June 2018
The paper Effects of atrial fibrillation on the arterial fluid dynamics: a modelling perspective, by S. Scarsoglio, C. Gallo, L. Ridolfi, has been published online in Meccanica, June 2018, doi: 10.1007/s11012-018-0867-6.
Abstract
Atrial fibrillation (AF) is the most common form of arrhythmia with accelerated and irregular heart rate (HR), leading to both heart failure and stroke and being responsible for an increase in cardiovascular morbidity and mortality. In spite of its importance, the direct effects of AF on the arterial hemodynamic patterns are not completely known to date. Based on a multiscale modelling approach, the proposed work investigates the effects of AF on the local arterial fluid dynamics. AF and normal sinus rhythm (NSR) conditions are simulated extracting 2000 RR heartbeats and comparing the most relevant cardiac and vascular parameters at the same HR (75 bpm). Present outcomes evidence that the arterial system is not able to completely absorb the AF-induced variability, which can be even amplified towards the peripheral circulation. AF is also able to locally alter the wave dynamics, by modifying the interplay between forward and backward signals. The sole heart rhythm variation (i.e., from NSR to AF) promotes an alteration of the regular dynamics at the arterial level which, in terms of pressure and peripheral perfusion, suggests a modification of the physiological phenomena ruled by periodicity (e.g., regular organ perfusion) and a possible vascular dysfunction due to the prolonged exposure to irregular and extreme values. The present study represents a first modeling approach to characterize the variability of arterial hemodynamics in presence of AF, which surely deserves further clinical investigation.
Full text is available here.