the vorticity is null.

The evolution equation for vorticity can be obtained by taking the curl of

the Navier-Stokes equation. With the help of continuity equation, one finally

obtains

Dω

Dt
= ω · ∇U + ν∇2

ω (1.5)

which is referred to as the vorticity equation, and gives the rate of change of

the vorticity of a fluid particle.

The first term on the right-hand side represents the action of the velocity

variations on vorticity. For sake of simplicity, let’s consider a fluid which is

inviscid, i.e. the effects of viscosity can be neglected; hence the viscous term

disappears in the vorticity equation. Consider a particle whose vorticity is in
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1.1. The equations of fluid dynamics

Figure 1.1: Sketch of the contributions to the stretching-twisting term

the z-direction (just by so choosing the axes); for that particle the vorticity

vector is (0, 0, ωz). Thus the vorticity equation becomes

Dω

Dt
= ωz

∂U

∂z

Writing the three components separately one obtains

Dωx

Dt
= ωz

∂U

∂z

Dωy

Dt
= ωz

∂V

∂z
Dωz

Dt
= ωz

∂W

∂z

Let’s consider now the first of these three equations. If ∂U
∂z

is non-zero, it

means that particles instantaneous separated in the z-direction are acquiring

a separation in the x-direction too. And this generates vorticity in the x-

direction. The second equation can be interpreted in the same way. This

phenomenon is known under the name of vortex twisting.

The third equation says that the magnitude of z-component of vorticity

is increased when ∂W
∂z

is positive, i.e. when the fluid particle is elongating in

the same direction of vorticity. Note that, when a particle is elongating in

the z-direction, it must be contracting in the x and y-directions to conserve

mass. And now we see that it rotates faster (as a solid body of decreasing

moment of inertia). This is the phenomenon of vortex stretching.

The stretching-twisting term ω · ∇U is very important in turbulent pro-

cesses, because deformation and the arising of small scales are dominated by

vorticity. As we would like to show, this term can give important information

about the features of a turbulent flow.
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1.2. Statistical description of turbulence

1.2 Statistical description of turbulence

So far, we have described the well known model of fluid-dynamics; it applies

both to laminar and to turbulent flows. The case of laminar flows has been

studied for one century, and Navier-Stokes equation can be used to predict

values of the velocity field. Now we have a high degree of confidence that the

predicted values will agree with measured ones. When we apply the same

model to the study of turbulence, the aim of our theory must be different.

This difference is due to the intrinsically random nature of turbulence.

Let us consider for example the measured values for a velocity field. We

can consider for exemple data from a hot-wire probe placed in a wind tunnel,

but they present features which can be extended to all turbulent velocity

fields. First of all, we directly perceive the presence of structures with time-

scale of very different orders, from one second to one-hundredth of a second,

and maybe smaller. This makes the signal highly disorganized. Second,

the signal is highly unpredictable in detail. If we consider the velocity field

obtained from the same probe some time later, we see that it cannot be

predicted from the behavior of the previous one. Despite this fact, it is

possible to find some predictable feature.

In fact, what is reproducible in turbulence is the statistical behavior ; this

leads to the necessity of a statistical approach. The contrast between the ran-

dom nature of turbulent flows and the deterministic nature of the equation

described so far is only apparent; and lyes in the fact the the Navier-Stokes

model can be seen as a chaotical dynamical system. This kind of approach is

beyond the aim of our discussion; let us say that one of the most important

aspects is the extreme sensitivity to initial conditions. Let’s consider one

experiment that can be repeated under the same specified set of conditions

(for example the wind tunnel with the probe). The problem is that per-

turbations to these nominal conditions are always present: vibrations of the

apparatus, small temperature differences, details of the surfaces... Thus, in

practice, we can reduce but not eliminate perturbations. This is true in every

kind of experimental consideration, and does not explain itself the random

nature of turbulence. The fact is that, above all for high Reynolds numbers,

the evolution equation of the flow is strongly sensitive to changes in initial

conditions, boundary conditions and material properties. If we consider two

initial conditions practically indistinguishable (let’s say, for example, that

the difference can be of the order of 10−8) and we let the system evolve, the

evolution will be the same at the beginning; but after a certain time (let’s
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1.2. Statistical description of turbulence

say t0) the two trajectories can separate and evolve in a completely different

way. The consequence of this fact is that, if the initial state is known to

within 10−8, no useful prediction can be made beyond the time t0. That’s

why unpredictability arises.

In this section we briefly introduce the notation used in the following

chapters. The random vector velocity field U(x, t) is completely described at

each point, at each time, by the probability density function (in the following

pdf ) f(V;x, t). The mean velocity field is by definition

〈U(x, t)〉 =

∫∫∫ ∞

−∞

Vf(V;x, t)dV

Through the mean we can define the fluctuation of U

u = U − 〈U〉

(from now on we skip the space and time dependence) and in general the

n-th central moment is defined to be

〈un〉 =

∫∫∫ ∞

−∞

(V − 〈U〉)nf(V)dV

We will indicate the variance of U with both 〈u2〉 and V ar(U); the standard

deviation will be denoted by σ, 〈u2〉1/2 or r.m.s. (root mean square). We will

be also dealing with standardized moments. If σ is the standard deviation of

U, the standardized random variable from U is

Û =
U − 〈U〉

σ

the standardized pdf of U is

f̂(V̂) = σf(〈U〉 + σV̂))

and the n-th standardized moments are defined as

〈un〉
σn

=

∫∫∫ ∞

−∞

V̂nf̂(V̂)dV̂

We will consider mostly the third standardized moment, the skewness, and

the forth standardized moment, the kurtosis.
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1.3. Route to turbulence

For a complete characterization, we should know the N-time, N-time joint

pdf

fN(V(1),x(1), t(1),V(2),x(2), t(2), ...,V(N),x(N), t(N))

for all space-time points. This is obviously impossible; in practice, a random

velocity field cannot be fully characterized. The simplest statistic that con-

tains some spatial information about the structure of the field is the one-time,

two-point autocovariance

Rij(r,x, t) = 〈ui(x, t)uj(x + r, t)〉

This is often referred to as the two-point correlation, and is examined in more

detail in section 2.3.

A random field is said to be statistically stationary if the statistics are

invariant under a shift in time. It means that, given a time shift T , the N-

point joint pdf fN must remain unchanged when we replace (x(n), t(n)) with

(x(n), t(n) + T ) for all N points.

A random field is statistically homogeneous if all the statistics are invari-

ant under a shift in space. The definition of homogeneous turbulence requires

that only the fluctuation field u is statistically homogeneous. If the statistics

of the field are independent of one (or two) spatial directions, U is said to

be statistically two-dimensional (or one-dimensional). This will be the case

in most our simulations.

A random field is statistically isotropic if it is statistically homogeneous

and also invariant under rotations and reflections of the coordinate system.

The (approximately) isotropic condition is one of the most studied case, as

much of the theory centers on isotropic turbulence.

1.3 Route to turbulence

“No short but complete definition of turbulence seems to be possible. One

has rather to describe the features that are implied by the use of the name.

One can formulate a brief summary, rather then a formal definition, that at-

tempts to incapsulate the description. Perhaps the best is that turbulence is

a state of continuous instability”. According to this consideration by Tritton,

the aim of these initial paragraphs is to give a description of the general fea-

tures of a turbulent flow. In this purpose, both theoretical and experimental

aspects play a fundamental role. Furthermore, the physical experiment by
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1.3. Route to turbulence

which the turbulence is generated has a little importance, in a sense which

will be made more clear later: this allows us to refer to different types of

turbulent flows, generalizing the conclusions to all kinds of turbulent flows.

The first relevant feature is the lost of symmetries. Let’s consider the well

known example of a stationary flow of uniform velocity (V, 0, 0) incident from

the left to an (infinite) circular cylinder, parallel to the z-axis. According

to the similarity principle (see chapter 2), the system can be completely

described with just one parameter, the Reynolds number

Re =
LV

ν
(1.6)

where L is the characteristic scale (in our example, the diameter of the

cylinder), and ν is the kinematic viscosity. Visualizations of the flow at low

Reynolds numbers Re ≈ 10−1 show that it presents some kind of symmetries :

• left-right symmetry;

• up-down symmetry;

• time-invariance;

• space-invariance in direction z.

Now let the Reynolds number grow up. The first symmetry which is bro-

ken is the left-right one; this happens at Re ≈ 1. Actually, we must remark

that the right-left symmetry is non consistent with the Navier-Stokes equa-

tion. This is due to the presence of the nonlinear term. But it is consistent

with the Stokes equation, which is the momentum equation without the non-

linear term. Actually, this symmetry is not exact, and it is present only if

the Reynolds number is very low, so that the contribution of the nonlinear

term is weak.

At Re ≈ 5 the right-left symmetry is even stronger, and the flow begins

to separate: circulating eddies form behind the cylinder. The flow is still

stationary.

At Re ≈ 40 there happens the first real breaking of symmetry: the flow

becomes time-periodic. Figures show the presence of the well-known periodic

Karman street of alternating vortices, driven downward by the flow. Through

this bifurcation point, the time-invariance becomes a discrete time invariance.

Also the up-down symmetry goes under a slight change, for it is no more
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1.4. Reynolds equations

exact, but each vortex up is the exact mirror of a vortex down after half a

period.

The last symmetry to be broken is the z-direction invariance. The critical

value for this to happen is not exactly known, but simulations seem to show

that it is somewhere between 40 and 70. The flow, which was essentially

two-dimensional, becomes truly three-dimensional, with the generation of a

velocity component in the third direction. Three-dimensionality, and the

mathematical terms generating it, is a very important feature of a turbulent

flow, and we will come back to this topic in the following chapters.

Finally, there is also a Reynolds number threshold beyond which the flow

breaks also the discrete time-dependence, and become chaotic. This values is

approximately around 200-300. Visualizations of marked fluid particles show

the erratic, random paths.

Thus, increasing the Reynolds number, all the symmetries are sponta-

neously broken, and the flow becomes chaotic. We say that a flow is turbulent

when successive instabilities have reduced the level of predictability so much

that a statistical description is necessary. Thus, in a turbulent flow, random

features are dominant; nevertheless the flow involves organized structures.

As we have seen in the previous chapter, at very high Reynolds numbers the

symmetries are restored in a statistical sense: this state is referred to as fully

developed turbulence.

A statistical mechanics similar to kinetic theory of gases requires too

many, and not always valid, assumption; thus, much of knowledge and theory

about the behavior of turbulence comes from experiments. Nevertheless, one

can obtain evolution equations for some statistical quantity from the Navier-

Stokes equation, which remains the model of reference. Both aspects play a

central role in the study of turbulence, and we try to discuss both of them

in the following chapters.

1.4 Reynolds equations

When treating the problem of turbulent flows, it is necessary to develop and

deal with statistical tools like means, correlation functions, etc. Equations of

evolution for such quantities must be derived from the Navier-Stokes model.

The most basic of these equations was obtained by Reynolds in 1894, and

describes the evolution of the mean field 〈U(x, t)〉.
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1.4. Reynolds equations

We call Reynolds decomposition the splitting of the velocity field in two

parts: the mean flux 〈U(x, t)〉, and the fluctuation u(x, t), such that

U(x, t) = 〈U(x, t)〉 + u(x, t), (1.7)

. The continuity equation (1.2) ∇ ·U = ∇ · (〈U〉 + u) = 0 must be satisfied

by the mean term, as the differentiation and the mean operators commute:

∇ · 〈U〉 = 〈∇ · U〉 = 0; (1.8)

and by subtraction we see that the same relation holds for the fluctuation

term

∇ · u = 0 (1.9)

When we want to take the mean of the momentum equation (1.4) we

must pay attention to the nonlinear term. Actually, by taking the mean of

the substantial derivative

〈DUj

Dt
〉 =

∂〈Uj〉
∂t

+
∂〈UiUj〉

∂xi

we have to deal with the nonlinear term 〈UiUj〉. It can be decomposed into

〈UiUj〉 = 〈(〈Ui〉 + ui)(〈Uj〉 + uj)〉

= 〈Ui〉〈Uj〉 + 〈uiuj〉
(as obviously fluctuations have zero mean). Thus the previous equation is

rewritten as

〈DUj

Dt
〉 =

∂〈Uj〉
∂t

+ 〈Ui〉
∂〈Uj〉
∂xi

+
∂

∂xi

〈uiuj〉.

By defining the mean substantial derivative

D̄

D̄t
=

∂

∂t
+ 〈U〉 · ∇

the result can be re-expressed in the form

〈DUj

Dt
〉 =

D̄

D̄t
〈Uj〉 +

∂

∂xi

〈uiuj〉

Finally, we can take the mean of the momentum equation and express it as

D̄

D̄t
〈Uj〉 = ν∇2〈Uj〉 −

1

ρ

∂〈p〉
∂xj

− ∂

∂xi

〈uiuj〉 (1.10)
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1.4. Reynolds equations

which is known as the Reynolds equation. This equation is different from the

laminar flow equation by the last term, 〈uiuj〉. This term is referred to as

Reynolds stresses ; it is due to nonlinearity, and represents, as we shell see,

the action (the stress) produced by the velocity fluctuations on the mean

flow. As this term is usually large compared with the viscous term, the mean

velocity distribution is very different from the corresponding laminar flow.

1.4.1 Reynolds stresses

As we have pointed out, the very different behavior of the velocity field U

and the mean velocity field 〈U〉 is due to the presence of the term 〈uiuj〉
in the evolution equation of the latter. The meaning of the terms is made

clearer if we rewrite this equation as

D̄

D̄t
〈Uj〉 =

∂

∂xi

[µ(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

) − 〈p〉δij − ρ〈uiuj〉]

that is, in the form of a general momentum conservation equation. The

right hand side terms represent the stresses. The first one is the viscous

stress, due to momentum transfer at molecular level. The second one is the

isotropic stress, generated by the mean pressure field. The third one is the

stress arising by the fluctuation velocity field. Although the stress term is

−ρ〈uiuj〉, it is usual to refer to 〈uiuj〉 as the Reynolds stress.

The Reynolds stress is a second-order symmetric tensor. The diagonal

components are called normal stresses, while the off-diagonal terms are shear

stresses. Using this tensor we define the turbulent kinetic energy :

k =
1

2
〈uiui〉 (1.11)

so it is half the trace of the tensor; it represents the mean kinetic energy (per

unit mass) of the fluctuating field.

As usual, the tensor can be decomposed in one isotropic and one devia-

toric part. The isotropic component is

2

3
kδij

so that the anisotropic part is

aij = 〈uiuj〉 −
2

3
kδij
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1.5. Energy cascade and vortex stretching

This deviatoric part has the only effective contribution to the momentum

transport; so, if we look at the pressure stress term, the isotropic part can

be absorbed in a modified mean pressure term and we can write

∂〈p〉
∂xj

+ ρ
∂

∂xi

〈uiuj〉 = ρ
∂aij

∂xi

+
∂

∂xj

(〈p〉 +
2

3
ρk)

It should be noted that the presence of the Reynolds stress term causes

a closure problem for the model described so far, as we have four equations

for more than four unknowns. So we need another system of equations for

this term. The simplest way is to model the tensor aij, proceeding in a way

analogous to the stress-rate of strain relationship for a Newtonian fluid. That

is, we suppose that aij is proportional to the mean rate of strain tensor:

aij = 〈uiuj〉 −
2

3
kδij = ρνT (

∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)

This assumption is called turbulent-viscosity assumption, and the coefficient

νT is referred to as turbulent viscosity or eddy viscosity. If this coefficient

can be specified, the closure problem is solved; furthermore the conservation

equation can be expressed in the new form

D̄

D̄t
〈Uj〉 =

∂

∂xi

[νeff (
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)] − 1

ρ

∂

∂xj

(〈p〉 − 2

3
ρk) (1.12)

where νeff (x, t) = ν + νT (x, t) is called the effective viscosity. Note that this

equation is formally the same of Navier-Stokes equation, with νeff instead

of ν, the mean flux 〈U〉 instead of the velocity U, and with the use of the

modified pressure term 〈p〉 − 2
3
ρk.

