Electronic Biosensing

Organic Electrochemical Transistor (OECT)

 

OECTs are based on highly conductivity polymer as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS, which modulates its conductivity, in response to a gate voltage, by bulk effects of doping and de-doping in a electrolyte solution. This unique characteristic allows for obtaining sensors able to monitor, with high sensibility, biomolecules as DNA and proteins, bio-signals as neuronal synaptic activity and so on. Materials and processing of these devices are extremely interesting due to the simple deposition of the polymers on flexible substrates by clean room processes or printing technology. The research activity in this fields is focused on the development of innovative processes to obtain novel devices for bio sensing applications as biomarkers recognition, cell analysis, health care and environmental monitoring.

Contact information

Matteo Cocuzza
Tel. +39 011 090 7392
matteo.cocuzza@infm.polito.it

Simone Marasso
Tel. +39 011 911 4899
simone.marasso@polito.it

 

Graphene Field Effect Transistor (G-FET)

 

G-FET are transistors which exploit Graphene as a channel instead of the classical semiconductor. Due to its peculiar electrical properties, Graphene is perfectly suitable for sensing applications and can be functionalized in order to allow the detection of analytes, like antibodies, DNA, miRNA and so on. Its mechanical properties and stability make it an interesting material also for the production of flexible electronics, which are the basis for example of wearable devices.

In our research activity we are working on developing G-FETs for biosensing, specifically for the detection of lung cancer biomarkers. An important point of research is the transferring process of Graphene, which is one of the main issues for its exploitation on an industrial scale. To address this issue, a novel transfer technique exploiting Hot Embossing of the graphene on a COC substrate was successfully developed and implemented in the G-FETs fabrication process.

Contact information
 

Simone Marasso
Tel. +39 011 911 4899
simone.marasso@polito.it

Alberto Ballesio

alberto.ballesio@polito.it

Alessio Verna

Alessio.Verna@polito.it

 

Electrolyte Gated Organic Field Effect transistor (EGO-FET)

 

EGOFETs consist of an organic semiconducting material (OSC) separated from the gate electrode by an electrolyte and contacted with source and drain electrodes. The charge transport inside the OSC channel is controlled by the capacitive coupling between the electrical double layer (EDL) at the gate electrode/electrolyte interface and the one at the OSC/electrolyte interface. Small variations in these EDLs capacitances are able to modulate the drain current of the device, thus allowing for the detection of small molecules after the proper functionalization of the surface. The low operating voltages of EGOFETs and their easy processability have made these devices very attractive for low-cost point-of-care applications. Our research activity is focused on the development of EGOFETs based on polymeric semiconductors such as poly(3-hexylthiophene-2,5-diyl) (P3HT) for the detection of lung cancer biomarkers

.

Contact information
 

Simone Marasso
Tel. +39 011 911 4899
simone.marasso@polito.it

Matteo Parmeggiani

matteo.parmeggiani@polito.it

Alessio Verna

Alessio.Verna@polito.it

 

Electrochemical based sensors

 

Sensing of specific analytes is an important task in different fields such as life science, agrifood and environmental monitoring. Electrochemical based-sensors are a promising platform for this purpose because they can offer helpful advantages: the use of small amount of sample (blood, urine, sweat, etc.) and a remarkable limit of detection. We are currently working on the implementation of a commercial screen printed 3-electrode cell (working, reference and counter electrodes, Metrohm™ Dropsens) for the detection of tumoral biomarkers involved in the onset and  metastatic progression of the pathology. The combination of a (bio)chemical functionalization and the evaluation of the charge-blocking effect of the sensor allows us to perform a label-free detection by correlating the system impedance variation with the concentration of biomarker in the sample. The platform is intended for the integration in a microfluidic device, paving the way to automation of the analysis.

Contact information


Eve Verpoorten

eve.verpoorten@polito.it

Gianluca Palmara

gianluca.palmara@polito.it

 

Publications

 

