Graphene hydrogels: from fundamentals to applications

Kaiwen Hua, Xingyi Xiea,b, Thomas Szkopekc, Marta Cerrutia

aMaterials Engineering, McGill University, Canada
bCollege of Polymer Science and Engineering, Sichuan University, China
cElectrical and Computer Engineering, McGill University, Canada
Porous materials in our life

- CO$_2$ / pollutant capture
- Electrochemical energy storage
- Tissue engineering
- Filtration, ion exchange
Traditional carbon gels

Classical Resorcinol-formaldehyde (RF) system (1989)

- Complex system
- Need of pyrolysis and post activation
- Low mechanical properties

Graphene oxide as gel building block

Graphene oxide (GO)

- High colloidal stability in solvents ($M_w=10^6$-10^7 g/mol)
- Rich chemistry for crosslinking
- High surface area material (~ 750 m2/g)
- Restoration of graphene structure
Hydrothermal gelation of GO (2011)

Graphene oxide (GO) → Reduced graphene oxide (RGO)

Hydrothermal reduction

Increasing Hydrophobic interaction

- Simple system
- Strong and conductive gels
Today’s talk

• How does hydrothermal **reduction chemistry** work?

• What is the **structure** of the gels?

• Can we use this information to **rationally design** new gels?
Identifying gelation products

- Low pH: Gas entrapment
- High pH: Absorbed by ammonia
 \(\text{CO}_2 \) formation?
- Acidic solution after gelation: Formation of acidic species?

Quantification of products

Impact on structure and properties

GHG-N-0 GHG-N-60 GHG-N-170 GHG-N-290

Compression

Elastic modulus (kPa)

Ammonia addition (µl)

Volume (cm³)

V(ammonia) (µl)

GHG-N-0 GHG-N-60 GHG-N-170 GHG-N-290

A closer look at the gel structure

- Compact shell vs. porous bulk
- Forms at interfaces

Difference between bulk and shell

Shell:
1. Highly order multilayer up to 70 layers
2. 4 orders more conductive

Mechanism and ways to remove shell

Shell-less hydrogel:
- Lower density
- Homogenous open structure

Homogenous nanoparticle composite gel

Three step method:

I. Homogeneous citrate-Hydroxyapatite (HA)/GO suspension

II. Hydrothermal hydrogel formation

III. Dialysis induced HA deposition on graphene

✔ Free standing HA-RGO hydrogel

Dialysis?
Distribution of HA on gel

40% HA loading

✓ Homogenous HA nano-needles on graphene!
Good biocompatibility

✓ >93% of live cells on both rGO and G/HA-40
Cell morphology

- More elongated cells on G/HA
- Filamentous extensions on G/HA
Summary

• Conductive, elastic gels can be produced by hydrothermal reduction of GO

• Mechanical and electrical properties can be tuned by changing pH or other reduction conditions (pre-reduction)

• Nanocomposite porous, biocompatible, conductive, elastic structures for tissue engineering…. And what more?
Acknowledgements

• NSERC

• Centre of Self Assembled Chemical Structures (CSACS)

• Canada Research Chair Foundation

• Fonds de recherche Nature et technologies Quebec

• McGill University:
 ➢ MEDA scholarship
 ➢ CSACS
 ➢ FEMR and Dr. X. Liu
 ➢ Biointerface and Nanoelectronic devices and material lab members
Thank you!