1.5 Energy cascade and vortex stretching

The turbulent flow is divided into interacting motion structures, called eddies

of different sizes. An eddy is different from a Fourier component (see section

2.4). A single Fourier component extends over the whole flow; an eddy is

localized, its extent is indicated by its length scale. However, small eddies

contribute to large wave-number components of the spectrum; the spectrum

is often interpreted as the energy associated to eddies of various sizes. Note

that value of spectrum at wave-number k is influenced by all eddies smaller

than 1/k.
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1.5. Energy cascade and vortex stretching

A basic fact in the study of a turbulent flow is the generation of smaller

and smaller structures. This phenomenon needs an explanation from the en-

ergetic point of view; the answer is found in the Richardson energy cascade

model, described in the following.

According to this model, the energy fed into the turbulence goes primarily

to the larger eddies. Then, smaller eddies are generated from these ones, and

then still smaller ones. During this process the viscosity is supposed to

be negligible; so the energy is almost completely transferred from larger to

smaller structures. This cascade goes on until the the scale is small enough

for the viscosity to be important: then dissipation occurs, and the energy is

transformed into heat.

The higher is the Reynolds number, the longer is the cascade; that is, the

largest is the difference between the large eddies, where the external forced

energy is absorbed, and the smallest eddies, where this energy is dissipated.

A central point is that the dissipation is determined by rate of energy supply

to the cascade, and it is independent of the dynamics of the small eddies,

in which the energy is in fact dissipated. The rate of dissipation ε is thus

independent of the viscosity magnitude ν.

The main mechanism governing this energy transfer is the strong presence

of vortex stretching (see section 1.1). Actually, consider two fluid particles

initially close together. For the random nature of turbulence, it is more likely

that they are much further apart any time after; the turbulence carries them

over different paths. When this happens to particles in the same vortex line,

it generates the so-called vortex stretching. As a consequence, it increases

the magnitude of vorticity; but because of continuity it also reduces the cross-

section of the vortex tube. Thus the motion at smaller scales is increased,

with a consequent transfer of energy to smaller structures.
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Chapter 2

Turbulence mathematical

model: Kolmogorov’s K41

theory

2.1 The Kolmogorov hypothesis

At this point, the next step would be the description of a mathematical

model, starting from the Navier-Stokes equations, which could lead to the

experimental results described before. Unfortunately, such a complete de-

ductive theory is still missing. Still, what is possible is to formulate some

hypothesis which are compatible with experiments, and which make possible

some further prediction. This corp of propositions was elaborated first by

Kolmogorov in 1941, and consequently is usually referred to as K41 theory.

Here they are presented from a modern point of view, following the aim of

Frish [7] our starting point are considerations on symmetries.

As we have seen, the Navier-Stokes equations possesses a list of sym-

metries: time-invariance, space-translation, rotations, etc. Are they pre-

served by turbulence? It is easily seen that they are soon broken, as the

Reynolds number increases. For example, let’s consider a steady flow with

time-independent boundary conditions and driving force. As the Reynolds

number grows up, the flow is shown to become time-periodic (an Andronov-

Hopf bifurcation occurs ); if Re is increased further, the flow becomes chaotic.

It happens that the continuous time invariance is restored in a discrete form,

when the flow is periodic, and in a statistical sense when it becomes chaotic.
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2.1. The Kolmogorov hypothesis

In other words, the statistical properties are found to be stationary, i.e. time-

invariant.

If we try to generalize these considerations to the other type of sym-

metries, we meet more difficulties. Let’s think for example to a cylinder-

generated turbulence. The physical domain does not allow spatial symme-

tries: for instance, velocity fluctuations must vanish at rigid boundaries, so

fluctuations next to the cylinder must be different from fluctuations far from

it. A sort of symmetry is conceivable for a grid-generated turbulence, but

only in the grid direction, and for multiples of the mesh. Thus, in general it

is true that the mechanism which generates turbulence is not consistent with

the listed symmetries. On the other hand, we have seen in previous chapters

that many turbulent flows are characterized by a sort of homogeneity and

isotropy. Interpretation of these conflicting aspects needs the help of some

hypothesis. Let’s consider the velocity differences

δvr(l) = [U(x + r) − U(x))] · r. (2.1)

The Kolmogorov assumptions on the velocity differences, presented in the

following, represent the core of the K41 theory about turbulence.

Hypothesis 1 (Local Isotropy) In the limit of infinite Reynolds number,

all possible symmetries, although broken by the mechanism producing turbu-

lence, are restored in a statistical sense, at small scales and far from rigid

boundaries.

The small scales are the scales small enough compared to the integral

scale (i.e. the diameter of the cylinder or the length of the mesh). Thus, under

the Hypothesis 1, there exists a range of scales L � L0 in which velocity

increments are statistically invariant under translation r0 (homogeneity)

δvr+r0
(l) = δrv(l) in law,

under rotation R (isotropy)

R(δrv(R(l))) = δrv(l) in law,

and under parity

−δrv(−l) = δrv(l) in law.

Kolmogorov argued that all the information about the geometry of the

flow, carried by the large scales, is lost down the energy cascade. This fact
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2.1. The Kolmogorov hypothesis

has the consequence that the statistics of the small-scale motions are in this

sense universal, i.e. they are the same, no matter how the turbulence is

generated. But on which parameter do they depend? If we have a look

at the energy cascade (see section 1.5), we find out that the main parame-

ters that control such a mechanism are basically two: the rate at which the

energy is transferred from larger to smaller scales at the top, and the kine-

matic viscosity at the bottom. Another important principle is that energy

is just transferred down the cascade, and dissipated just at the end. As a

consequence, we can assume that the rate at which the smaller scales receive

energy from the bigger ones is comparable to the dissipation rate ε. Now we

can understand the sense of the following statement:

Hypothesis 2 (First similarity assumption) At very high, but finite, Reynolds

number, all the small scale statistical properties are uniquely and universally

determined by the mean dissipation rate ε and the viscosity ν.

Given the two parameters ε and ν, simple dimensional consideration lead

us to see that there is only one possibility to obtain length, velocity and time

scales. Actually, on dimensional ground and within multiplicative constants,

they must be written as

η ∼ (ν3/ε)
1

4

δuη ∼ (νε)
1

4

τη ∼ (ν/ε)
1

2

η is called Kolmogorov scale. Let’s show how the universality stated in

the hypothesis comes out. We consider the non-dimensional coordinate at a

point (x0, t)

y =
x − x0

η

and the relative normalized velocity-difference field

w(y) =
U(x, t0) − U(x0, t0, )

δuη

.

Actually, no non-dimensional parameter can be defined using ε and ν; thus,

the universal form of the statistics of w(y) cannot depend on these two

parameters. As a consequence of the Kolmogorov first hypothesis, given

different high-Reynolds-number turbulent flows, the velocity fields w(x) are

statistically similar at the small scales, i.e the statistics are identical when

the field is normalized using the Kolmogorov scales.
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2.1. The Kolmogorov hypothesis

As immediate consequence of these definitions, the resulting Reynolds

number is

Reη =
ηuη

ν
, = 1.

It is clearly seen that an uncertainty about the definition of small scales

is left. This hypothesis con be regarded as just saying that there exists a

range os scales, much smaller than L such that the statistics depends only

on η and ν. Experiments and flow visualizations show that the ratio η/L

increases as the Reynolds number grows up; so the higher is the Reynolds

number, the longer is the energy cascade. This means that, at sufficiently

high Re, one can find a range of scales l very small compared to L, but still

very large compared to the dissipative scale η:

η � l � L

. The second similarity hypothesis, supported by experimental evidences,

states that the motion of such scales is little affected by viscosity; so that

Hypothesis 3 (Second similarity assumption) In the limit of infinite

Reynolds number, all the statistical properties of the scales η � l � L are

uniquely and universally determined by the mean dissipation rate ε, indepen-

dent of ν.

It is evident that length-scales, velocity-scales and time-scales cannot be

defined on the base of ε alone. In this case, given any scale η � l � L,

velocity- and time-scales will depend on l as well:

δu(l) ∼ (εl)1/3

τ(l) ∼ (
l2

ε
)1/3.

As a consequence, these scales decrease as l decreases.

So, the picture we have described so far is this: the set of scales generated

in a turbulent flow at high Reynolds number can be divided into three ranges,

with different behaviors. The first range contains the largest scales l ∼ L; we

shall see that this range contains the bulk of the energy of turbulence, so that

it is called the energy-containing range. The second range contains the
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2.2. Consequences of the similarity hypothesis

bottom of the cascade, the smallest scales l ∼ η. This range is dominated by

viscosity and diffusion, and is called Kolmogorov or dissipation range. In

between, the behavior of the velocity field is independent both of the larger

scales and boundary conditions, and of the smaller scales and the viscosity.

This is called inertial range.

Before going on, one important remark must be done. We presented the

Kolmogorov hypothesis in a form which is quite usual, see [14]). However one

must keep in mind that the original formulation was given by Kolmogorov in

terms of joint probability distribution function of the velocity difference field.

Consider a domain in a turbulent flow and n points inside this domain, say

x0,x1,x2, . . . ,xn. One can define

y = x − x0

v(y) = U(x, t) − U(x0, t)

and consider the the N-joint pdf fN (and all the statistics) of v in the points

y0,y1,y2, . . . ,yn. We point out that the Kolmogorov statements refer to fN

and to the relative statistics; thus, the K41 theory must be applied only to

the statistics of the velocity differences.

2.2 Consequences of the similarity hypothe-

sis

2.2.1 Phenomenological point of view

An important branch in turbulence theory is the so called phenomenology

of turbulence. Phenomenology is a kind of useful shortcut: in this contest

reasonings are made, above all on dimensional ground, in order to recover

theoretical results in a simpler way. We notice that we silently introduced

this point of view in our presentation of the Kolmogorov hypothesis. Now

we make it more clear and precise, we look back to some physical concepts

in this new light, and we obtain further predictions.

When we are dealing with phenomenology, the basic tools are the orders

of magnitude of physical quantities. So we need to define:

• the length-scale under consideration l. The integral scale is now l0,

while the Kolmogorov scale is as usual η;
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2.2. Consequences of the similarity hypothesis

• vl the velocity-scale (the scale of the r.m.s. velocity) associated to l;

We will write v0 ∼ vl0 for the r.m.s. velocity fluctuations. Furthermore

we can define

tl ∼
l

vl

the so-called eddy-turnover time associated to scale l. It represents the typical

time for a structure of size l to undergo a significant distortion due to the

relative motion of its components. Thus, it is also the typical time for the

transfer of energy from scales ∼ l to smaller scales. The energy flux Πl can be

estimated as the ratio between the kinetic energy (per unit mass) associated

with eddy motion on scale ∼ l, and the typical time of this transfer. We

obtain

Πl ∼
v2

l

tl
∼ v3

l

l

Now recall the energy cascade picture introduced by Richardson. In this

model, the inertial range is characterized by the absence of direct energy

input and direct energy dissipation; the energy is totally transferred from

larger to smaller scales. When the scale is small enough (i.e. Kolmogorov

scale) the energy is finally dissipated in heat. This means that, in the whole

inertial range, the energy flux must be independent of l, and equal to the

mean energy dissipation rate:

Πl ∼
v3

l

l
∼ ε

This relation can be expressed in the form

vl ∼ ε1/3l1/3

which shows the consistency between the Richardson cascade and the third

Kolmogorov hypothesis.

Near the top of the inertial range, where l ∼ l0, this equation leads to the

following estimate for the dissipation

ε ∼ v3
0

l0

a very important relation, often used in empirical modelling.

Other considerations can be made about the distortion of eddies, con-

trolled by the shear. One important assumption in the energy cascade idea
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2.2. Consequences of the similarity hypothesis

is the localness of scale interactions. In this frame, localness does not mean

position in the physical space, bur refers to the fact that the dynamics of

an eddy of length-scale l are induced by eddied of slightly larger dimension;

and affects the behavior of slightly smaller eddies. Dealing with orders of

magnitude, it means that the typical shear (and the predominant distortion)

associated with scales ∼ l comes from the scales l′ ∼ l; recalling the relation

vl ∼ ε1/3l1/3 we see that

sl ∼
vl

l
∼ ε1/3l−2/3

So, in the inertial range, the bigger is the scale, the smaller is the shear; the

weaker shear is on the top of the inertial range, where l ∼ l0, while the larger

is near its bottom, where l ∼ η.

2.2.2 The structure function

In present section, our aim is to show how the listed hypothesis of K41 the-

ory are used to predict the behavior of statistical quantities. As a typical

example, let’s show what can be inferred about the structure function.

The covariance of the velocity differences between two points x and x+r:

Dij(x, r, t) = 〈[Ui(x + r, t) − Ui(x, t)][Uj(x + r, t) − Uj(x, t)]〉 (2.2)

is usually referred as the second-order velocity structure function. We

would like to make some prediction about the statistics of Dij(x, r) (we skip

the dependence on time, as it has no influence in the present discussion); but

before we have to show that this quantity can be written as a function of y

and v(y) written above. It is easy, as we can write

y1 = x − x0 y2 = (x + r) − x0

v(y1) = U(x) − U(x0) v(y2) = U(x + r) − U(x0)

thus the structure function can be rewritten as

Dij(y1 + x0,y2 − y1) = 〈[Ui(x + r) − Ui(x)][Uj(x + r) − Uj(x)]〉

If we assume that all other conditions are satisfied (e.g. high Reynolds

number), from the hypothesis of local isotropy it follows that Dij is indepen-

dent of x; it is also evident by definition that Dij depends on y2 − y1 and

not on y1,y2 separately. So Dij(r, t) is an isotropic function of r.
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2.2. Consequences of the similarity hypothesis

As Dij is a second order tensor, it follows that, to within scalar multiples,

it must be written as

Dij(r, t) = DNN(r, t)δij + [DLL(r, t) − DNN(r, t)]
rirj

r2
(2.3)

where DLL and DNN are called respectively the longitudinal and the

transverse structure function.

In homogeneous isotropic turbulence in which the mean flow is supposed

to be null, the continuity equation leads to the relation

∂

∂ri

Dij(r, t) = 0 (2.4)

This is easily seen by noting first of alla that Di,j can be written in

function of the two-point correlations

Rij(x, r, t) = 〈ui(x + r, t)uj(x, t)〉

(which are studied in more detail in the next section). Actually, 〈U〉 = 0

implies

Dij(r) = 〈[ui(r) − ui(0)][uj(r) − uj(0]〉 =

〈ui(r)uj(r) − ui(0)uj(r) + ui(0)uj(0) − ui(r)uj(0)〉 =

2Rij(0) − Rij(r) − Rji(r) = 2Rij(0) − Rij(r) − Rij(−r)

and it is easy to see that, by imposing the continuity equation
∂uj

∂xj
= 0 one

obtains
∂Rij

∂ri

=
∂Dij

∂ri

= 0

Combining equations (2.3) and (2.4) one can determine DNN in function

of DLL:

DNN(r, t) = DLL(r, t) +
r

2

∂DLL

∂r
(r, t) (2.5)

Thus, in homogeneous isotropic turbulence, Dij depends on the only scalar

quantity DLL(r, t).

Let’s now apply the similarity hypothesis. There exists a range, the

Kolmogorov range, in which Dij is completely determined by ε and ν. For

dimensional reasons it is convenient to consider also the scale-length r; the

quantity (εr)2/3 can be used to make Di,j non-dimensional. Therefore, within

scalar multiples we can write

DLL(r, t) = (εr)2/3D̂LL(r/η) (2.6)
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2.3. Deductions from Navier-Stokes equations

In the inertial range, the Dij should be independent of ν. In this case

there is no non-dimensional relation which can be formed by r, ν only. So

DLL can be written using a constant C

DLL(r, t) = (εr)2/3 · C

where this constant must be universal. As a straight consequence

DNN =
4

3
DLL =

4

3
C(εr)2/3

Dij(r, t) = C(εr)2/3(
4

3
δij −

1

3

rirj

r2
)

Thus, in the inertial and Kolmogorov range, the second order structure

function can be determined a priori using r, ε, and ν in the dissipative range.

This prediction has been tested in experimental way; this allows also to

find the value for the universal constant C.