  1. S. Battistoni, C. Peruzzi, A. Verna, S.L. Marasso, M.Cocuzza, V. Erokhin, S. Iannotta, "Synaptic response in organic electrochemical transistor gated by a graphene electrode", Flexible and Printed Electronics, 2019, Vol. 4(4), 044002, doi:10.1088/2058-8585/ab4dce
  2. M. Parmeggiani, A. Verna, A. Ballesio, M. Cocuzza, E. Piatti, V. Fra, C.F. Pirri, S.L. Marasso, “P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface”, Sensors, 2019, Vol. 19, 4497, doi:10.3390/s19204497
  3. P. D'Angelo, S.L. Marasso, A. Verna, A. Ballesio, M. Parmeggiani, A. Sanginario, G. Tarabella, D. Demarchi, C.F. Pirri, M. Cocuzza, S. Iannotta, "Scaling Organic Electrochemical Transistors Down to Nanosized Channels", Small, 2019, 1902332, DOI:10.1002/smll.201902332
  4. A. Verna, S.L. Marasso, P. Rivolo, M. Parmeggiani, M. Laurenti and M. Cocuzza, "Lift-Off Assisted Patterning of Few Layers Graphene", Micromachines, 2019, 10(6), 426; doi:10.3390/mi10060426
  5. G. Tarabella, S.L. Marasso, V. Bertana, D. Vurro, P. D’Angelo, S. Iannotta and M. Cocuzza, "Multifunctional Operation of an Organic Device with Three-Dimensional Architecture", Materials, 2019, 12, 1357, doi:10.3390/ma12081357
  6. A. Ballesio, M. Parmeggiani, A. Verna, F. Frascella, M. Cocuzza, C.F. Pirri, S.L. Marasso, "A novel hot embossing Graphene transfer process for flexible electronics", Microelectronic Engineering, 2019, 209, pp. 16-19, doi:10.1016/j.mee.2019.02.010
  7. P. D'Angelo, G. Tarabella, A. Romeo, S.L. Marasso, A. Verna, M. Cocuzza, C. Peruzzi, D. Vurro, S. Iannotta, "PEDOT:PSS morpho-structure and ion-to-electron transduction/amplification mechanisms in Organic Electrochemical Transistors", Materials, 2019, Vol. 12 (1), 9, doi:10.3390/ma12010009
  8. M. Parmeggiani, A. Ballesio, A. Verna, F. Frascella, M. Cocuzza, C.F. Pirri, S. L. Marasso, "A Novel Electrolyte Gated Graphene Field Effect Transistor on Cyclo Olefin Copolymer Foil", 2018 IEEE SENSORS, New Delhi, India, 2018, pp. 1-4, doi: 10.1109/ICSENS.2018.8589604
  9. D. Gentili, P. D’Angelo, F. Militano, R. Mazzei, T. Poerio, M. Brucale, G. Tarabella, S. Bonetti, S.L. Marasso, M. Cocuzza, L. Giorno, S. Iannotta and M. Cavallini, "Integration of Organic Electrochemical Transistors and Immuno-Affinity Membranes for Label-Free Detection of Interleukin-6 at the Physiological Concentration Range through Antibody-Antigen Recognition", Journal of Materials Chemistry B, Vol. 6(3), 2018, pp. 5400-5406, http://dx.doi.org/10.1039/C8TB01697F
  10. P. D’Angelo, G. Tarabella, A. Romeo, S.L. Marasso, M. Cocuzza, C. Peruzzi, D. Vurro, G. Carotenuto and S. Iannotta, "Nanomolar detection of the antitumor drug tamoxifen by flexible organic electrochemical devices", AIP Conference Proceedings 1990, 020015, (2018), https://doi.org/10.1063/1.5047769
  11. M. Parmeggiani, A. Dev, P. Björk, and J. Linnros, “Electrokinetic-assisted gating in a microfluidic integrated Si nanoribbon ion sensor for enhanced sensitivity,” Sensors Actuators B Chem., vol. 262, pp. 974–981, Jun. 2018
  12. G. Scordo, D. Moscone, G. Palleschi, and F. Arduini, “A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum,” Sensors Actuators B Chem., vol. 258, pp. 1015–1021, Apr. 2018.
  13. "Monitoring emulsion microstructure by using organic electrochemical transistors", Preziosi, V., Barra, M., Perazzo, A., Tarabella, G., Romeo, A., Marasso, S.L., D'Angelo, P., Iannotta, S., Cassinese, A., Guido, S., 2017, Journal of Materials Chemistry C, 5 (8), pp. 2056-2065
  14. "Monitoring the adaptive cell response to hyperosmotic stress by organic devices", P. D'Angelo, G. Tarabella, A. Romeo, A. Giodice, S. L. Marasso, M. Cocuzza, F. Ravanetti, A. Cacchioli, P. G. Petronini, S. Iannotta, MRS Communications, 2017, pp. 1-7, doi:10.1557/mrc.2017.29
  15. "Biorecognition in organic field effect transistors biosensors: the role of the density of states  of the organic semiconductor", M. Berto, S. Casalini, M. Di Lauro, S. Marasso, M. Cocuzza,  D. Perrone, M. Pinti, A. Cossarizza, C.F. Pirri, D. Simon, M. Berggren, F. Zerbetto, C. Bortolotti, F. Biscarini, Analytical Chemistry, 2016, 88 (24), pp. 12330–12338, doi:10.1021/acs.analchem.6b03522
  16. "Liposomes sensing and monitoring by Organic Electrochemical Transistors integrated in microfluidics", G. Tarabella, A.G. Balducci, N. Coppedè, S. Marasso, S. Barbieri, M. Cocuzza, P. Colombo, R. Mosca, F. Sonvico, S. Iannotta, Biochimica et Biophysica Acta (BBA) - General Subjects, 1830, 2013, pp. 4374-4380, 10.1016/j.bbagen.2012.12.018
  17. “Nanogap fabrication for molecular electronics”, P. Civera, G. Piccinini, D. Demarchi, M. Cocuzza, D. Perrone, in: Book of Abstracts. Transalp'Nano 2008. Lyon. 27-29 October 2008. (pp. 100-101)