October 2017

The paper Visibility graph analysis of wall turbulence time-series, by G. Iacobello, S. Scarsoglio, L. Ridolfi, has been published in Physics Letters A, 382(1), 1–11, 2018, doi: 10.1016/j.physleta.2017.10.027.

 

Abstract

The spatio-temporal features of the velocity field of a fully-developed turbulent channel flow are investigated through the natural visibility graph (NVG) method, which is able to fully map the intrinsic structure of the time-series into complex networks. Time-series of the three velocity components, (u, v, w), are analyzed at fixed grid-points of the whole three-dimensional domain. Each time-series was mapped into a network by means of the NVG algorithm, so that each network corresponds to a grid-point of the simulation. The degree centrality, the transitivity and the here proposed mean link-length were evaluated as indicators of the global visibility, inter-visibility, and mean temporal distance among nodes, respectively. The metrics were averaged along the directions of homogeneity (x, z) of the flow, so they only depend on the wall-normal coordinate, y+. The visibility-based networks, inheriting the flow field features, unveil key temporal properties of the turbulent time-series and their changes moving along y+. Although intrinsically simple to be implemented, the visibility graph-based approach offers a promising and effective support to the classical methods for accurate time-series analyses of inhomogeneous turbulent flows.

 

Full text is available here.