2.3 Deductions from Navier-Stokes equations

We have shown how the system of Kolmogorov hypothesis can be successfully

used to make important statistical prediction. However we have already

pointed out that these hypothesis have no direct connection to the Navier-

Stokes equations. Thus, another way to get information about the energy

cascade is to deduce results directly from the Navier-Stokes model. Earliest

attempts in this direction were made by Taylor (1935) and Karman and

Howarth (1938). Both are based on the two-point correlation functions

Rij(x, r, t) = 〈ui(x + r, t)uj(x, t)〉 (2.7)

Once we apply the homogeneity hypothesis, Rij can be considered inde-

pendent from x. As we have found for Dij in the previous section, one con-

sequence of the homogeneity is that Rij can be expressed using two scalar

functions f(r, t), g(r, t):

Rij(r, t) = u′2(g(r, t)δij + [f(r, t) − g(r, t)]
rirj

r2

where u′ is related to Rij by the correlation in the origin

Rij(0, t) = 〈uiuj〉 = u′2δij
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2.3. Deductions from Navier-Stokes equations

and it is used to obtain non.dimensional f, g, called longitudinal and transver-

sal correlation functions. Again in parallel with properties of Dij, the conti-

nuity equations implies
∂Rij

∂rj
= 0. The combination of this equation with the

expression for Rij leads to

g(r, t) = f(r, t) +
1

2
r

∂

∂r
f(r, t) (2.8)

Thus, in isotropic homogeneous turbulence, the two-point correlation Rij

is completely determined by the longitudinal correlation function f(r, t).

2.3.1 Karman-Howarth equation

The Karman-Howarth equation is an evolution equation for f(r, t). As we

are concerned about its consequences, we just sketch the steps of its deriva-

tions. More details can be found in [9].

We can write the time-derivative of Rij(r, t) as

∂

∂t
Rij(r, t) = 〈 ∂

∂t
ui(x + r, t)uj(x, t)〉 + 〈ui(x + r, t)

∂

∂t
uj(x, t)〉 (2.9)

So we can use the Navier-Stokes equation

∂uj

∂t
= −∂(uiuj)

∂xi

− 1

ρ

∂p

∂xj

+ ν
∂2uj

∂xi∂xi

(2.10)

to eliminate the time derivatives in equation 2.9. Thus three terms arise,

convection, pressure-gradient and viscous term. The most important point

is that the convective term involves two-point triple velocity correlations

Sijk(r, t) = 〈ui(x, t)uj(x, t)uk(x + r, t)〉.

In the same way as for Rij, in isotropic turbulence Sijk is uniquely deter-

mined by the longitudinal correlation defined as

k(r, t) = S111(e1r, t)/u
′3 = 〈u1(x, t)2u1(x + e1r, t)〉/u′3 (2.11)

As final result, using series expansion of k(r, t), one obtains an exact

equation for the evolution of f(r, t)

∂

∂t
(u′2f) − u′3

r4

∂

∂r
(r4k) =

2νu′2

r4

∂

∂r
(r4∂f

∂r
)
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2.3. Deductions from Navier-Stokes equations

which we refer to as the Karman-Howart equation.

The fact that we would like to underline here is that equation by itself

is not closed. Actually, while one tries to find the evolution equation for

the 2nd moment f(r, t), one other quantity is involved: the third moment

k(r, t). One idea would be to find another evolution equation, for k(r, t); but

it is shown that the fourth moment would be involved. And so on. This

term k(r, t) comes from the inertial term in Navier-Stokes. Consequently, in

Karman-Howart model, it is the one responsible for the energy transfer form

larger to smaller scales, in the Richardson cascade. It is also remarkable that,

if the probability distribution of v is a Gaussian, the third moment would be

zero, as all odd moments. In this case, the closure problem would not exist.

Hence, the energy cascade process depends on non-Gaussian aspects of the

velocity field.

2.3.2 The Kolmogorov 4
5

law

The same result is often presented in a different way. Actually, if we integrate

the Karman-Howart equation we obtain the so called Kolmogorov equation:

3

r4

∫ r

0

s4 ∂

∂t
DLL(s, t) ds = 6ν

∂DLL

∂r
− DLLL − 4

5
εr (2.12)

which is here expressed in terms of the structure function DLLL

DLLL(r, t) = 〈[u1(x + e1r, t) − u1(x, t)]3〉 (2.13)

Here we just note a further consideration: Kolmogorov also argued that

the unsteady term is zero in locally isotropic turbulence. Thus, in the inertial

range where the viscosity is negligible, we obtain the Kolmogorov 4
5

law :

DLLL = −4

5
εr (2.14)

Furthermore, Kolmogorov also argued that the skewness of the structure

function

S ′ =
DLLL(r, t)

DLL(r, t)3/2

is constant. This allows to write DLL as a function of ε and r:

DLL(r, t) = (
−4

5S ′
)2/3(εr)2/3

It is found that the result is the same as the prediction from the similarity

hypothesis, see equation 2.6. It is therefore a proof of the consistency between

the Kolmogorov hypothesis and Navier-Stokes equation.
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2.4. Fourier domain

2.4 Fourier domain

A further insight in turbulent behavior is gained by the use of Fourier modes.

In this section we first introduce the notation that will be used in the fol-

lowing, and then we present the equations of fluid-dynamics in the spectral

domain.

Let’s consider a cube in the physical space, where the side L is large

compared to the the integral scale. Suppose that the turbulent velocity field

such that:

• the mean velocity is zero;

• the velocity field is spatially periodic of period L:

u(x + LN, t) = u(x, t)

for all vectors N, for all t.

This allows us to describe the field in terms of Fourier series. The lowest

wave-number is k0 = 2π
L

. In the direction xj, the nj-th Fourier mode is

written as

eik0njxj

. The wave-number vector k = k0n = k0(e1n1 + e2n2 + e3n3) allows a more

compact form for the three-dimensional Fourier modes:

eik·x = eik0n1x1eik0n2x2eik0n3x3

The modes form an orthonormal system. For a generic periodic function g(x)

we write its Fourier series

g(x) =
∑

k

eik·xĝ(k) (2.15)

where ĝ(k) is the Fourier coefficient at wave-number k. The Fourier coeffi-

cient of g(x) can be determined from the projection

ĝ(k) = 〈g(x)e−ik·x〉L
where the notation 〈·〉L stands for the integration on the cube of size L.

Given a function g(x), the operator which determines the coefficient of the

Fourier mode relative to wave-number is indicated as

F{g}(k) = 〈g(x)e−ik·x〉L =
1

L3

∫∫∫ L

0

g(x)e−ik·x dx1 dx2 dx3 (2.16)
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2.4. Fourier domain

In the particular case of our velocity vector field we write the Fourier series

u(x, t) =
∑

k

eik·xû(k, t) (2.17)

where the velocity coefficients are

ûj(k, t) = F{uj(x, t)}(k). (2.18)

Note that, as the Fourier modes are deterministic and time-independent, all

the time dependent and random nature of the turbulent flow is carried out

by the Fourier coefficients.

Using the rules of derivatives and transforms, one can write the continuity

and the Navier-Stokes equations in the Fourier domain. As the divergence

of the vector u becomes

F{∂uj

∂xj

} = ik · û,

the continuity equation assumes the form:

k · û = 0. (2.19)

This equation just states that the vector û is normal to the vector k.

Now let’s consider the Navier-Stokes equation

∂uj

∂t
+

∂(ujuk)

∂xk

= ν
∂2uj

∂xk∂xk

− 1

ρ

∂p

∂xj

and apply the operator F{}(k) term by term. For the time derivative we

obtain

F{∂uj

∂t
} =

∂ûj

∂t

while the viscous term becomes

F{ν ∂2uj

∂xk∂xk

} = −νk2ûj;

the pressure gradient term can be written as

F{1

ρ

∂p

∂xj

} = −ikj p̂.
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2.4. Fourier domain

If we now call the Fourier coefficient of the convection term

F{∂(ujuk)

∂xk

}(k, t) = Ĝj(k, t)

and combine all these results, we obtain the Fourier form of the Navier-Stokes

equation:
∂ûj

∂t
+ νk2ûj = −ikj p̂ − Ĝj (2.20)

When this equation is multiplied by kj, continuity equation (2.19) says

that the left-hand side vanishes, leaving

k2p̂ = ikjĜj (2.21)

which is the Poisson equation, obtained from Navier-Stokes model, in wave-

number space. The equation can be solved in order to obtain the pressure

term:

−ikj p̂ =
kjkk

k2
Ĝk. (2.22)

What does the right-hand side term represent? Let’s consider a generic

vector Ĝ, and examine its orientation relative to the wave-number vector k.

Obviously, Ĝ can be decomposed into a component Ĝ‖ parallel to k, and a

component Ĝ⊥ normal to k. Being e = k/k the unit vector in the direction

of k, one has

Ĝ‖ = e(e · Ĝ) = k(k · Ĝ)/k2 =
kjkk

k2
Ĝk

So, coming back to equation (2.22), the pressure term exactly balances −Ĝ‖,

the component of −Ĝ in the direction of k. This also implies that what

remains in the right-hand side of equation (2.20) is Ĝ⊥ = (δij − kjkk

k2 )Ĝk:

∂ûj

∂t
+ νk2ûj = −Ĝ⊥. (2.23)

We usually denote the projection operator as Pij = (δij − kjkk

k2 ). Finally, we

can express Ĝj(k, t) in terms of ûk; simple calculations lead to

Ĝj(k, t) = F{ ∂

∂xk

(ujuk)}(k) = ikkF{ujuk}(k)

= ikk

∑

k′

ûj(k
′)ûk(k − k′)
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2.5. Velocity spectra

which can be substituted in (2.20) giving the final form of the evolution

equation for û(k, t):

(
∂

∂t
+ νk2)ûj(k, t) = −iklPjk(k)

∑

k′

ûk(k
′)ûl(k − k′, t)

2.5 Velocity spectra

We have already defined a central quantity in the study of turbulence, the

two-point velocity correlation

Rij(r, t) = 〈ui(x + r, t)uj(x, t)〉

which is shown to be independent on x in the case of homogeneous turbu-

lence. Furthermore, we assumed to consider only velocity fields with zero

mean 〈U(x, t)〉 = 0; thus Rij plays a central role, being the next simplest

statistic to consider. Its importance is made clear in the following.

2.5.1 Velocity spectrum tensor

Let’s consider the covariance of two Fourier coefficients

〈ûi(k
′, t)ûj(k, t)〉

It can be shown that this quantity is zero, i.e. the coefficients are uncorre-

lated, unless the two vectors k and k′ have the property k+k′ = 0. Therefore,

the significative quantities are

R̂ij(k, t) = 〈ûi(−k, t)ûj(k, t)〉 (2.24)

It can also be shown that these R̂ij(k, t) are the Fourier coefficients of the

two-point velocity correlation:

R̂ij(k, t) = F{Rij(x, t)}(k) (2.25)

The velocity spectrum tensor is defined by

Φij(k, t) =
∑

k̄

δ(k − k̄)R̂ij(k̄, t) (2.26)
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2.5. Velocity spectra

(note that the notation has changed: the integer wave-number vector is now

k̄, while k is a continuous wave-number variable). Evidently, the two-point

correlation and the velocity spectrum tensor form a Fourier pair:

Φij(k) =
1

(2π)3

∫∫∫ ∞

−∞

Rij(r)e
−ik·r dr (2.27)

Rij(r) =

∫∫∫ ∞

−∞

Φij(k)eik·r dk (2.28)

The velocity spectrum tensor represents the Reynolds-stress density in wave-

number space: actually, Φij(k) represents the contribution from the Fourier

mode eik·x to the Reynolds stress 〈uiuj〉. The subscripts ij give the directions

of the velocity in physical space. The wave-number direction k/|k| give the

direction, in physical space, of the Fourier mode; the wave-number magnitude

|k| is associated to the length-scale of the mode l = 2π
|k|

.

By noting that it is possible to write

〈 ∂ui

∂xk

∂uj

∂xl

〉 =

∫∫∫ ∞

−∞

kkklΦij(k)eik·r dk

also the dissipation rate can be expressed using the velocity-spectrum tensor:

we have

ε =

∫∫∫ ∞

−∞

νk2Φij(k)eik·r dk (2.29)

2.5.2 Energy spectrum function

Instead of using the second-order tensor Φij, a simpler, though less complete

instrument is the energy spectrum function E(k). This is defined starting

from Φij and removing all directional information. The information about

the velocity field directions is lost by considering half the trace 1
2
Φii. The

information about the direction of the Fourier modes is deleted by integrating

over shells S(k) of wave-number with the same magnitude |k| = k. The

resulting definition is

E(k) =

∮

1

2
Φii(k) dS(k) =

∫∫∫ ∞

−∞

1

2
Φii(k)δ(|k| − k) dk (2.30)
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2.5. Velocity spectra

Note that integration of E(k) over all k is the same of integration of 1
2
Φii

over all k. Thus we can obtain the turbulent kinetic energy as

k =

∫ ∞

0

E(k) dk (2.31)

and the dissipation as

ε =

∫ ∞

0

2νk2E(k) dk (2.32)

As we said before, in general there is a loss of information passing from

Φij to E(k). But it can be shown that, if the turbulence is isotropic, Φij

is completely determined by E(k). Actually, for the isotropy hypothesis, all

the directional information is carried by k; as a consequence we can write

the generic second order tensor formed from k as

Φij(k) = A(k)δij + B(k)kikj

where A(k) and B(k) are scalar functions. Simple integrations over the

generic shell of radius k lead to

E(k) = 6πk2A(k) + 2πk4B(k);

while the use of the continuity equation (2.19) leads to k·Φ = 0 and therefore

to write

B(k) = −A(k)/k2.

From these equations one obtains that, in isotropic turbulence, the velocity

spectrum tensor can be written as

Φij(k) =
E(k)

4πk2
(δij − kikj) (2.33)

stating its dependence on the energy spectrum.

2.5.3 One-dimensional spectra

As we have described, the nature of turbulence is intrinsically three-dimensional.

It follows that all spectra and functions we need to describe this phenomenon

must carry three-dimensional information. Although, if the turbulence is

isotropic, one can define a one-dimensional spectrum and than show its re-

lationship with Φij(k) and E(k) (see [14], [9]) .
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2.5. Velocity spectra

The one-dimensional spectra Eij(k1) (in the direction k1) is defined as

twice the one-dimensional Fourier transform of Rij(e1r1):

Eij(k1) =
1

π

∫ ∞

−∞

Rij(e1r1)e
−ik1r1 dr1 (2.34)

If we consider for example the element R22(e1r1), which is a real and even

function of r1, also the the 1D spectrum is real and even; thus we can write

E22(k1) =
2

π

∫ ∞

0

R22(e1r1)cos(k1r1) dr1

with the inverse formula

R22(e1r1) =

∫ ∞

0

E22(k1)cos(k1r1) dk1

It follows that, setting r1 = 0 we obtain

R22(0) =

∫ ∞

0

E22(k1) dk1 = 〈u2
2〉

(so that’s why a factor 2 was added in the definition).

The relation with the velocity spectrum tensor is given by

E22(k) = 2

∫∫ ∞

−∞

Φ22(k) dk2dk3 (2.35)

Note that the wave-number vectors which contribute to the integral are all

wave-number vectors in the plane k · e1 = k1, so they can have a magnitude

|k| even larger than k1.

Finally, let’s show that, in isotropic turbulence, one can describe the one-

dimensional spectrum in terms of E(k). Actually, if we write the equation

for E11(k1) and we write Φ as a function of E(k) using equation (2.33), we

obtain

E11(k1) =

∫∫ ∞

−∞

E(k)

2πk2
(1 − k2

1

k2
) dk2dk3

This is the integration over the plane k1 = cost, of a function which is

radially symmetric about the k1 axis. Introducing the radial coordinate k2
r =

k2
2+k3

3 = k2−k2
1, and noting that kr dkr = k dk the equation can be rewritten

as

E11(k1) =

∫ ∞

k1

E(k)

k
(1 − k2

1

k2
) dk (2.36)
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2.5. Velocity spectra

It is not hard to show that E11(k1) is a monotonically decreasing function

of k1; the maximum value is reached at k1 = 0, irrespective of the shape

of E(k). Finally, this formula can be inverted, in order to obtain E(k) in

dependence of the 1D spectrum:

E(k) =
1

2
k3 d

dk
(
1

k

dE11(k)

dk
) (2.37)

We underline once again that this relation is valid only in the case of isotropic

turbulence. In this case, it is a very useful tool, because it allows to measure

the 1D correlation only, and than to desume the energy spectrum properties.

We will often use this relationship in our experimental considerations in the

next chapters.

2.5.4 The −5
3

law

In this section we introduce the famous -5
3

Kolmogorov law, which will be

a central point in our discussion, and a constant reference for comparison

of experimental results. This law essentially states that, at sufficiently high

Reynolds numbers, the high wave-number portion of the velocity spectra

assumes a form that is universal, i.e. does not depend of the flow under

consideration. This low is deduced by applying the Kolmogorov hypothesis

to the second-order statistics, as we made in previous sections, and than con-

sidering Fourier transforms; here we follow a simpler thus less rigorous way:

we apply the K41 hypothesis directly to the spectra (as in [14]).

The first similarity hypothesis tells us that, at high Reynolds number,

the statistics pertaining to the universal range must depend uniquely only

on ε and ν. As a consequence, in this range (say k > kEI) the shape of the

function E(k) must be universal, and determined by k, ε, and ν. Thus, we

can think to use ε and ν to make E(k) non-dimensional: we obtain

E(k) = (εν5)1/4ϕ(kη) (2.38)

where ϕ(kη) is a universal non-dimensional function, called the Kolmogorov

spectrum function. One other option is to use ε and k to make the energy

spectrum non-dimensional; in this case we obtain

E(k) = ε2/3k−5/3Ψ(kη) (2.39)
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2.5. Velocity spectra

where Ψ(kη) is the compensated Kolmogorov spectrum function. These equa-

tions hold in the universal equilibrium range, that is k > kEI which corre-

sponds to kη > 2πη
lEI

. The relationship between these two functions follows

immediately from the definitions: actually

Ψ(kη) = ε2/3k−5/3ϕ(kη).

If we focus our attention on the inertial subrange, i.e. kEI < k < kDI ,

we can apply the second similarity hypothesis. It states that the statistics

pertaining to this range have a universal form determined by ν, independent

of ε. The consequence is that the energy spectrum function assumes thus

the form

E(k) = ε2/3k−5/3 · C (2.40)

where C is a universal constant. It is a particular case of eq. (2.39), with

Ψ = C. This is the well-known 5
3

Kolmogorov spectrum, which predicts a

power-law energy spectrum function. This assertion has been tested for a

long time; experimental data essentially agree with itand support the value

C = 1.5 for the universal constant.

It is also easily checked out that the power-low form of the 3D spectrum

is consistent with a power-low 1D spectrum E11(k1). If we assume that, for

some range of wave-numbers, the 1D spectrum has the form

E11(k1) = C1Ak−p
1 (2.41)

where C is a constant and A is a normalization factor, the resulting form of

E(k) is obtained from equation (2.37)

E(k) = CAk−p (2.42)

where C = 1
2
(1+p)C1. This completely matches with the Kolmogorov power-

low spectrum, where p = 5
3
; and leads to C = 18

55
C ∼ 0.49.
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Chapter 3

Intermittency

3.1 Definition of intermittency

The velocity field U(x, t) in a turbulent flow is a random process. In labora-

tory experiments one can measure realizations of this process in order to get

statistical information. For example, one can place a probe in a wind tunnel

to measure the velocity field in a fixed point x0 and consider the process

Ux0
(t). Surprisingly, the qualitative behavior of Ux0

(t) could depend on the

point x0. We have said that, in homogeneous turbulence, the behavior of

the random velocity field is quasi-gaussian, i.e. the low moments are close

to Gaussian moments. It was observed that there are areas where the signal

Ux0
(t) is almost null, except for the presence of high, isolated peaks, showing

a non-Gaussian behavior. Such a signal is said to be intermittent. Histori-

cally, the concept of intermittency has been introduced to indicate such an

unexpected time evolution of the velocity field. Thus we say that a random

signal v(t) is said to be intermittent if it displays activity during only a frac-

tion of time, which decreases with the scale under consideration.

In order to give a quantitative measure of this fact, some criteria has

been introduced. For homogeneous isotropic turbulence, a formal criterion is

given by Frisch [7], and it is obtained by observing the influence of a filtering

operation on the kurtosis of such field. Let’s consider the high-pass filtered

signal v>
Ω (t) where the filter-frequency is Ω; we can vary such a threshold and

measure the kurtosis in these different cases. The signal v(t) is intermittent

if the kurtosis of this filtered signals grows without bounds when Ω → ∞.
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3.1. Definition of intermittency

Formally

K(Ω) =
〈(v>

Ω (t))4〉
〈(v>

Ω (t))2〉2 → +∞ , Ω → +∞ (3.1)

This is justified by the fact that the inverse of kurtosis is a measure of the

fraction of time during which the high-pass filtered signal is active. Actually,

consider a signal v(t), and a second signal vγ(t) obtained from the first one

by setting it to 0 for a fraction of time 1 − γ. Thus, if v is active for a time

T , vγ is active for a time γT . It can be shown that, if the moments exist,

they are related by 〈v2
γ〉 = γ〈v2〉 and 〈v4

γ〉 = γ〈v4〉. If we now compute the

kurtosis, we obtain

Kγ =
〈v4

γ〉
〈v2

γ〉2
=

1

γ

〈v4〉
〈v2〉2

which is a quantity that increases if γ decreases. As measure of intermit-

tency we can thus consider the kurtosis, or other ratios of moments. Ratios

of odd moments should be avoided as they can be zero for symmetry reasons.

A basic assumption of Kolmogorov theory is self-similarity of the velocity

field in the inertial range. A self-similar signal is not intermittent. Actually,

consider a signal v(t) with self-similar increments, where the scaling exponent

is h. We high-pass filter a self-similar signal with frequency Ω, and then with

frequency λΩ; it can be shown that

v>
λΩ = λ−hv>

Ω in law

Thus, when we calculate the kurtosis, the numerator anch the denominator

are multiplied by the same factor λ−4h, so this contribution disappear in the

ratio K(Ω), leaving the kurtosis unchanged.

Note also that, if we modify a gaussian field with a linear operator, such

as a high-pass filter, the distribution of the new field is again gaussian, thus

it has kurtosis equal to 3 (independent of Ω).

Thus the K41 theory assume a non intermittent random velocity field. Is

this assumption totally correct? The experimental results agree in the fact

that intermittent features can appear when a signal is high-pass filtered, and

the filter frequency is let growing. This intermittency becomes conspicuous

only when the scale associated to Ω are comparable or smaller to Kolmogorov

dissipation scale. Thus intermittency is a characteristic of dissipation range,

not contradicting self-similarity of the inertial range, as in K41 theory. Thus,
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3.2. Inertial range intermittency

the dissipation range intermittency is now a matter of fact. The existence of

intermittency in the inertial range is a subtler question. Above all, it would

invalidate the Kolmogorov theory.

3.2 Inertial range intermittency

In the K41 approach to turbulence, a central assumption is the existence of

a range, the inertial range, in which the dissipation rate of energy ε becomes

asymptotically independent of the viscosity ν. This assumption needs to be

carefully considered, because the energy dissipation is an intrinsically viscous

process. The classical answer is that the energy cascades from larger to

smaller eddies, with negligible loss. When it reaches eddies small enough, the

viscosity becomes effective, and the energy is dissipated in heat. The smaller

is the viscosity, the longer is the cascade, but the dissipation threshold is

always reached; the dissipation rate is controlled by the the energy quantity

fed into the system.

As a consequence, the rate of energy transfer from one eddy to another

of smaller size, should be the same for all scales, until the Kolmogorov dis-

sipative scale η. Quantitatively, on dimensional ground the dissipation rate

of one eddy of size l and velocity ul should be

ε ∼ u3
l /l; (3.2)

this implies

ul ∼ (εl)1/3 (3.3)

We have seen in previous section that this model leads to the k−5/3 energy

spectrum, and to the estimate of the dissipative scale as η = (ν/ε)1/4.

During the 50’s evidence started to accumulate that significant deviations

from the Kolmogorov scaling (3.3) are present. At any given instant, differ-

ences from both (3.2) and (3.3) equation can be expected, and they cannot

be derived from the cascade hypothesis. These phenomena of local variabil-

ity of the dissipation go under the name of anomalous scaling, or (inertial

range) intermittency.

The estimation had been made on the second order longitudinal struc-

ture function DLL (see section 2.2.2). More generally, we can consider the

longitudinal velocity increments

δvL(x, r) = [U(x + r) − U(x)] · r

r
(3.4)
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3.3. Localness and the presence of vortex filaments

as the projection of the increment onto the distance vector r, and use them

to define the structure function of order p:

Sp(r) = 〈δvL(x, r)p〉 (3.5)

The K41 theory predicts that the structure function of order p scales

with an exponent p/3 over the inertial range. This relation has been tested

experimentally for a long time. It turns out that it is not exactly true. In

fact, structure functions follow a power-low in the inertial range:

Sp(r) ∼ rζp (3.6)

but the values of ζp, the so-called exponents of the structure function, do not

match exactly the K41 prediction. For example, the values found for ζ2 are

approximately 0.7-0.73, instead of 2
3

= 0.66; and we also have zeta6 ≈ 1.8

instead than 2.

The fact that such deviations from the Kolmogorov lows are present,

even if not conspicuous, make plausible that a correction to the K41 theory

of inertial range. Intermittency theory developed in the last years, essentially

through the development of phenomenological descriptions which accept the

idea of the energy cascade proposed by Richardson, but try to incorporate a

form of intermittency with the help of new models that consider the fractal

dimension of eddies, in order to obtain an analytic form for the function ζp.

We don’t concern ourselves here with this models. In the next section we

complete the picture of intermittency by looking at those features that are of

interest for our discussion; for a complete descriptions of these recent trends

in intermittency, we refer to [7], [13] , [5], [6].

3.3 Localness and the presence of vortex fil-

aments

From a physical point of view, the problem of the K41 theory is the assump-

tion of a dissipation which is uniform throughout the turbulence. As we

pointed out, the most important quantity in the Richardson cascade model

is the energy dissipation rate ε. Experiments show that, in a turbulent field,

it is possible to find patches of intense small eddies, with consequently a high

dissipation, and other patches involving little dissipation. Each patch is made

of eddies with different scales, down the cascade. As the eddies get smaller,
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3.3. Localness and the presence of vortex filaments

the fraction of volume in which they are active decreases. As a consequence,

the rate of energy transfer per unit mass must increase as the length-scales

get smaller, or as the wave-number get higher. This considerations affects

the derivation of the Kolmogorov lows, with the consequent arising of inter-

mittency.

Thus, the main problem in the K41 theory is that it doesn’t take into

account the localness of the dissipation rate ε. But where exactly does this

localness arise? Physically, we have already pointed out that a central role

in the generation of smaller scales is played by the vortex stretching, which

essentially increases the magnitude of vorticity and reduce the cross-section

of vortices, also generating three-dimensional structures. Looking back to the

K41 theory, it must be noted that Kolmogorov’s work ignored any structure

which can be present in the flow.

As long as these coherent structures are confined in the energy-containing

range, their presence does not affect the inertial-range universality theory.

Traditional visualization of flows, where the velocity of the field is recorded

by a probe, does not show the presence of any small-scale structure. How-

ever, in the last thirty years discrepancies from the theoretical predictions

have been found, and they have led to the suggestion that smaller scales have

fractal properties. However, all the fractal and multi-fractal models proposed

so far have a probabilistic nature; no physical assumption about the geom-

etry of the small scales is made. Nevertheless, there is growing evidence of

the presence of structures of non-trivial geometry at the level of small scales,

in the inertial range and probably down to the Kolmogorov range. Above

all, numerical experiments show that turbulence generates a tangle of intense

elongated structures, known as vortex filaments. Such simulations indi-

cate that vortex filaments are regions of high vorticity and low dissipation;

this property can be used to visualize the structures in a direct experiment.

Their presence and nature is still a matter of research. Vortex filaments are

modelled essentially as elongated tubes with an approximately circular cross-

section. The vortices are long; a length is hard to define, and depending

on the definition, it can reach the order of integral scale [5]. The cross sec-

tion diameter is of the order of the Kolmogorov scale (R ≈ 5η according to

Jimenez). The definition of such structures makes sense, because they act as

essentially independent of the weaker fluctuations that surround them. The

vorticity is stronger in the center of the filament, and goes down with the

radius; a model of distribution of the axial vorticity in the radial direction
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can be given by a Gaussian profile

ω = ωMAXexp(
−r2

R2
).

These filaments are observed to be instable. “When a vortex tube opens up,

the strength of vorticity decreases; the longest filaments can thus transform

into large, long-lived eddies” ([7], pag.185).

Also the matter of the formation of vortex filaments is still an open

problem. Some authors point out that they seem to develop in regions in

which large structures create a thin layer with both stretching and shear-

ing. Jimenez propose that they are formed when stretched vortex sheets,

in which vorticity becomes much stronger than in the neighborhood, decou-

ple from the background and roll from themselves. Three dimensionality is

gained by a sort of axial strain. Longer filaments can arise from the fusion of

short pieces, due to a sort of axial homogenisation process. It has also been

proposed that some of them can be generated near solid boundaries, where

vorticity can be generated.

Clearly, more remains to be understood about the behavior of these kind

coherent structures into a turbulent field, and about their statistical prop-

erties and influence on the spectra of turbulence. We will try to gain some

information about their presence and distribution among the scales, from the

point of view of a new quantity that will be defined in the next chapter.

3.4 Intermittency indices

Today there is a little doubt that intermittency influences the dynamics of

turbulence. However, in the general case of a inhomogeneous flow, a operative

measure of intermittency itself is hard to give. According to the physical

considerations of the previous section, a signature of intermittency can be

found in the vortex stretching and filaments. A measure of vortex stretching

is given by the skewness of the velocity derivatives, as pointed out by Frisch

([7]). The problem is that the measure of the velocity differences, which

allow to evaluate the derivatives, requires very accurate experiments to get

reliable results.

Thus, the most used index of intermittency is the study of statistics of

the velocity field, and the comparison to the ideal Gaussian process. One can

evaluate the probability density function and compare it to the normal func-

tion. Or alternatively, one can evaluate the moments of the process. This
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3.4. Intermittency indices

is the approach followed in our work. The results we present on intermit-

tency comes from the study of the third and fourth standardized moments,

the skewness S and the kurtosis K of the velocity field. Thus our study of

intermittency deals with the non-Gaussian features of the flow. Actually,

recalling the original definition of intermittency, the intuitive meaning can

be understood as follows. We said that an intermittent signal displays ac-

tivity during only a fraction of time. This means that the small turbulent

structures are not distributed everywhere, in a “homogeneous” way, in the

flow domain. This inhomogeneity and localness of the small eddies generates

the intermittent signal Ux0
(t) with isolated peaks; and it is evident that such

a signal cannot be Gaussian. In conclusion, an estimation of intermittency

is usually obtained by observing these two parameters: the skewness S, and

the kurtosis K compared by the Gaussian value: K − 3.
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Chapter 4

Definition of a small scale

localization criterion

4.1 Computational simulation problems

Turbulence itself is a non-linear problem. Phenomena like turbulent combus-

tion or turbulent reacting flows are very important in modern science and

technology, from propulsion system to energy generation. In astrophysics,

one usually has to deal with supersonic winds and jets, where velocities are

about 400 km/s; in some cases, for example outflows from collapsed objects

like black holes, jets can reach the speed of light. These extreme conditions,

the presence of chemical reactions, for example, with heat release and change

in the fluid density, add more non-linearity. The consequence is that one has

to face serious modelling problems.

4.1.1 Numerical methods

The study of turbulence is known to be a difficult problem; an analytic ap-

proach requires more and more complex models, and also the assumption of

hypothesis that simplify the model, with consequent loss of physical mean-

ing. Instead, the hope is that the increasing power of computers can allow to

calculate the properties of interest through computational simulations. After

almost half a century, a wide range of numerical methods has been developed.

A complete description of the numerical tools is beyond the aim of this dis-

cussion; we refer the interested reader to (POPE). Let us just say that there

is a range of models that differ in level of description, computational cost

and accuracy; and no all these methods can be applied to every situation.
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4.1. Computational simulation problems

In the following, we remind the guidelines for two of the most used methods:

the direct numerical simulation (DNS), and the large-eddy simulation (LES)

The Direct Numerical Simulation is conceptually the simplest possible

approach, as it consists in solving the Navier-Stokes equations, with appro-

priate initial and boundary conditions. As a result, we obtain a realization of

turbulent field, in which all the scales are resolved. This method is the most

accurate, and it gives the best description of turbulence. However, its com-

putational cost is extremely high. To give a rough idea of its requirements,

let’s say that the simulation box size must be large enough to represent the

energy-containing motions; the grid spacing ∆x must be small enough to

describe the small scales. Thus, if N3 is the number of grid nodes, it is clear

that il must increase with the Reynolds number. This dependence can be

found to be

N3 ∼ R
9

2

λ

Furthermore, the flow must evolve for a time long enough to reach the state of

fully-developed turbulence (experience shows about four times the dissipation

time scale τ = k/ε). Consideration about the convergence of the method (the

CFL condition) force the time-step ∆t to remain small. As a consequence, it

can be shown that the number M of time steps usually required grows with

the Reynolds number as

M ∼ R
3

2

λ

(see POPE for the derivation of these relations). Thus we obtain that the

number of operation grows approximately as N3M ∼ R6
λ. This means that,

at the state of the art, accurate simulations for Rλ ∼ 103 would take years to

be completed! The increasing power of modern computers is expanding the

range of Reynolds number for which DNS can be performed; but in general

this approach is limited to flows of moderate Reynolds number.

In Large Eddy Simulations only the large scale motions are directly rep-

resented. These are the scales in which the effects of boundary conditions is

present, thus they depend on the experiment, they are not universal. The

effect of the smaller scales is modelled. The main conceptual steps are the

followings. The velocity field is decomposed into the sum of a filtered com-

ponent Ū(x, t), and a residual or sub-gride scale component u′(x, t):

U(x, t) = Ū(x, t) + u′(x, t)
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Note that this filtering is conceptually different from the Reynolds decom-

position: actually here Ū(x, t) is a random field, and in general the filtered

residual is not zero, ū′(x, t) 6= 0.

The equation for the evolution of the filtered field is obtained from conser-

vation equations. Here again, the momentum equation contains the presence

of the residual velocity field, in the form of a residual stress tensor. This

problem of closure is resolved with the help of a model ; the most used is

the eddy-viscosity model (see section 1.4.1). Then, the resulting evolution

equations for Ū(x, t) are solved numerically. This provides a reliable approxi-

mation of the energy-containing range motions, while the effect of small scale

is contained and described in the eddy-viscosity model. While the DNS is not

applicable to high-Reynolds number flows, for its computational effort is ex-

pended on the dissipative scales, the LES approach avoid this computational

cost, at the price of a less accurate description of small scales.

4.2 A new small scale localization criterion

The direct numerical simulation (DNS) of the Navier-Stokes system and of

the other conservation equations can give complete information about the

turbulent flow. Actually, DNS should resolve all the scales involved in the

turbulent process, with no need of other model. Unfortunately, this approach

can’t be followed in most real cases. This is due to the actual state of tech-

nology, as the computer power does not allows a complete resolution of all

scales involved in a real phenomenon of a certain complexity (like the ones

previously described). Turbulent flows in nature involve very high Reynolds

numbers. For example, in the case of astrophysical flows, we can have to

handle Reynolds numbers that reach 1010 − 1013. Consequently, an enor-

mous range of scales is produced. Direct numerical simulations of such flows

can reproduce the largest scale behavior, but fails in the description of the

development of turbulent motions and smaller scales. Thus in general, only

the large scales can be simulated, and the LES approach is considered ap-

propriate; with a consequent loss of information. Such information could be

gained with the help of sub gride scales models. Thus a general purpose is to

develop a method that allows the detection of small turbulence scales, such

that the sub gride scale model can be introduced selectively. The aim of this

section is to describe the definition of one of these tools.

48



4.2. A new small scale localization criterion

4.2.1 Definition

The idea is to define and measure a quantity involved in the arising process

of small scales. The definition of the function is

f(U) =
|ω · ∇U|

|ω|2 (4.1)

where U is the velocity field, and ω = curl(U) is the vorticity vector.

The numerator of the function |ω · ∇U| is the stretching-twisting term

that arises in the vorticity equation (see section 1.2). As we have shown,

this term governs the vortex stretching and twisting phenomena, and it is

responsible for the transmission of energy from larger to smaller scales. Note

that this term is deeply related to three-dimensionality of the structures, as

it is zero in two-dimensional flows. As ∇U is a order-two tensor, ω · ∇U is

a vector quantity; we take the magnitude of this quantity, in order to define

a scalar parameter.

The denominator |ω|2, the magnitude of vorticity, is also referred to as

enstrophy, and it is a normalizing term.

With this definition, f depends on the total field U = 〈U〉 + u. As we

want to avoid the dependence on laminar flow features, we can subtract the

contributions of the mean velocity and vorticity flows. The new definition is

f(U) =
|(ω − 〈ω〉) · ∇(U − 〈U〉)|

|(ω − 〈ω〉)|2 (4.2)

where, as usual, 〈·〉 brackets represent average quantities. This definition

makes sense only if we can prove a (statistical) link between this quantity

and the presence of small scales in a homogeneous isotropic turbulence set

of data. In other words, it is necessary to establish a relationship between

the presence/absence of small scales and ranges of values which can/cannot

be measured for f . If that happens, f can be considered a local indicator of

the presence of small scales. This is what we would like to show in the next

sections.

4.2.2 Values of f and localization criterion

First, the values of f have been measured on a fully resolved homogeneous

isotropic incompressible turbulence, at a given time. The values obtained
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Figure 4.1: Comparison between the control functions of different LES fields.

The unresolved fields are obtained on 643, 1283, 2563 and 5123 cubes

are taken as representatives of a field in which also the dissipative scales

have been resolved (see [4]). These data come from a DNS performed at

CINECA on a 10243 grid. The Reynolds number Reλ is about 280. These

features make this set of data one of the most accurate simulation of high

Reynolds number homogeneous isotropic turbulence obtained since now; thus

we consider it our reference field.

Then, f is calculated over some under-resolved isotropic turbulence fields.

Thus, the results are compared to obtain typical values for f .

Thus, the function f has been computed over the reference field. The

range of values assumed by f is large; in some point can reach some hundreds.

In order to obtain a criterion, a threshold xt has been defined; thus the

indicator parameter is related to the probability that f assumes values grater

than xt. We have plotted the results in fig.4.1.

It shows the cumulative distribution function (cdf) F (s) = P (f ≤ s) but
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4.2. A new small scale localization criterion

in the form

1 − F (s) = P (f > s).

In the following we will refer to this plot as the control function plot. This

allows a more intuitive interpretation, as we will see. It has been found that

the probability that f > st ≈ 2 is very low, almost zero. Thus the value

f(u) = 2 can be considered as the maximum value that f can reach when

the turbulence is simulated with a fine grain. On the contrary, when f is

measured on unresolved turbulent fields, we have a non-zero probability as-

sociated to values greater than 2.

The small scale localization criterion can thus follow from these consid-

erations. If in a simulation of a fully developed turbulent flow f assumes

values grater than 2, then the flow must be considered under-resolved. In

this case the activation of a LES method with a sub-grid scale term should

be performed. Thus, we can consider the regions in which the values of f are

higher than 2 as under-resolved regions, and select them for the application

of the sub-gride scale model. This is a consequence of the definition of the

function as

f(u(x))

so that it carries local information about the field.
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Chapter 5

Test of the function over

filtered fields

A criterion for the localization of small scales in turbulent flows has been

proposed. It is based on the definition of a particular function which mea-

sures, in such a way the presence of vorticity and stretching and twisting of

vortices. We now would like to further analyze the properties of this function.

Actually, the numerator represents the vortex-stretching term, while the de-

nominator is a measure of vorticity. The behavior of both terms have been

studied in meany ways and using different approaches (see [5], [6]), above all

in homogeneous isotropic turbulence. It can be interesting to study how they

act together under the new point of view of this function f , trying to give a

more physical interpretation of this quantity. In particular, we would like to

understand and weight the influence the the different length scales, and the

different coherent structures present in the flow have on f . In order to reach

this aim, we want to obtain new fields from the original one using apposite

filters; and then to apply the function f on these fields in order to figure

out the contributions that the different structures must have on f . But first,

some considerations about the reference field need to be pointed out.

5.1 A new reference field

As we already said, our analysis was carried out on a 10243 DNS field, ob-

tained at Reλ = 280. This field has been obtained by forcing the turbulence.

Energy is injected at an average rate by keeping constant the energy of the

two first wave-number shells. That is, the field is obtained by forcing the
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Figure 5.3: Energy inhomogeneity

contribution of structures whose wave-number magnitude is 1 and 2; thus,

forcing the evolution behavior of the largest scales ([4]). This procedure is

often used in the simulation of turbulent flows. Nevertheless, one thing about

this method must be kept in mind: as a consequence, the large-scale statis-

tics do not result isotropic, as they are expected to be. This happens to be

exactly the case under consideration.

In fig.5.1 we show the energy spectrum of the original, unfiltered field. It

extends until k ∼ 340. Although the field is a 10243 simulation, higher wave-

numbers are affected by aliasing error, thus that part of wave-length range

(k > 340) does not contain reliable information. Looking at the central part

of this spectrum, we can make the first considerations on our field. Actually,

we note that the inertial range, subject to −5
3

low, seems to extend from

k ∼ 5−10 to k ∼ 30. Actually in this range we can assume the compensated

53



5.2. Filtering the elongated structures

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  10  100  1000

3D spectrum

Figure 5.4: 3D energy spectrum, after

removing the two initial shells

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  10  100  1000

Compensated 3D spectrum

Figure 5.5: Compensated energy spec-

trum

spectrum to be constant (see section 2.5). It must be said that our definition

of inertial range could be extended to k ∼ 70, as we will see.

We now come back to the problem of large-scale inhomogeneity. We have

got evidence of such a bias in the database. This comes from a check up

of the energy homogeneity in the field. The total energy u2 + v2 + w2 as a

function of the space coordinate x results to be affected by inhomogeneity

of 20%, as shown in figure 5.1. This inhomogeneity grows by considering

the single contribute u2. This could suggest that a sort of large-scale vortic-

ity might be present. Although this inhomogeneity does not influences the

smaller scale statistics, we try to mitigate this non-physical condition, as it

could affect our analysis.

Thus, a new reference field was obtained, by filtering the contribution of

those structures whose wave-number have a magnitude smaller than 2. This

choice was made in order to balance the effect of the forcing of the field,

which was carried out on the two smallest shells. The 3D spectrum of the

modified field is shown in figures 5.4. The effect of the large scale forcing is

now lighter, the energy contribution of the largest structure is more balanced

in comparison to the rest of the structures. Thus, in the following, this new

field will be used as a reference for filters and further results.

5.2 Filtering the elongated structures

From now on, our considerations will be made above all from the wave-

number point of view. Actually, the filters have been thought to affect the
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contribution of certain structures; and this is made more easily if we work

in the Fourier domain instead of the physical domain, having the energy

spectrum as a reference.

The first filter we use is referred to as CROCE. CROCE is thought to

remove the structures with at least one small wave-number. We have al-

ready seen that the study of structures of non trivial geometry, like vortex

filaments, in one of the trends in the intermittency analysis. In this sense,

when we define a local function of the velocity field, and we test its statistical

behavior, we have to take into account the presence of such structures, and

possibly try to figure out their influence on the quantity under considera-

tion. The physical meaning of this filter is to avoid the presence of elongated

structures from the field, and see the consequence of this action on the sta-

tistical behavior of f . The principal results are discussed in the following; a

collection of all results is presented in fig. 5.18 to 5.26.

5.2.1 Low wave-numbers

The first filter allows to remove the contribution of those structures that

are characterized by a large axial dimension. This means that, from the

Fourier point of view, we want to remove the structures whose wave-number

has at least one small component. In this sense, CROCE can be seen as

a sort of high-pass filter, which affects all wave-numbers, in each direction,
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Figure 5.8: Control function 1 − F (x), high-pass filters

under a certain threshold. Given a the threshold kMAX , the filter removes

the contribution of the modes with

k1 < kMAX or k2 < kMAX or k3 < kMAX .

For a detailed definition of the filter function, see the appendix. An idea of

the filter action on wave-numbers is sketched in fig.5.6. For sake of simplicity,

the plane represent a two-dimensional wave-number space; the colored areas

are those affected by the filtering operation. We have one control parameter

to act on, in this case, which is the width of the range that we want to cut,

kMAX . The analyzed filtered ranges are 0-10, 0-20, 0-40, compared on fig.5.8.

That means that the first one completely affects the energy-containing range,

while the other two reach the inertial range, as defined as the 5
3
-law behavior

range.

These plots have a coherent behavior. Actually, the control function of
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the 0-10 filter show a slight difference with the reference one, at the values

of the former are under the line of the latter. This trend is confirmed by the

other two filters, and the difference grows as the threshold increases. This

indicates that the high-pass filters have the (statistical) effect of decreasing

the values of the function f(x) on the domain. The wider is the cut range,

the stronger is the effect on f , that is the more f decreases. Alternatively,

this fact can be seen from the plot of the pdf of f .

5.2.2 Higher wave-numbers

The next step is to move from the energy-containing range to the inertial

and dissipative ranges. Then we used CROCE to cut the contribution of a

variable band

kMIN < k1 < kMAX or kMIN < k2 < kMAX or kMIN < k3 < kMAX .

(see fig.5.7) thus selectively affecting the structures with a certain axial di-

mension. Now we have two control parameters, the amplitude and the po-

sition of the band. Firstly, we consider a fixed amplitude and we move the

band through the inertial range.

The first range to be cut is 10-40, in order to compare with the 0-40

filter. The result is plotted in fig.5.9, which shows the comparison with the

high-pass filters.

The figure clearly shows that the trend of the previous plots is not re-

spected. Instead, filtering 10-40 wave-numbers produce a small increasing

of the control function, which can be seen as a (statistical) increase of the

values of f .

This fact is more difficult to interprete. We suspect that this is due to

the large scale vorticity which affects the field, as said before.

Let us move into the inertial range, by filtering higher wave-numbers. We

now consider the inertial range in a an extended way, which includes the −5
3

range plus all the scales which are not yet dissipative (Rek = λkuk

ν
> 10).

Partial filtering in the inertial range are carried out by removing the in-

tervals 40-70, 70-100, 100-130. The resulting control functions are compared

in fig.5.10.

Here all the filters induce the same effect: a slight increasing of the values

of f(x). Notice that when we act in this range, the effects on f seem to
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be slighter. The most effective (i.e. the one which produces the strongest

increasing) seems to be the 40-70 one; but the difference are not so large.

Even when we try to act on the other control parameter, the amplitude of

the band, the situation does not change much. Filtering values of k between

30 and 150 means that we affect the whole inertial range; and generates a

further increasing of the function f(x) (see fig. 5.11), but the results are still

comparable with the 40-70 filter.

Finally, we investigate the contribution of such elongated structures whose

axial dimension is in the Kolmogorov range. This is the opposite of the first

case; actually here CROCE can be seen as a sort of low-pass filter. Involving

this structures has a lighter effect. In figure 5.12 there is the plot of the control

function of f(x) when CROCE is used as a low-pass filter with threshold 150.

The increasing of f(x) is slight, although we have removed the contribution

of more or less 200 wave-numbers.
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5.3 Further consideration on elongated struc-

tures

In our attempt to understand the influence of elongate structures on the

function f , we have to deal with structures like vortex filaments, described

in the previous sections. In a simplified model, the can be seen as long and

thin vortices, having the axial dimension much greater than the radial di-

mension. It is soon realized that a filter which exactly select those structures

in a turbulent field is very hard to build. This is due to the intrinsically

non-trivial geometrical nature of this kind of coherent structures.

Nevertheless, results in this direction have been obtained using the CROCE

filter to remove the structures with a long axial dimension. This filter can be

made more selective by asking to remove the structures that have one small

and two large wave-numbers. So now we have more degrees of freedom: one

can decide what is the range of small wave-numbers, (KMIN,KMAX); and

also a threshold, above which a wave-number is considered large: KTOP .

We remove the structures that show

kMIN < ki < kMAX and kTOP < kj, kh

for at least one choice of i, j, h ∈ {1, 2, 3} (obviously different each other).

Several attempts have been made using this kind of filter, which we refer to as

FILAMENTO filter. According to recent papers ([5]), the radial dimension of

filaments in turbulence can nearly reach the Kolmogorov scale: r ∼ 5η. Thus

the first choice for the value of the threshold is k = 130, a value that seems

to be at the bottom of the inertial range. Simulations have been carried out,

varying the range (KMIN,KMAX): 0-40, 40-70, since to cover the range

30-130. No significative change in the behavior of the function f(x) has been

discovered, see figures 5.13.

The action of this filter results to be weak. It must be noted that it affects

only a particular kind of elongates structures: those which have one small

and two large components in the cartesian frame of reference for the wave-

number vector k. This means that, due to the geometrical complexity of the

velocity field pattern, their contribution can be quite small in comparison to

all the other structures in the field.

More substantial results are obtained by moving the KTOP threshold

down to 50. This value has been chosen also as the KTOP value, so that the
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Figure 5.13: FILAMENTO filter has a weak effect
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small wave-number is defined between 0 and 50, and the other two must be

greater than 50. Result is shown in figure 5.27 .

5.4 Filtering the shells

As we have done with the elongated structures, we also would like to weight

the influence of another kind of coherent structures: those which have a more

regular shape, that is more or less the same dimension in the three spatial

directions. From the point of view of the wave-number space, we are dealing

with eddies that are characterized by a strong contribution of modes whose

wave-vectors have different directions, but more or less the same magnitude.

Thus, the filter used in this analysis allows to remove the contributions of

those wave-vectors which that lye on shells of given radius.

This filter has name SFERA. This is the same kind of filter we have

used to obtain the reference field from the original field. But now we want to

extend its use in order to remove different bands of wave-vector magnitudes k.

Thus, given a certain band [kMIN , kMAX ], the filter removes the contribution

of those modes with

k =
√

k2
1 + k2

3 + k2
3 ∈ [kMIN , kMAX ].

The results are shown in fig. 5.29 to 5.36.

5.4.1 Low wave-numbers

Following the study we have done with the filter of elongated structures,

we fist start with the energy-containing range. As kMIN is set to zero, we

have the high-pass filter. The results are shown in figure 5.14. Already

from these first results, we note that the behavior of f under this filter is

different from what we obtained with the CROCE filter. Actually, when

the filtering range is limited to 0 − 10 and even 0 − 20, we obtain a very

slight influence of the statistics of f . The graphs seem to show a different

behavior for the two filtering ranges: for the range 0 − 10, the values of f

(statistically) increase; when we extend the range to 0 − 20 the effect is the

opposite. But the differences between the control functions are so small that

we can assume that this filters have a negligible effect on the field. Instead,

when the threshold reaches higher values, like 40, we see that the values of f

(statistically) decrease. This is coherent with the results obtained with the

previous filters.
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5.4.2 Higher wave-numbers

We now move to che inertial range, again using a band-filter:

kMIN < k < kMAX .

In order to compare with the previous results, we divide the (extended)

inertial range in sub-ranges: 10−40,40−70,70−100. We extend the analysis

until 100 − 130, as borderline region between the inertial and Kolmogorov

ranges. The results are presented in fig. 5.15.

Here, we note that when we filter in the subregion of low (inertial range)

wave-number, the trend of the 0 − 40 filter is confirmed. Removing those

structures causes a decrease of the function f . Instead, if we move to smaller-

scale sub regions of the inertial range, we obtain an increase of the values of f .

Also, the control functions obtained from the filters 40−70, 70−100, 100−130

have approximately the same shape; this seem to indicate that the presence

of spherical coherent structures is in such a way uniformly distributed in the

range 40 − 130.

Finally, we can think of filtering very large ranges. In order to compare

with the CROCE results, we filter the range 30-150, and than all the dissi-

pative range k > 150. In the first case (fig.5.16), the results of the sub-filters

are confirmed, and the influence is much deeper when compared, for exam-

ple, to the 40-70 filter. This fact did not happened with the CROCE filter.

About the Kolmogorov range, both in CROCE and in SFERA results show

that few coherent structures seem to be present, as expected (fig. 5.26 and

5.36).

5.5 Conclusions

5.5.1 Results

A test of the function

f(u) =
|ω · ∇u|
|ω|2 (5.1)

over different fields has been carried out, in order to understand the influence

of the structures of various length-scales on that function. At the same time,

information about the interactions of the scales in homogeneous isotropic

turbulence have been deduced from the behavior of the function f .
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This analysis has been done by means of three filters, in order to point

out the contribution of the elongated and spherical coherent structures. A

complete list of the evaluated statistics is presented in table 5.1.

In all cases, the graphs and the statistics presented show that there is high

probability that the ratio stretching-twisting term over enstrophy is bounded

by a value less than 1:

|ω · ∇u|
|ω|2 < C, C < 1 (5.2)

The mean value is much lower than unity, of the order of 10−2, but the vari-

ance is high compared to it, thus discouraging the assumption |ω · ∇u| ≈
E(f)·|ω|2; but we could assume that |ω ·∇u| ≈ |ω|2 keeping in mind that the

the right hand side is a bound for the left hand side (with high probability).

When we act in the energy-containing range, where k is low, by removing

the large-scale structures, the function goes under a general decrease. The

mean value of f goes down; and the wider is the range we affect with the

filter, the lower becomes the mean value. This suggests that the large-scale

structures contribute more to the stretching-twisting term (the numerator of

f) than to the vorticity of the flow (the denominator).

This behavior is common to the CROCE and SFERA filters, although

the croce filter is almost not effective since the filtered interval becomes high

(0-40). This seems to suggest that the elongated structures with axial di-

mension comparable to the large scales have a stronger effect on the values

of f .

The transition to the inertial range gives different results for the two fil-

ters. When we move the band up for the SFERA filter, the values of f start

to increase in a “smooth” way. Let’s consider the 10-40 filter values: they

are higher than the 0-40 ones, but still lower than the reference unfiltered

values. Moving to 40-70, 70-100 and 100-130, the trend is respected and the

function grows up more and more. The same transition (from lower to higher

values than the reference) comes out for the CROCE filtered fields, and thus

when we act on the elongated structures, but in a “sharp” way. The 0-40

filter generates a decrease of f . Once we leave the lowest values, moving to

10-40, the values of f immediately becomes larger than the reference. Thus,

dealing with elongated structures, we can see a very different (we can say op-

posite) behavior of the energy-containing and inertial range: the structures
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in the latter contribute to vorticity more than to vortex stretching. When

we move the filtered band towards the Kolmogorov range, the effect becomes

more evident. This trend is a clue of the strong difference in behavior be-

tween the energy-containing range, not universal and influenced by boundary

conditions, and the inertial and Kolmogorov ranges, whose dynamics are uni-

versal. The limit values for this process are obtained by removing the whole

inertial range. We can also note that, in this range, the effect obtained acting

on the elongated structures is comparable to the effect obtained acting on

the spherical structures.

Finally, the very small scales have little effect on the function values.

This is expected because this range is dominated by diffusion and energy

dissipation, so very few structures can survive. This fact shows that the

function f is not a good tool to investigate the Kolmogorov range, as the

influence of the dynamics of the diffusive scales on f is very week.

5.5.2 Spectral considerations on f(x)

In order to help a deeper understanding these phenomena, we carried out a

spectral analysis of the function f . We plotted the 1D spectra of f(x): if

F1(k1) is the 1D transform of f(x), we plot the 1D energy spectrum

S(k) = |F1(k1)|2 (5.3)

computed on the reference field, and we compared to the spectra computed

after the action of the filters. The graphs are presented for each filtering, in

figures 5.18 to 5.36.

The 1D spectra give a first useful, although uncomplete, description of

the spectral contributions to the function f . Note that, for example, a phe-

nomenological point of view would give no result in this sense. Actually, both

the stretching-twisting and the enstrophy term represent spatial derivatives

of velocity, both behaving as ∼ ku. Thus, in the inertial range where u ∼ k− 5

3

their average contribution is qualitatively the same; and no information can

be deduced from the ratio of such quantities. Thus, the spectral behavior

of f is determined by two factors. First of all, the large scale range of the

spectra have a strong influence on the flow dynamics. From a physical point

of view, the large eddies correlate points of the domain which can be much

far apart; they represent the top of the energy cascade, their generate the
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smaller structures. The quantities involved in this process are vorticity and

the generation of stretching of this large, non universal, range; and their

separate behavior generates the shape of the spectrum of f .

Second, the spectra give an average description of the dynamics. As we

have seen, real turbulence presents eddies, coherent structures, filaments and

vortices. For example, according to Jimenez ([5], [6]) the vortex filaments

are not regions of high values of stretching; actually he measured the axial

stretching in the filaments and he found out that it is comparable to the

background value of stretching. Thus, looking back to our simulations from

this point of view, it is the vorticity of the structures that generates the

differences in the pdf of f obtained filtering the large-scale or the inertial

ranges. In conclusion, the distribution of vorticity ad stretching on struc-

tures of different size is still matter of research; our function f is influenced

by the local concentration of these quantities through the flow, it can be

interesting to carry out a spectral analysis of this quantity. Furthermore,

when we modify a turbulent flow acting on such structures the spectrum of

f goes under important changes.

The consequence of the filtering process is strongly evident in the high-

pass filters. The contribution of the low wavelengths is reduced; furthermore,

note that the action of filters is spread outside the filtering range. For ex-

ample, let us consider the CROCE filtered fields, and observe the spectrum

of the (0-10)-filtered field (fig. 5.18). It remains parallel to the original one,

and lower than it, until k ∼ 20, more or less twice the filter threshold. The

trend is the same in the other two cases. (0-20)-filter affect the contribution

of wave-numbers until 40 (fig. 5.19), and (0-40)-filters until 80 (fig. 5.20).

On the other hand, there seems to be a sort of energy concentration on

the wave-number not affected by the filter: actually the spectra of the filtered

fields grow over the reference one on the non-filtered ranges. This effect is

present in all simulations, and becomes more evident when we filter a wider

range.

The plot of spectra of the remaining fields show a different behavior, which

is evident above all in the CROCE filtered fields. The spectral values of the

filtered wave-numbers is reduced, of course, and the energy concentration

effect is shown to be present on smaller wave-numbers, which now increase

their spectral values; but an opposite effect on the smaller scales is evident.

The tail of the filtered spectra decrease much faster than the unfiltered ones.

Thus, removing the contribution of inertial range scales seems to have evident
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consequences also on the spectral distribution of f on the dissipative scales.

In this sense, the most significant plots are the 30-150 one (fig. 5.25 and

5.5.3), where an evident change in energy distribution took place. The plots

generated by the filtering of the structures of the Kolmogorov range, confirm

that this range has a very week effect on the stretching-twisting normalized

term.

If we have a look to the spectrum obtained from the FILAMENTO filter

with KTOP = 50 in fig. 5.27, we see that the filtering has increased the

contribution of most wave-numbers, until ∼ 200, and only in the last part

of the spectrum the values decrease. This seems to suggest that in the large

and inertial range, the filter has affected the field in such a way that the

vorticity has decreased with respect to the stretching-twisting term; while in

the very small scales, the change has been the opposite.

5.5.3 Further considerations

We have studied the influence that different coherent structures have on the

statistical properties of the function

f(u) =
|ω · ∇u|
|ω|2 . (5.4)

The physical consideration which can be deduced by the observation of

f completely agree with the knowledge which comes from laboratory ex-

periments about the distribution of vortex stretching and vorticity over the

different scales. This makes the function f a powerful instrument. Usually,

all information about the dynamics and interaction of scales in a turbulent

flow is derived from a spectral analysis, which can give a description of the

energy distribution over the scales. But the study of spectra requires a global

analysis, carried out over the whole domain. The attempt to define a local

quantity which could be usefully related to the dynamics of the structures

of different scale has beeb made here, and we proved the consistency of this

approach with experimental results known in literature.

Many features of such quantity f have been studied. Evidences of the fact

that the elongated structures have a strong influence on f have been given,

above all for large-scale structures. The elongated structures correlate points

of the fields which are far apart; thus, although f(x) is a local quantity,
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it carries information about non-local behavior and thus can be a useful

instrument of analysis.

Nevertheless, possible trends can be identified for a future work on this

function. For example, while f is strongly sensitive to the dynamics of the

energy-containing and inertial range, it is a week instrument to analyze the

Kolmogorov range. A research in this direction could create a more complete

instrument of analysis, able to investigate the whole range of scale interaction.

Another possible aim is the research of an explicit model for the pdf of f .

This model is still missing, although a preliminary attempt has been made,

studying the statistic properties of the vector

ω · ∇u

|ω|2 (5.5)

whose magnitude is exactly our function f .

In figure 5.17, we show the pdf of the first component of this vector:

ω · ∇u

|ω|2 .

The other two components show the same behavior, as the field is statistically

homogeneous and isotropic. This pdf is bell-shaped; symmetry with respect

to the vertical axis is expected for isotropy: the skewness is approximately

10−2. These features can lead us to test a possible model for this quantity: i.e.

it can be interesting to know if this function could be approximated with a

gaussian function. The approximation is not far from the experimental data,
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but it does not agree completely; indeed, the actual kurtosis is approximately

55, very far from the gaussian value of 3. So the tails of the experimental

pdf are thicker than the tails of the gaussian. This behavior is evident in the

logarithmic plot of the pdf. A complete medelling of this quantity and of f

is a possible trend for future study.
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E(f) (·10−1) V ar(f) (·10−1) σ S K

REFERENCE 4.22 1.06 0.32 2.31 12.47

croce 0-10 4.16 0.89 0.29 2.18 11.97

croce 0-20 3.93 0.76 0.27 2.21 12.64

croce 0-40 3.6 0.62 0.24 2.22 13.32

croce 10-40 4.44 0.92 0.3 1.98 9.88

croce 40-70 4.55 1.14 0.33 2.06 10.11

croce 70-100 4.45 1.16 0.34 2.2 11.22

croce 100-130 4.33 1.12 0.33 2.29 12.12

croce 30-150 4.65 1.22 0.35 2.11 10.24

croce >150 4.22 1.06 0.32 2.31 12.52

sfera 0-10 4.25 1.11 0.33 2.31 12.38

sfera 0-20 4.14 1.07 0.32 2.34 12.75

sfera 0-40 3.8 0.87 0.29 2.46 14.42

sfera 10-40 4 0.9 0.3 2.35 13.5

sfera 40-70 4.36 1.01 0.31 2.09 10.66

sfera 70-100 4.43 1.12 0.33 2.14 10.83

sfera 100-130 4.39 1.14 0.33 2.24 11.63

sfera 30-150 4.59 1.15 0.34 2.05 9.86

sfera >150 4.28 1.1 0.33 2.31 12.37

Table 5.1: Table of the moments of f for the reference and filtered fields:

expected value, variance, standard deviation, skewness, kurtosis
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Figure 5.18: CROCE 0-10 filter plots (+), in comparison to reference field
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Figure 5.19: CROCE 0-20 filter plots (+), in comparison to reference field
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Figure 5.20: CROCE 0-40 filter plots (+), in comparison to reference field
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Figure 5.21: CROCE 10-40 filter plots (+), in comparison to reference field
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Figure 5.22: CROCE 40-70 filter plots (+), in comparison to reference field
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Figure 5.23: CROCE 70-100 filter plots (+), in comparison to reference field
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Figure 5.24: CROCE 100-130 filter plots (+), in comparison to reference

field)
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Figure 5.25: CROCE 30-150 filter plots (+), in comparison to reference field)
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Figure 5.26: CROCE 150-500 filter plots (+), in comparison to reference field
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Figure 5.27: FILAMENTO 0-50, KTOP=50 filter plots (+), in comparison

to reference field
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Figure 5.28: SFERA 0-10 filter plots (+), in comparison to reference field
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Figure 5.29: SFERA 0-20 filter plots (+), in comparison to reference field
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Figure 5.30: SFERA 0-40 filter plots (+), in comparison to reference field
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Figure 5.31: SFERA 10-40 filter plots (+), in comparison to reference field
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Figure 5.32: SFERA 40-70 filter plots (+), in comparison to reference field
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Figure 5.33: SFERA 70-100 filter plots (+), in comparison to reference field
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Figure 5.34: SFERA 100-130 filter plots (+), in comparison to reference field
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Figure 5.35: SFERA 30-150 filter plots (+), in comparison to reference field
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Figure 5.36: SFERA 150-500 filter plots (+), in comparison to reference field
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Chapter 6

The shearless mixing layer

It is easily seen that the frame of reference of homogeneous isotropic turbu-

lence allows a set of simplifications and hypothesis such that a very powerful

theory can be developed. Nevertheless, it requires a set of assumptions that

are hardly satisfied in real turbulent flows. In order to understand the be-

havior of turbulent flows in general, it is necessary to deal with anisotropy

and non-homogeneity. The simplest way to reach this aim is to consider

the interaction between two turbulent flows in the so-called shearless mixing

layer. Consider a (ideal) box containing two homogeneous isotropic turbu-

lence flows with different features (kinetic energy, length scales, statistics)

but uniform mean velocity, which are decaying. At the beginning, the two

turbulence flows are separated by a rigid wall. When the wall is removed,

the flows begin to interact, in a region (mixing layer) which extends with

time. The absence of mean shear avoids the arise of turbulence produc-

tion; the spread of the mixing layer is thus governed by fluctuations. For

its importance in applications, from chemical reactions to different flows in-

teractions in engines, the mixing layer has been recently studied following

different approaches. In particular it can be important to verify and under-

stand the presence of intermittency in the mixing process, subject which is

still now matter of discussion. In the following we present the “classic” re-

sults, describing how physical experiments can be performed by mixing grid

turbulences. Later on some results coming from numerical simulations of

mixing layers are shown. Using such results, we would like to show how the

mixing layer features change, as we change the features of the two interacting

flows.
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6.1. Intermittency and asymptotic states

Figure 6.1: Mixing layer generated by two grid turbulences

6.1 Intermittency and asymptotic states

Since the 80s, several experiments on shearless mixing layer have been per-

formed. We now focus on the laboratory experimental study of Veeravalli &

Warhaft (1989), which is the best account on shearless mixing layer dynamics

in literature. A sketch of this experiment is presented in fig.6.1

The flow is obtained in a decaying grid turbulence, where the mean veloc-

ity is constant, but two distinct scales of turbulence are generated by varying

the mesh size. Thus, beyond the grid, two different scales of turbulence are

created. Each flow presents a homogeneous region, far from the center of the

canal, which becomes thinner and thinner as the flow evolves; and a mixing

layer is formed, where the two turbulences penetrate and diffuse one into an-

other. This situation has been obtained in a vertically oriented wind tunnel

in two different ways: using parallel bar grids and perforated plates. The

obtained length-scale ratios l2
l1

are 2.42 and 4.32 for the grids, and 2.23 for

the perforated plate. The shearless mixing layer is very difficult to describe

experimentally, for an accurate description of problems and solutions we refer

to the original paper [2].

It is worthy to note that this system evolves because of the interaction

of the two turbulences, without the generation of turbulence due to shear.

This situation is different from the mixing layer formed by instability of par-

allel streams with different velocities, which is another classical experiment;

there, turbulence is a consequence of the presence of the mixing region. To

keep this in mind, we can refer to our shearless mixing layer as a turbulence

mixing layer, instead of the turbulent mixing layer.

The experiments set up by Veeravalli & Warhaft (in the following V&W)
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6.1. Intermittency and asymptotic states

give information about how the length-scale ratio influences the evolution

of the system. In particular, it shows a situation in which the dynamics of

the system are controlled by two scales. This is the case of the parallel bar

grid with l2
l1

= 2.42 and the perforated plate ( l2
l1

= 2.23). In this cases, the

variances of the three components (i.e. the three contributions to the total

turbulent kinetic energy) show a sort of asymmetry in the spatial profile

(plotted as a function of the grid direction y), which is due to the presence

and strong interaction of two different scales.

On the other hand, the case of the grid with l2
l1

= 4.32 appears to show

energetics controlled by a single scale as the large scale essentially dominates

the mixing layer. Under these conditions, the variance profile (as a function

of y) is well fitted by an error function, while in the previous cases evident

differences from such a fit appeared in the high-turbulence side.

Another fundamental aspect of the V&W paper is that, for the fist time,

they observed the presence of intermittency in the mixing layer. Actually,

previous experiments about the mixing layer had been performed by Gilbert

[?]. But the phenomenon observed by Gilbert was essentially Gaussian, with-

out intermittency. Despite of this fact, the 1989 experiment of V&W presents

non-Gaussian velocity statistics and a mixing layer which is strongly inter-

mittent. Evidences of this fact are to be found in the profiles of the third

and forth moments, skewness and kurtosis.

The skewness is null out of the mixing layer, as expected, but becomes

different from 0 where the turbulences interact. In particular, negative values

are observed for the skewness of the first and second component (Su and Sv),

while Sw is positive in the mixing layer. The negative values of Sv is due to

the fact that in the low turbulence side of the mixing region the deviations

from the homogeneous behavior is due to the influence of the large scale side,

and so they are more likely to be negative. Instead, the values of Su are due

to the Reynolds stresses 〈uv〉, which appear in the evolution equation of 〈u3〉
(see V& W). Furthermore, the distance from zero value of the skewness (in

particular of Sv) is shown to increase as the energy ratio (which depends

on the mesh size ratio) between the two turbulences increases. Thus the

strongest non-Gaussian behavior is obtained for the grid with l2
l1

= 4.32

where a peak of -2.5 is found.

Also the values of kurtosis Ku, Kv, Kw are different from the Gaussian

value of 3, reached in the region external to the mixing layer. This leads

to important physical considerations. Considering for example Ku, it has
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6.1. Intermittency and asymptotic states

peak values of ∼ 4. If we assume that the evolution of the mixing layer is

dominated uniquely by a diffusive phenomenon, (turbulent diffusion), this

would lead to a Gaussian behavior and Ku ∼ 3. This was the behavior ob-

served by Gilbert. On the other hand, if we assume that the process consists

only of turbulent penetration (of the two scales into one another), this model

would lead to peak values of Ku ∼ 6 (see V& W). Hence, the intermediate

value for the observed peak is a proof of the presence of both mechanisms in

the mixing layer, whose evolution is thus dominated by both penetration and

turbulent diffusion. Again, the excess factor (K − 3) increases as the energy

ratio increases.

To summarize, what comes out from the V&W experiment, and from the

previous knowledge, is the existence of two asymptotic states. The first is

obtained when the length-scale ratio l2
l1

approaches unity, l2
l1

→ 1: the flow

is essentially dominated by a single scale, although the variances at the two

sides of the mixing layer are different. This fact had been pointed out for

example by Gilbert (1980), who observed a Gaussian non-intermittent be-

havior. The other asymptotic state is reached when the length-scale ratio is

large enough. Here, the energetics of flow are dominated by large-scale side,

because the energy contribution of the other side is too week to effect the

evolution of the system. Here the error function fit is again good for the vari-

ance profile. But unlike the previous case, this state shows the presence of a

strong intermittency in the mixing layer, with highly non-Gaussian statistics.

Finally, it exists an intermediate range of this ratio over which two scales are

dominant. It is the case of l2
l1
∼ 2, for example, as shown in V&W. Here, the

variance does not follow an error function profile, and highly intermittent

statistics are found out. Furthermore, the higher is the energy ratio between

the two flows, the stronger is the non-Gaussian behavior in the mixing layer.

The description given until now to the mixing layer experiment has been

shown to be uncomplete when, in 1996, Briggs, Ferziger, Koseff and Moni-

smith (see [1]) obtained results not consistent with the existence of the Gaus-

sian asymptotic state. They used direct numerical simulations of a shear-free

mixing layer to reproduce situations analogue to the parallel bar grid and per-

forated plate of V&W; in this case the evolution if the flow is obtained in

time, instead of in space as in the physical experiment. As an initial con-

dition, only an energy gradient of about 7.5 was created, leaving inalterate

the length-scale which is the same for both the turbulences. What we see
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6.2. Results on intermittency

after after a temporal evolution (t = 1.72) is that the length-scale ratio is

still close to one (0.93), closer than the value proposed by Gilbert, but inter-

mittent features appear. Actually, the statistics of the flow are not Gaussian;

in particular the vertical skewness Sv reaches negative values until about 1,

and the kurtosis Kv shows a peak of more than 4. These data, in contrast

with Gilbert experiment, are comparable to the ones obtained in the case of

the perforated plate experiment by V& W.

These results clearly showed that the evolution of the system towards a

Gaussian asymptotic state cannot be predicted as a function of the length-

scale ratio only. In 2005, Tordella and Iovieno proposed an interpretation

of this fact (see [3]): the presence of a Gaussian asymptotic state must be

studied as a function of both the length-scale ratio l2
l1

= L and the kinetic

energy ratio k2

k1

= E . For example, coming back to the experiment of Briggs,

we see that the energy ratio was about 7.5, much higher than the one in

Gilbert’s experiment (1.48), but comparable to the energy ratio of the per-

forated plate experiment (6.26); from this new point of view, the behavior of

these experiments is thus coherent. A more systematic study of the influence

of the two parameters (energy and length-scale ratio) on the evolution of the

mixing layer is presented in the following sections.

6.2 Results on intermittency

6.2.1 Features of the experiment

The following results are obtained from numerical simulations of a mixing

layer, carried out using both DNS and LES approaches. The integration of

the Navier-Stokes system is carried out by means of the technique developed

by Iovieno, Cavazzoni and Tordella in 2001 (for details see [11]).The numer-

ical domain consists of two cubes, L = 2π, with 1283 points each. As initial

condition, the two velocity fields are matched using a hyperbolic tangent

function, whose width is 1/40 of the total resulting 4π(2π)3 parallelepiped:

u(x) = u1(x)p(x) + (1 − p(x))u2(x) (6.1)

p(x) =
1

2
[1 + tanh(12π

x

L
) tanh(12π

x − L/2

L
) tanh(12π

x − L

L
)]

where now x is the inhomogeneity direction. Time integration adopts a

four-stage fourth-order explicit Runge-Kutta scheme.
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As a definition of integral scale, the longitudinal integral scale has been

adopted

l(t) =
1

3

3
∑

i=1

∫ ∞

0
Rii(r, t) dr

Rii(0, t)
. (6.2)

This definition has two good features. First it can be directly measured

quite easily. Second, it is a quantity normalized by the kinetic energy: thus

the integral scale does not depend on the level of kinetic energy, just on the

way it is distributed over the wave-numbers. For example, let’s consider two

turbulence fields obtained by multiplying the same velocity field by two dif-

ferent constants. The energy spectrum will result scaled by constants, so the

energy levels will be different; but the constants will disappear in the ratio

(6.2) and the flows will have the same integral scale. So, it is the shape of the

spectrum which determines the integral scale. In particular, the distribution

of low wave-numbers modes has a strong effect on the resulting integral scale,

being the non-universal part of the spectrum.

In order to modify the shape of the spectrum, and thus the integral scale,

two methods were used. A low-pass filter effect was obtained by letting the

initial homogeneous isotropic field evolve in time. Actually, a decayed field

has a lower energy and a higher integral scale than the initial field. Thus,

one can generate opposite energy and integral scale gradients.

As high-pass filters, CROCE and SFERA filters, introduced in chapter

5, are used. Both of them have been tested, in order to study a possible

influence of the filtering method on the final statistics; no effect due to a

particular choice of one filter was detected.

Another important consideration must be made, as the kinetic energy

and the integral scale of the flows are time-depending. An estimate of the

evolution for these quantities can be obtained by recalling two facts. First,

the integral scale can be estimated using the equation

l(t) =
k(t)3/2

ε
f(Re) (6.3)

where ε is the dissipation rate ε = −dk

dt
, and f(Re) is an order-one function

which should be estimated experimentally. In the hypothesis of statistical

equilibrium, one could use the simplified relation l = k
3/2

ε
; but many authors

have shown that this hypothesis is not fully satisfied if the Taylor Reynolds
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number Reλ is less than 70 (see Batchelor, Dimotakis). Thus, we refer to the

more general relation.

Second, in the homogeneous parts of the flows, the evolution of the kinetic

energy is well known in literature (see for example [12]):

k(t) = A(t + t0)
−n (6.4)

where the constants t0 and n are to be determined experimentally. Times

are normalized by the eddy turnover time τ = l/k1/2. Using (6.4) we can

rewrite (6.3) in the form

l(t) =
1

n
f(Reλ)

√
A(t − t0)

1−n/2 (6.5)

which shows the explicit evolution of the integral scale as a function of time.

Considering the integral scale and energy ratios, they must evolve as

L(t)

L(0)
= (1 +

t

t01
)1−n1/2(1 +

t

t02
)−1+n2/2 (6.6)

E(t)

E(0)
= (1 +

t

t01
)−n1(1 +

t

t02
)n2 (6.7)

In the experiments carried out, all values of the constants t01, t02 and n1,

n2 are very close to each other (see [3] pag.4). This means that the ratios

in (6.6) and (6.7) can be assumed time-independent, giving almost constant

conditions for the evolution of the mixing layer.

6.2.2 Results

The two control parameters which take part in a mixing layer simulation are

the integral scale ratio L and the energy ratio E . In order to investigate the

presence of the asymptotic state, the numerical experiments reproduce the

state with L = 1, letting the energy ratio grow. In Tordella & Iovieno [3],

E is let vary from 1 to 58. According to these simulations, the asymptotic

hypothesis is not confirmed. Actually, all simulations of the mixing layer ap-

pear to be intermittent. As an example, we present the plot of the skewness

and the kurtosis of the velocity component in the inhomogeneity direction

(y according to fig.6.1) through the mixing layer. The spatial coordinate is

centered in the position of the center of the layer, i.e. the position where the

average kinetic energy k1+k2

2
is measured; and it is normalized by the length

of the layer, as defined in [3] (pag.7). The plots 6.2 show data coming from
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Figure 6.2: Skewness (a) and kurtosis (b) of the velocity component in the

inhomogeneity direction x. Comparison with values of Briggs et al. and LES

method implemented by Tordella & Iovieno

different values of (normalized) times: Furthermore, data coming from LES

simulations and from Briggs experiment are presented for comparison. Both

skewness and kurtosis are far from the Gaussian values, proving the presence

of intermittent features in the turbulence mixing layer dynamics.

To gain a deeper understanding of such phenomenon, a further study has

been carried out. Such analysis focuses the evolution in time of the non-

Gaussian features; precisely, we have captured the maxima of the kurtosis

(for each time step) in the mixing layer, and showed their trend in time.

Moreover, we complete the picture on the dependence of such features

on the energy ratio, by letting E grow until values of the order of 103. We

present the results obtained about the kurtosis, but a similar analysis can be

carried out for the third moment.

At low time, the evolution is quite expected. In particular, the initial

condition is associated to a Gaussian value of three. This value is soon

abandoned, the curve kurtosis-time steeply grows at the beginning. Observe

that values larger than 3 are reached in a short time. Nevertheless, the

increasing of this curve is stronger if the energy ratio is higher. For example,

consider for example the normalized time t/τ = 2. The kurtosis values (more

precisely, the values of the maximum kurtosis reached in the mixing layer)

for simulations with high energy ratio as E = 100 have reached K ≈ 9, while

K ≈ 10.5 for E = 1000; instead, at the same time, the maximum kurtosis for
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Figure 6.3: Time evolution of kurtosis

maximum, E = 12
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Figure 6.4: Time evolution of kurtosis

maximum, E = 140
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Figure 6.5: Time evolution of kurtosis

maximum, E = 80
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Figure 6.6: Time evolution of kurtosis

maximum, E = 20
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Figure 6.7: Time evolution of kurtosis

maximum, E = 60

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0  1  2  3  4  5  6  7  8

Figure 6.8: Time evolution of kurtosis

maximum, E = 100
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Figure 6.9: Time evolution of kurtosis

maximum, E = 300
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Figure 6.10: Time evolution of kurto-

sis maximum, E = 10000
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Figure 6.11: Time evolution of kurto-

sis maximum, E = 10000
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Figure 6.12: Time evolution of kurto-

sis maximum, E → ∞
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the E = 12 appears to be less than 4.5.

Second, as already mentioned, we show evidence that the kurtosis reaches

a maximum value during the decaying of the mixing layer. After a steep

growth, actually the kurtosis reaches a sort of peak, after which there is a

region in which it begins decreasing. Note that such maximum is reached in

approximately 3-4 normalized time units t/τ for every value of energy ratio.

The only simulation which differs in behavior is the E = 20 one. A possible

explanation is the difficulty in the identification of the maximum of K in

presence of two peaks in the kurtosis profile; here we show the plot of this

simulation for sake of completeness, but further analysis should be carried

out.

We can also note that the range of decreasing is wider for higher values

of E . For example, when E = 80, K goes down from 7.5 to 6.5 giving a

∆K ≈ 1; while ∆K ≈ 4 in E = 10000, where K passes from 15 to 11.

High values of kurtosis indicate that intermittency is strongly present in

the dynamics of the mixing layer. In particular, when the kurtosis grows up

to K ≈ 10, K ≈ 15, the intermittency is active and the turbulent penetration

dominates the evolution of the mixing layer. The turbulent diffusion seems

to balance the turbulent penetration only after an initial period: this seems

to be indicated by a decreasing of the intermittent features, once 4-5 t/τ has

passed.

Finally, as the system further evolves, our analysis becomes less reliable:

the turbulence, not forced, is going to slowly disappear. It is still matter

of discussion if the kurtosis presents other fluctuations, before disappearing.

Some simulations seem to suggest that the kurtosis starts again to increase.

Such a growth seems to reach a new maximum value (t ∼ 10τ). Note that

this new maximum is higher than the first peak value for the mixing layers

with E < 100; while in high energy ratio simulations the kurtosis seems to

fluctuate around values lower than the first peak. This trend needs more

simulations and analysis to be confirmed; hopefully, laboratory experiments

could help to prove and understand this behavior for high values of τ .

The intermittent features have been studied asymptotically, as a function

of the energy ratio. To each value of E , one value of kurtosis has been

associated. We have seen that the kurtosis reaches two peaks in the studied

time interval; moreover, for some simulations the first maximum is higher

than the second, but not for all. Thus, we preferred to study the behavior

of an average kurtosis, instead of the maximum. This average kurtosis has
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been calculated considering a time window and averaging the values of the

maxima on this time interval. The window is shorter than the total time

range (usually t/τ ∈ [0, 12]), in order to avoid the influence of the initial

evolution (the system is influenced by initial conditions) and the final decayed

field. A sort of limit case has been simulated letting k2 → 0: the high energy

field is diffusing and penetrating in a zero velocity field. The results are

presented in picture 6.13. A continuous growth is evident, much steeper for

lower values of E . We also show a fit obtained using a power law function

K(E) − 3 ≈ a(E − 1)b

with a ≈ 2.4, b ≈ 0.18. A better fit is obtained with a logarithmic function

K(E) − 3 ≈ a log(bE)

where a ≈ 3, b ≈ 4.3 The fit is good for low values of E .

6.3 Conclusions

The shearless turbulence mixing layer has been investigated using numerical

simulations. In particular, a post-processing analysis has been carried out

on the kurtosis of the velocity component in the direction of inhomogeneity,

dealing with simulated interacting fields with the same integral scale but

different kinetic energy. The results clearly shows that the intermittency

of the mixing layer is an increasing function of the energy ratio of the two

turbulences. This fact confirms the observations in Tordella-Iovieno. It shows

that, even if the length-scales of the interacting turbulences are comparable

(L ≈ 1), an intermittent behavior appears when the energy ratio moves away

from 1; and if we let E grow, the intermittency becomes stronger and stronger.

So, if we want to predict the behavior of a mixing layer, the parameter

Emust be taken into account, as it influences the non-Gaussian processes

such intermittent transport and penetration of a one turbulence into the

other. Possible models for this dependence on Ehave been presented, based

on logarithmic and order 4 functions.

We also showed that the evolution of the kurtosis, which is an index

of intermittency, in time presents a nonlinear growth, with the presence of

one maximum and successive fluctuations. This growth is steeper when the

energy ratio is high.
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Figure 6.13: Kurtosis as function of energy ratio. Least square fits with

logarithmic and power law function
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6.3. Conclusions

This results help to draw a more precise picture of the evolution of a

shearless mixing layer. Nevertheless, this picture must be regarded as the first

step towards the understanding of mixing layers. The introduction of shear,

and the consequent generation of turbulence, is necessary in order to develop

a model for real mixing experiments taking place in science and engineering.

Once we have established the importance of the control parameter L and E ,

further research should be carried out in that direction.
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Appendix A

Postprocessing details

A.1 Filters

Essentially, three filters have been used to modify the velocity fields. All

these filters act in the wave-number domain, in order to allow considerations

about the spectra and the energetics of a field.

The SFERA high-pass filter is based on the use of the function

gs(k; A, k0|) =
1

1 − e−A(|k|−k0)
(A.1)

which is a sort of smooth step function. The parameter k0 controls the

width of the band, while A determines the steepness of the step. This is a

spherical filter that cuts the contribution of any wave-number whose mag-

nitude is larger than a certain threshold. A bandpass filtering has been

obtained using the same kind of function:

g̃s(k; A, kmin, kmax) = [1 − gs(k; A, kmin)] + gs(k; A, kmax)

= [1 − 1

1 − e−A(|k|−kmin)
] +

1

1 − e−A(|k|−kmax)
(A.2)

The CROCE high-pass filter is thought to suppress any wave-number that

has at least one component lower than a certain threshold. Thus it is defined

as

gc(k; A, k0) =
3

∏

i=1

Φ(ki; A, k0) (A.3)

Φ(ki; A, k0) =
1

1 − e−A(ki−k0)
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A.2. Program instructions

Again, we can filter the band [kmin, kmax] on each component of k by defining

Φ̃(ki; A, kmin, kmax) = [1 − Φ(ki; A, kmin)] + Φ(ki; A, kmax)

Finally, the filter FILAMENTO evaluates the components k1, k2, k3 sepa-

rately. If one of them, say kj, falls in the filter range [kmin, kmax] and the other

two are greater than a certain threshold (KTOP), then the filter function is

gf (k; A, k|) = Φ̃(kj; A, kmin, kmax) (A.4)

A.2 Program instructions

The data of the 10243 velocity field are stored in 64 files, each of them repre-

senting a “slice” of domain of N×N×NX, where N = 2π and NX = 2π/64;

the total dimension is about 13 gigabytes. We must say that one main diffi-

culty in our work was to handle this huge mole of data, as we needed to carry

out global operation on the whole domain (for example, Fourier transforms)

but the calculator can process just portions (the slices) of domain. Thus,

each program has been thought to use one slice per time, with particular

care for operations which require more than one spatial point (like deriva-

tives and transforms).

First, the velocity field v(x) is transformed in order to obtain the Fourier

coefficients v(k). The transform is implemented by use of the routine nag,

which operates a 1D transform. As the data are contained in 64 files instead

then one, and each file consist of a part of domain of dimension N ×N ×NX

(N in the y and z directions, and NX in the x direction), the transform is

operated in two steps. First, we transform file by file in the two directions

y and z. Then we create a new set of domain slices with dimension N in x

and y directions and NX in z direction, and perform the last 1D transform

in the x direction.

Once we have the data set in the wave-number domain, we perform the

filtering. The programs which filter the field are based on the same subroutine

F:

IF(KMIN.LE.0)THEN

G=0.E0

ELSE

ETA1=EXP(-A*(K-KMIN))
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G=1.0E0-1/(1.0E0+ETA1)

END IF

ETA2=EXP(-A*(K-KMAX))

F=G+1/(1.0E0+ETA2)

Then the filter sfera acts on the magnitude of vector k:

DO 50 L1=0,N-1

CALL N_ONDA(L1,K1,N)

DO 50 L2=0,N-1

CALL N_ONDA(L2,K2,N)

DO 50 L3=0,NX-1

L3vero=L3+IFETTA*NX

CALL N_ONDA(L3vero,K3,N)

KK=(K1**2+K2**2+K3**2)**0.5E0

COEFF=F(KK,A,KMIN,KMAX)

DO 60 J=1,3

U(L1,L2,L3,J)=U(L1,L2,L3,J)*COEFF

60 continue

50 continue

while croce acts on the components of the coefficient vector:

DO 50 L1=0,N-1

CALL N_ONDA(L1,K1,N)

COEFF1 = F(K1,A,KMIN,KMAX)

DO 50 L2=0,N-1

CALL N_ONDA(L2,K2,N)

COEFF2 = F(K2,A,KMIN,KMAX)

DO 50 L3=0,NX-1

L3vero=L3+IFETTA*NX

CALL N_ONDA(L3vero,K3,N)

COEFF3 = F(K3,A,KMIN,KMAX)

COEFF=COEFF1*COEFF2*COEFF3

DO 60 J=1,3
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U(L1,L2,L3,J)=U(L1,L2,L3,J)*COEFF

60 continue

50 continue

and filamento operates through an if structure:

IF((K1.GE.KMIN).AND.(K1.LE.KMAX).AND.(K2.GT.KTOP)

>.AND.(K3.GT.KTOP))THEN

COEFF=F(K1,A,KMIN,KMAX)

ELSE IF((K2.GE.KMIN).AND.(K2.LE.KMAX).AND.(K1.GT.KTOP)

>.AND.(K3.GT.KTOP))THEN

COEFF=F(K2,A,KMIN,KMAX)

ELSE IF((K3.GE.KMIN).AND.(K3.LE.KMAX).AND.(K2.GT.KTOP)

>.AND.(K1.GT.KTOP))THEN

COEFF=F(K3,A,KMIN,KMAX)

ELSE

COEFF=1.0

END IF

Then we come back to the space domain with the same nag routine, and

evaluate the values of the function f(u) = |ω·∇u|
|ω|2

. The routine stretch cal-

culate the values of f . The core of the program is the following. Calculation

of the vorticity:

do i=1,NX

do j=1,N-2

do k=1,N-2

Inew=I-1

omega(Inew,j,k,1) = (w(i,j+1,k)-w(i,j-1,k))/(2*dx) -

& (v(i,j,k+1)-v(i,j,k-1))/(2*dx)

omega(Inew,j,k,2) = (u(i,j,k+1)-u(i,j,k-1))/(2*dx) -

& (w(i+1,j,k)-w(i-1,j,k))/(2*dx)

omega(Inew,j,k,3) = (v(i+1,j,k)-v(i-1,j,k))/(2*dx) -

& (u(i,j+1,k)-u(i,j-1,k))/(2*dx)
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end do

end do

end do

Computation of the gradients (subroutine grad0 ):

c.....1) du1/dx1

write(*,*)’Inizio grad0 - calcolo grad(1)’

do K=0,N-1

do J=0,N-1

do I=1,NX

Inew=I-1

gu(Inew,J,K,1)= (u(i+1,j,k)-u(i-1,j,k))/(2*dx)

end do

end do

end do

c.....2) du1/dx2

write(*,*)’Inizio grad0 - calcolo grad(2)’

do K=0,N-1

do I=1,NX

do J=1,N-2

Inew=I-1

gu(Inew,J,K,2)= (u(i,j+1,k)-u(i,j-1,k))/(2*dx)

end do

end do

end do

gu(Inew,0,K,2)= (u(i,1,k)-u(i,0,k))/dx

gu(Inew,N-1,K,2)= (u(i,N-1,k)-u(i,N-2,k))/dx

c.....3) du1/dx3

write(*,*)’Inizio grad0 - calcolo grad(3)’

do J=0,N-1

do I=1,NX

do K=1,N-2

Inew=I-1

gu(Inew,J,K,3)= (u(i,j,k+1)-u(i,j,k-1))/(2*dx)

end do
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end do

end do

gu(Inew,J,0,3)= (u(i,J,1)-u(i,J,0))/dx

gu(Inew,J,N-1,3)= (u(i,J,N-1)-u(i,J,N-2))/dx

Computation of the numerator:

c................... Gradiente UI

call grad0(UI,gutot,dx)

C................... Prodotto scalare wj*d_j(u1)

do 10 L3=0,N-1

do 10 L2=0,N-1

do 10 L1=0,NX-1

str_tot(L1,L2,L3,1)=0.0

do k=1,3

str_tot(L1,L2,L3,1)=str_tot(L1,L2,L3,1) +

& wtot(L1,L2,L3,k)*gutot(L1,L2,L3,k)

end do

10 CONTINUE

c................... Gradiente VI

call grad0(VI,gutot,dx)

c.... .............. Prodotto scalare wj*d_j(u2)

do 20 L3=0,N-1

do 20 L2=0,N-1

do 20 L1=0,NX-1

str_tot(L1,L2,L3,2)=0.0

do k=1,3

str_tot(L1,L2,L3,2)=str_tot(L1,L2,L3,2) +

& wtot(L1,L2,L3,k)*gutot(L1,L2,L3,k)

end do

20 CONTINUE

c.................... Gradiente WI

call grad0(WI,gutot,dx)
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c.................... Prodotto scalare wj*d_j(u3)

do 30 L3=0,N-1

do 30 L2=0,N-1

do 30 L1=0,NX-1

str_tot(L1,L2,L3,3)=0.0

do k=1,3

str_tot(L1,L2,L3,3)=str_tot(L1,L2,L3,3) +

& wtot(L1,L2,L3,k)*gutot(L1,L2,L3,k)

end do

Computation of f :

EPS=Wmedio*(0.02)

DO 40 I=0,NX-1

DO 40 J=0,N-1

DO 40 K=0,N-1

STR_MOD=0

DO LL=1,3

STR_MOD=STR_MOD+ str_tot(I,J,K,LL)**2

END DO

STR_MOD=STR_MOD**0.5E0

WMODULO=0

DO LL=1,3

WMODULO=WMODULO+ Wtot(I,J,K,LL)**2

END DO

DO LL=1,3

FVETT(I,J,K,LL)=STR_TOT(I,J,K,LL)/(WMODULO+eps)

END DO

F(I,J,K)=STR_MOD/(WMODULO+eps)

This program also makes a check on the average value of vorticity ω
2.

This value is added in the denominator (EPS = |ω|2 ∗ (0.02)), because

the vorticity could become very small in some points. Finally, the routine

108



A.2. Program instructions

momenti obtains the statistics of the function f . We calculate the moments

up to the fourth; and the cumulative distribution function and the probability

density function. This is carried out by considering the N3 values as N3

realizations of f , and averaging over the whole domain.

c... Calcolo media

DO 10 I=0,NX-1

DO 10 J=0,N-1

DO 10 K=0,N-1

MEDIA=MEDIA+F(I,J,K)

10 CONTINUE

MED(INOME)=media/(N*N*NX)

900 CONTINUE

MEDIA=0

DO II=0,63

MEDIA=MEDIA+MED(II)

END DO

MEDIA=MEDIA/64

c... Calcolo momenti centrati

DO 20 I=0,NX-1

DO 20 J=0,N-1

DO 20 K=0,N-1

VAR=VAR+(F(I,J,K)-MEDIA)**2

MOM3C=MOM3C+(F(I,J,K)-MEDIA)**3

MOM4C=MOM4C+(F(I,J,K)-MEDIA)**4

c... Calcolo cdf

DO 100 II=0,M

IF(F(I,J,K).LE.X(II)) THEN

CONTA(II)=CONTA(II)+1

END IF

100 CONTINUE

20 CONTINUE

VAR_T=VAR_T+VAR/(N*N*NX)

MOM3C_T=MOM3C_T+MOM3C/(N*N*NX)

MOM4C_T=MOM4C_T+MOM4C/(N*N*NX)
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800 CONTINUE

VAR=VAR_T/64

DEV_STD=SQRT(VAR)

MOM3C=MOM3C_T/64

SKE=MOM3C/(DEV_STD**3)

MOM4C=MOM4C_T/64

KURT=MOM4C/(DEV_STD**4)

DO II=0,M

CDF(II)=FLOAT(CONTA(II))

CDF(II)=CDF(II)/(N**3)

END DO

c... Calcolo pdf

DO II=1,M-1

PDF(II)=(CDF(II+1)-CDF(II-1))/(2*DX)

END DO

PDF(0)=(CDF(1)-CDF(0))/DX

PDF(M)=(CDF(M)-CDF(M-1))/DX
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